text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function import os import sys import subprocess import uuid import mmap from tempfile import NamedTemporaryFile from contextlib import closing from functools import partial from distutils.spawn import find_executable import pandas as pd from pandas.formats.format import CSVFormatter import sqlalchemy as sa from sqlalchemy.ext.compiler import compiles from sqlalchemy.sql.elements import Executable, ClauseElement from toolz import merge from multipledispatch import MDNotImplementedError from ..append import append from ..convert import convert from ..compatibility import StringIO from ..utils import literal_compile from .csv import CSV, infer_header from ..temp import Temp from .aws import S3 from .sql import getbind class CopyFromCSV(Executable, ClauseElement): def __init__(self, element, csv, delimiter=',', header=None, na_value='', lineterminator='\n', quotechar='"', escapechar='\\', encoding='utf8', skiprows=0, bind=None, **kwargs): if not isinstance(element, sa.Table): raise TypeError('element must be a sqlalchemy.Table instance') self.element = element self.csv = csv self.delimiter = delimiter self.header = ( header if header is not None else (csv.has_header if csv.has_header is not None else infer_header(csv.path)) ) self.na_value = na_value self.lineterminator = lineterminator self.quotechar = quotechar self.escapechar = escapechar self.encoding = encoding self.skiprows = int(skiprows or self.header) self._bind = getbind(element, bind) for k, v in kwargs.items(): setattr(self, k, v) @property def bind(self): return self._bind @compiles(CopyFromCSV, 'sqlite') def compile_from_csv_sqlite(element, compiler, **kwargs): if not find_executable('sqlite3'): raise MDNotImplementedError("Could not find sqlite executable") t = element.element if not element.header: csv = element.csv else: csv = Temp(CSV)('.%s' % uuid.uuid1()) assert csv.has_header, \ 'SQLAlchemy element.header is True but CSV inferred no header' # write to a temporary file after skipping the first line chunksize = 1 << 24 # 16 MiB lineterminator = element.lineterminator.encode(element.encoding) with element.csv.open() as f: with closing(mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)) as mf: index = mf.find(lineterminator) if index == -1: raise ValueError("'%s' not found" % lineterminator) mf.seek(index + len(lineterminator)) # len because \r\n with open(csv.path, 'wb') as g: for chunk in iter(partial(mf.read, chunksize), b''): g.write(chunk) fullpath = os.path.abspath(csv.path).encode('unicode-escape').decode() cmd = ['sqlite3', '-nullvalue', repr(element.na_value), '-separator', element.delimiter, '-cmd', '.import "%s" \'%s\'' % ( # FIXME: format_table(t) is correct, but sqlite will complain fullpath, compiler.preparer.format_table(t) ), element.bind.url.database] stderr = subprocess.check_output( cmd, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, ).decode(sys.getfilesystemencoding()) if stderr: raise sa.exc.DatabaseError(' '.join(cmd), [], OSError(stderr)) return '' @compiles(CopyFromCSV, 'mysql') def compile_from_csv_mysql(element, compiler, **kwargs): if element.na_value: raise ValueError( 'MySQL does not support custom NULL values for CSV input' ) return compiler.process( sa.text( """LOAD DATA {local} INFILE :path INTO TABLE {table} CHARACTER SET :encoding FIELDS TERMINATED BY :delimiter ENCLOSED BY :quotechar ESCAPED BY :escapechar LINES TERMINATED BY :lineterminator IGNORE :skiprows LINES """.format( local=getattr(element, 'local', ''), table=compiler.preparer.format_table(element.element) ) ).bindparams( path=os.path.abspath(element.csv.path), encoding=element.encoding or element.bind.execute( 'select @@character_set_client' ).scalar(), delimiter=element.delimiter, quotechar=element.quotechar, escapechar=element.escapechar, lineterminator=element.lineterminator, skiprows=int(element.header) ), **kwargs ) @compiles(CopyFromCSV, 'postgresql') def compile_from_csv_postgres(element, compiler, **kwargs): if len(element.escapechar) != 1: raise ValueError( 'postgres does not allow escape characters longer than 1 byte when ' 'bulk loading a CSV file' ) return compiler.process( sa.text( """ COPY {0} FROM STDIN ( FORMAT CSV, DELIMITER :delimiter, NULL :na_value, QUOTE :quotechar, ESCAPE :escapechar, HEADER :header, ENCODING :encoding ) """.format(compiler.preparer.format_table(element.element)) ).bindparams( delimiter=element.delimiter, na_value=element.na_value, quotechar=element.quotechar, # use quotechar for escape intentionally because it makes it easier # to create a csv that pandas and postgres agree on escapechar=element.quotechar, header=element.header, encoding=element.encoding or element.bind( 'show client_encoding' ).execute().scalar() ), **kwargs ) try: import boto from odo.backends.aws import S3 from redshift_sqlalchemy.dialect import CopyCommand except ImportError: pass else: @compiles(CopyFromCSV, 'redshift') def compile_from_csv_redshift(element, compiler, **kwargs): assert isinstance(element.csv, S3(CSV)) assert element.csv.path.startswith('s3://') cfg = boto.Config() aws_access_key_id = cfg.get('Credentials', 'aws_access_key_id') aws_secret_access_key = cfg.get('Credentials', 'aws_secret_access_key') compression = getattr(element, 'compression', '').upper() or None cmd = CopyCommand( table=element.element, data_location=element.csv.path, access_key_id=aws_access_key_id, secret_access_key=aws_secret_access_key, format='CSV', delimiter=element.delimiter, ignore_header=int(element.header), empty_as_null=True, blanks_as_null=False, compression=compression ) return compiler.process(cmd) @append.register(sa.Table, CSV) def append_csv_to_sql_table(tbl, csv, bind=None, **kwargs): bind = getbind(tbl, bind) dialect = bind.dialect.name # move things to a temporary S3 bucket if we're using redshift and we # aren't already in S3 if dialect == 'redshift' and not isinstance(csv, S3(CSV)): csv = convert(Temp(S3(CSV)), csv, **kwargs) elif dialect != 'redshift' and isinstance(csv, S3(CSV)): csv = convert(Temp(CSV), csv, has_header=csv.has_header, **kwargs) elif dialect == 'hive': from .ssh import SSH return append(tbl, convert(Temp(SSH(CSV)), csv, **kwargs), **kwargs) kwargs = merge(csv.dialect, kwargs) stmt = CopyFromCSV(tbl, csv, bind=bind, **kwargs) if dialect == 'postgresql': with bind.begin() as c: with csv.open() as f: c.connection.cursor().copy_expert(literal_compile(stmt), f) else: with bind.begin() as conn: conn.execute(stmt) return tbl class NanIsNotNullFormatter(CSVFormatter): def _save_chunk(self, start_i, end_i): data_index = self.data_index # create the data for a chunk slicer = slice(start_i, end_i) for i in range(len(self.blocks)): b = self.blocks[i] na_rep = 'nan' if b.dtype.kind == 'f' else self.na_rep d = b.to_native_types(slicer=slicer, na_rep=na_rep, float_format=self.float_format, decimal=self.decimal, date_format=self.date_format, quoting=self.quoting) for col_loc, col in zip(b.mgr_locs, d): # self.data is a preallocated list self.data[col_loc] = col ix = data_index.to_native_types(slicer=slicer, na_rep=self.na_rep, float_format=self.float_format, decimal=self.decimal, date_format=self.date_format, quoting=self.quoting) pd.lib.write_csv_rows(self.data, ix, self.nlevels, self.cols, self.writer) # The set of sql dialects which do not bounce dataframes to disk to append # to a sql table. DATAFRAME_TO_TABLE_IN_MEMORY_CSV = frozenset({ 'postgresql', }) # TODO: figure out how to dynamically detect this number, users may have # compiled their sqlite with a different max variable number but this is the # default. SQLITE_MAX_VARIABLE_NUMBER = 999 @append.register(sa.Table, pd.DataFrame) def append_dataframe_to_sql_table(tbl, df, bind=None, dshape=None, sqlite_max_variable_number=SQLITE_MAX_VARIABLE_NUMBER, quotechar='"', **kwargs): bind = getbind(tbl, bind) dialect = bind.dialect.name if dialect == 'sqlite': name = ('.'.join((tbl.schema, tbl.name)) if tbl.schema is not None else tbl.name) df.to_sql( name, bind, index=False, if_exists='append', chunksize=sqlite_max_variable_number, ) return tbl if dialect in DATAFRAME_TO_TABLE_IN_MEMORY_CSV: buf = StringIO() path = None else: buf = NamedTemporaryFile(mode='w+') path = buf.name with buf: NanIsNotNullFormatter( df[[c.name for c in tbl.columns]], buf, index=False, quotechar=quotechar, doublequote=True, # use quotechar for escape intentionally because it makes it easier # to create a csv that pandas and postgres agree on escapechar=quotechar, ).save() buf.flush() buf.seek(0) return append_csv_to_sql_table( tbl, CSV(path, buffer=buf if path is None else None, has_header=True, # use quotechar for escape intentionally because it makes it # makes it easier to create a csv that pandas and postgres # agree on escapechar=quotechar, quotechar=quotechar), dshape=dshape, bind=bind, # use quotechar for escape intentionally because it makes it easier # to create a csv that pandas and postgres agree on escapechar=quotechar, quotechar=quotechar, **kwargs )
{ "repo_name": "ContinuumIO/odo", "path": "odo/backends/sql_csv.py", "copies": "4", "size": "12066", "license": "bsd-3-clause", "hash": -6115847992412246000, "line_mean": 33.5730659026, "line_max": 88, "alpha_frac": 0.5659704956, "autogenerated": false, "ratio": 4.3062098501070665, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00010209119438283606, "num_lines": 349 }
from __future__ import absolute_import, division, print_function import os import sys import subprocess import uuid import mmap from contextlib import closing from functools import partial from distutils.spawn import find_executable import sqlalchemy as sa from sqlalchemy.ext.compiler import compiles from sqlalchemy.sql.elements import Executable, ClauseElement from toolz import merge from multipledispatch import MDNotImplementedError from ..append import append from ..convert import convert from .csv import CSV, infer_header from ..temp import Temp from .aws import S3 from .sql import getbind class CopyFromCSV(Executable, ClauseElement): def __init__(self, element, csv, delimiter=',', header=None, na_value='', lineterminator='\n', quotechar='"', escapechar='\\', encoding='utf8', skiprows=0, bind=None, **kwargs): if not isinstance(element, sa.Table): raise TypeError('element must be a sqlalchemy.Table instance') self.element = element self.csv = csv self.delimiter = delimiter self.header = ( header if header is not None else (csv.has_header if csv.has_header is not None else infer_header(csv.path)) ) self.na_value = na_value self.lineterminator = lineterminator self.quotechar = quotechar self.escapechar = escapechar self.encoding = encoding self.skiprows = int(skiprows or self.header) self._bind = getbind(element, bind) for k, v in kwargs.items(): setattr(self, k, v) @property def bind(self): return self._bind @compiles(CopyFromCSV, 'sqlite') def compile_from_csv_sqlite(element, compiler, **kwargs): if not find_executable('sqlite3'): raise MDNotImplementedError("Could not find sqlite executable") t = element.element if not element.header: csv = element.csv else: csv = Temp(CSV)('.%s' % uuid.uuid1()) assert csv.has_header, \ 'SQLAlchemy element.header is True but CSV inferred no header' # write to a temporary file after skipping the first line chunksize = 1 << 24 # 16 MiB lineterminator = element.lineterminator.encode(element.encoding) with open(element.csv.path, 'rb') as f: with closing(mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)) as mf: index = mf.find(lineterminator) if index == -1: raise ValueError("'%s' not found" % lineterminator) mf.seek(index + len(lineterminator)) # len because \r\n with open(csv.path, 'wb') as g: for chunk in iter(partial(mf.read, chunksize), b''): g.write(chunk) fullpath = os.path.abspath(csv.path).encode('unicode-escape').decode() cmd = ['sqlite3', '-nullvalue', repr(element.na_value), '-separator', element.delimiter, '-cmd', '.import "%s" %s' % ( # FIXME: format_table(t) is correct, but sqlite will complain fullpath, compiler.preparer.format_table(t) ), element.bind.url.database] stderr = subprocess.check_output( cmd, stderr=subprocess.STDOUT, stdin=subprocess.PIPE ).decode(sys.getfilesystemencoding()) if stderr: # TODO: this seems like a lot of rigamarole try: raise OSError(stderr) except OSError as e: raise sa.exc.DatabaseError(' '.join(cmd), [], e) return '' @compiles(CopyFromCSV, 'mysql') def compile_from_csv_mysql(element, compiler, **kwargs): if element.na_value: raise ValueError( 'MySQL does not support custom NULL values for CSV input' ) return compiler.process( sa.text( """LOAD DATA {local} INFILE :path INTO TABLE {table} CHARACTER SET :encoding FIELDS TERMINATED BY :delimiter ENCLOSED BY :quotechar ESCAPED BY :escapechar LINES TERMINATED BY :lineterminator IGNORE :skiprows LINES """.format( local=getattr(element, 'local', ''), table=compiler.preparer.format_table(element.element) ) ).bindparams( path=os.path.abspath(element.csv.path), encoding=element.encoding or element.bind.execute( 'select @@character_set_client' ).scalar(), delimiter=element.delimiter, quotechar=element.quotechar, escapechar=element.escapechar, lineterminator=element.lineterminator, skiprows=int(element.header) ), **kwargs ) @compiles(CopyFromCSV, 'postgresql') def compile_from_csv_postgres(element, compiler, **kwargs): if len(element.escapechar) != 1: raise ValueError( 'postgres does not allow escape characters longer than 1 byte when ' 'bulk loading a CSV file' ) if element.lineterminator != '\n': raise ValueError( r'PostgreSQL does not support line terminators other than \n' ) return compiler.process( sa.text( """ COPY {0} FROM :path ( FORMAT CSV, DELIMITER :delimiter, NULL :na_value, QUOTE :quotechar, ESCAPE :escapechar, HEADER :header, ENCODING :encoding ) """.format(compiler.preparer.format_table(element.element)) ).bindparams( path=os.path.abspath(element.csv.path), delimiter=element.delimiter, na_value=element.na_value, quotechar=element.quotechar, escapechar=element.escapechar, header=element.header, encoding=element.encoding or element.bind( 'show client_encoding' ).execute().scalar() ), **kwargs ) try: import boto from odo.backends.aws import S3 from redshift_sqlalchemy.dialect import CopyCommand except ImportError: pass else: @compiles(CopyFromCSV, 'redshift') def compile_from_csv_redshift(element, compiler, **kwargs): assert isinstance(element.csv, S3(CSV)) assert element.csv.path.startswith('s3://') cfg = boto.Config() aws_access_key_id = cfg.get('Credentials', 'aws_access_key_id') aws_secret_access_key = cfg.get('Credentials', 'aws_secret_access_key') compression = getattr(element, 'compression', '').upper() or None cmd = CopyCommand( table=element.element, data_location=element.csv.path, access_key_id=aws_access_key_id, secret_access_key=aws_secret_access_key, format='CSV', delimiter=element.delimiter, ignore_header=int(element.header), empty_as_null=True, blanks_as_null=False, compression=compression ) return compiler.process(cmd) @append.register(sa.Table, CSV) def append_csv_to_sql_table(tbl, csv, bind=None, **kwargs): bind = getbind(tbl, bind) dialect = bind.dialect.name # move things to a temporary S3 bucket if we're using redshift and we # aren't already in S3 if dialect == 'redshift' and not isinstance(csv, S3(CSV)): csv = convert(Temp(S3(CSV)), csv, **kwargs) elif dialect != 'redshift' and isinstance(csv, S3(CSV)): csv = convert(Temp(CSV), csv, has_header=csv.has_header, **kwargs) elif dialect == 'hive': from .ssh import SSH return append(tbl, convert(Temp(SSH(CSV)), csv, **kwargs), **kwargs) kwargs = merge(csv.dialect, kwargs) stmt = CopyFromCSV(tbl, csv, bind=bind, **kwargs) with bind.begin() as conn: conn.execute(stmt) return tbl
{ "repo_name": "cpcloud/odo", "path": "odo/backends/sql_csv.py", "copies": "1", "size": "8019", "license": "bsd-3-clause", "hash": 5883079477662075000, "line_mean": 33.2692307692, "line_max": 82, "alpha_frac": 0.595211373, "autogenerated": false, "ratio": 4.159232365145228, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00010424731531380349, "num_lines": 234 }
from __future__ import absolute_import, division, print_function import os import sys import subprocess from setuptools import setup, find_packages from codecs import open from os import path from huckle import package from huckle import hutils if sys.argv[-1] == 'publish': branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).strip() if branch.decode('ASCII') != "master": sys.exit("publishing from a branch other than master is disallowed.") os.system("rm -rf dist") os.system("python setup.py sdist") os.system("twine upload dist/* -r pypi") os.system("git tag -a %s -m 'version %s'" % ("huckle-" + package.__version__, "huckle-" + package.__version__)) os.system("git push") os.system("git push --tags") sys.exit() if sys.argv[-1] == 'tag': branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).strip() if branch != "master": sys.exit("tagging from a branch other than master is disallowed.") os.system("git tag -a %s -m 'version %s'" % ("huckle-" + package.__version__, "huckle-" + package.__version__)) sys.exit() here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='huckle', version=package.__version__, description='A CLI that can act as an impostor for any CLI expressed through hypertext command line interface (HCLI) semantics.', long_description=long_description, url='https://github.com/cometaj2/huckle', author='Jeff Michaud', author_email='cometaj2@comcast.net', license='MIT', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], keywords='cli client hypermedia rest generic development', packages=find_packages(exclude=['__pycache__', 'tests']), install_requires=[package.dependencies[0], package.dependencies[1], package.dependencies[2], package.dependencies[3]], package_data={'huckle': ['data/*']}, include_package_data=True, entry_points={ 'console_scripts': [ 'huckle=huckle.__main__:main', ], }, )
{ "repo_name": "cometaj2/huckle", "path": "setup.py", "copies": "1", "size": "2602", "license": "mit", "hash": 7998725660022406000, "line_mean": 36.1714285714, "line_max": 133, "alpha_frac": 0.6299000769, "autogenerated": false, "ratio": 3.7874818049490537, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4917381881849054, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys import tensorflow.compat.v1 as tfv1 from attrdict import AttrDict from xdg import BaseDirectory as xdg from src.flags import FLAGS from .gpu import get_available_gpus from .logging import log_error from .text import Alphabet, UTF8Alphabet from .helpers import parse_file_size class ConfigSingleton: _config = None def __getattr__(self, name): if not ConfigSingleton._config: raise RuntimeError("Global configuration not yet initialized.") if not hasattr(ConfigSingleton._config, name): raise RuntimeError("Configuration option {} not found in config.".format(name)) return ConfigSingleton._config[name] Config = ConfigSingleton() # pylint: disable=invalid-name def initialize_globals(): c = AttrDict() # Read-buffer FLAGS.read_buffer = parse_file_size(FLAGS.read_buffer) # Set default dropout rates if FLAGS.dropout_rate2 < 0: FLAGS.dropout_rate2 = FLAGS.dropout_rate if FLAGS.dropout_rate3 < 0: FLAGS.dropout_rate3 = FLAGS.dropout_rate if FLAGS.dropout_rate6 < 0: FLAGS.dropout_rate6 = FLAGS.dropout_rate # Set default checkpoint dir if not FLAGS.checkpoint_dir: FLAGS.checkpoint_dir = xdg.save_data_path(os.path.join('deepspeech', 'checkpoints')) if FLAGS.load_train not in ['last', 'best', 'init', 'auto']: FLAGS.load_train = 'auto' if FLAGS.load_evaluate not in ['last', 'best', 'auto']: FLAGS.load_evaluate = 'auto' # Set default summary dir if not FLAGS.summary_dir: FLAGS.summary_dir = xdg.save_data_path(os.path.join('deepspeech', 'summaries')) # Standard session configuration that'll be used for all new sessions. c.session_config = tfv1.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_placement, inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads, intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads, gpu_options=tfv1.GPUOptions(allow_growth=FLAGS.use_allow_growth)) # CPU device c.cpu_device = '/cpu:0' # Available GPU devices c.available_devices = get_available_gpus(c.session_config) # If there is no GPU available, we fall back to CPU based operation if not c.available_devices: c.available_devices = [c.cpu_device] if FLAGS.utf8: c.alphabet = UTF8Alphabet() else: c.alphabet = Alphabet(os.path.abspath(FLAGS.alphabet_config_path)) # Geometric Constants # =================== # For an explanation of the meaning of the geometric constants, please refer to # doc/Geometry.md # Number of MFCC features c.n_input = 26 # TODO: Determine this programmatically from the sample rate # The number of frames in the context c.n_context = 9 # TODO: Determine the optimal value using a validation data set # Number of units in hidden layers c.n_hidden = FLAGS.n_hidden c.n_hidden_1 = c.n_hidden c.n_hidden_2 = c.n_hidden c.n_hidden_5 = c.n_hidden # LSTM cell state dimension c.n_cell_dim = c.n_hidden # The number of units in the third layer, which feeds in to the LSTM c.n_hidden_3 = c.n_cell_dim # Units in the sixth layer = number of characters in the target language plus one c.n_hidden_6 = c.alphabet.size() + 1 # +1 for CTC blank label # Size of audio window in samples if (FLAGS.feature_win_len * FLAGS.audio_sample_rate) % 1000 != 0: log_error('--feature_win_len value ({}) in milliseconds ({}) multiplied ' 'by --audio_sample_rate value ({}) must be an integer value. Adjust ' 'your --feature_win_len value or resample your audio accordingly.' ''.format(FLAGS.feature_win_len, FLAGS.feature_win_len / 1000, FLAGS.audio_sample_rate)) sys.exit(1) c.audio_window_samples = FLAGS.audio_sample_rate * (FLAGS.feature_win_len / 1000) # Stride for feature computations in samples if (FLAGS.feature_win_step * FLAGS.audio_sample_rate) % 1000 != 0: log_error('--feature_win_step value ({}) in milliseconds ({}) multiplied ' 'by --audio_sample_rate value ({}) must be an integer value. Adjust ' 'your --feature_win_step value or resample your audio accordingly.' ''.format(FLAGS.feature_win_step, FLAGS.feature_win_step / 1000, FLAGS.audio_sample_rate)) sys.exit(1) c.audio_step_samples = FLAGS.audio_sample_rate * (FLAGS.feature_win_step / 1000) if FLAGS.one_shot_infer: if not os.path.exists(FLAGS.one_shot_infer): log_error('Path specified in --one_shot_infer is not a valid file.') sys.exit(1) if FLAGS.train_cudnn and FLAGS.load_cudnn: log_error('Trying to use --train_cudnn, but --load_cudnn ' 'was also specified. The --load_cudnn flag is only ' 'needed when converting a CuDNN RNN checkpoint to ' 'a CPU-capable graph. If your system is capable of ' 'using CuDNN RNN, you can just specify the CuDNN RNN ' 'checkpoint normally with --save_checkpoint_dir.') sys.exit(1) # If separate save and load flags were not specified, default to load and save # from the same dir. if not FLAGS.save_checkpoint_dir: FLAGS.save_checkpoint_dir = FLAGS.checkpoint_dir if not FLAGS.load_checkpoint_dir: FLAGS.load_checkpoint_dir = FLAGS.checkpoint_dir ConfigSingleton._config = c # pylint: disable=protected-access
{ "repo_name": "googleinterns/deepspeech-reconstruction", "path": "src/deepspeech_training/util/config.py", "copies": "1", "size": "5748", "license": "apache-2.0", "hash": 2776932445715784000, "line_mean": 37.32, "line_max": 108, "alpha_frac": 0.6475295755, "autogenerated": false, "ratio": 3.8041032428855064, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49516328183855063, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys import threading import queue import numpy as np from util import text_processing class BatchLoaderClevr: def __init__(self, imdb, data_params): self.imdb = imdb self.data_params = data_params self.vocab_dict = text_processing.VocabDict(data_params['vocab_question_file']) self.T_encoder = data_params['T_encoder'] # peek one example to see whether answer and gt_layout are in the data self.load_answer = ('answer' in self.imdb[0]) and (self.imdb[0]['answer'] is not None) self.load_gt_layout = ('gt_layout_tokens' in self.imdb[0]) and (self.imdb[0]['gt_layout_tokens'] is not None) if 'load_gt_layout' in data_params: self.load_gt_layout = data_params['load_gt_layout'] # the answer dict is always loaded, regardless of self.load_answer self.answer_dict = text_processing.VocabDict(data_params['vocab_answer_file']) if not self.load_answer: print('imdb does not contain answers') if self.load_gt_layout: self.T_decoder = data_params['T_decoder'] self.assembler = data_params['assembler'] self.prune_filter_module = (data_params['prune_filter_module'] if 'prune_filter_module' in data_params else False) else: print('imdb does not contain ground-truth layout') # load one feature map to peek its size feats = np.load(self.imdb[0]['feature_path']) self.feat_H, self.feat_W, self.feat_D = feats.shape[1:] def load_one_batch(self, sample_ids): actual_batch_size = len(sample_ids) input_seq_batch = np.zeros((self.T_encoder, actual_batch_size), np.int32) seq_length_batch = np.zeros(actual_batch_size, np.int32) image_feat_batch = np.zeros((actual_batch_size, self.feat_H, self.feat_W, self.feat_D), np.float32) image_path_list = [None]*actual_batch_size if self.load_answer: answer_label_batch = np.zeros(actual_batch_size, np.int32) if self.load_gt_layout: gt_layout_batch = np.zeros((self.T_decoder, actual_batch_size), np.int32) for n in range(len(sample_ids)): iminfo = self.imdb[sample_ids[n]] question_inds = [self.vocab_dict.word2idx(w) for w in iminfo['question_tokens']] seq_length = len(question_inds) input_seq_batch[:seq_length, n] = question_inds seq_length_batch[n] = seq_length image_feat_batch[n:n+1] = np.load(iminfo['feature_path']) image_path_list[n] = iminfo['image_path'] if self.load_answer: answer_idx = self.answer_dict.word2idx(iminfo['answer']) answer_label_batch[n] = answer_idx if self.load_gt_layout: gt_layout_tokens = iminfo['gt_layout_tokens'] if self.prune_filter_module: # remove duplicated consequtive modules (only keeping one _Filter) for n_t in range(len(gt_layout_tokens)-1, 0, -1): if (gt_layout_tokens[n_t-1] in {'_Filter', '_Find'} and gt_layout_tokens[n_t] == '_Filter'): gt_layout_tokens[n_t] = None gt_layout_tokens = [t for t in gt_layout_tokens if t] gt_layout_batch[:, n] = self.assembler.module_list2tokens( gt_layout_tokens, self.T_decoder) batch = dict(input_seq_batch=input_seq_batch, seq_length_batch=seq_length_batch, image_feat_batch=image_feat_batch, image_path_list=image_path_list) if self.load_answer: batch['answer_label_batch'] = answer_label_batch if self.load_gt_layout: batch['gt_layout_batch'] = gt_layout_batch return batch class DataReader: def __init__(self, imdb_file, shuffle=True, one_pass=False, prefetch_num=8, **kwargs): print('Loading imdb from file...', end=''); sys.stdout.flush() if imdb_file.endswith('.npy'): imdb = np.load(imdb_file) else: raise TypeError('unknown imdb format.') print('Done') self.imdb = imdb self.shuffle = shuffle self.one_pass = one_pass self.prefetch_num = prefetch_num self.data_params = kwargs # Clevr data loader self.batch_loader = BatchLoaderClevr(self.imdb, self.data_params) # Start prefetching thread self.prefetch_queue = queue.Queue(maxsize=self.prefetch_num) self.prefetch_thread = threading.Thread(target=_run_prefetch, args=(self.prefetch_queue, self.batch_loader, self.imdb, self.shuffle, self.one_pass, self.data_params)) self.prefetch_thread.daemon = True self.prefetch_thread.start() def batches(self): while True: # Get a batch from the prefetching queue if self.prefetch_queue.empty(): print('data reader: waiting for data loading (IO is slow)...') batch = self.prefetch_queue.get(block=True) if batch is None: assert(self.one_pass) print('data reader: one pass finished') raise StopIteration() yield batch def _run_prefetch(prefetch_queue, batch_loader, imdb, shuffle, one_pass, data_params): num_samples = len(imdb) batch_size = data_params['batch_size'] n_sample = 0 fetch_order = np.arange(num_samples) while True: # Shuffle the sample order for every epoch if n_sample == 0 and shuffle: fetch_order = np.random.permutation(num_samples) # Load batch from file # note that len(sample_ids) <= batch_size, not necessarily equal sample_ids = fetch_order[n_sample:n_sample+batch_size] batch = batch_loader.load_one_batch(sample_ids) prefetch_queue.put(batch, block=True) n_sample += len(sample_ids) if n_sample >= num_samples: # Put in a None batch to indicate a whole pass is over if one_pass: prefetch_queue.put(None, block=True) n_sample = 0
{ "repo_name": "ronghanghu/n2nmn", "path": "util/clevr_train/data_reader.py", "copies": "1", "size": "6386", "license": "bsd-2-clause", "hash": -6562502287334776000, "line_mean": 43.6573426573, "line_max": 117, "alpha_frac": 0.5878484184, "autogenerated": false, "ratio": 3.7498532002348797, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4837701618634879, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys import threading import queue import numpy as np from util import text_processing class BatchLoaderVqa: def __init__(self, imdb, data_params): self.imdb = imdb self.data_params = data_params self.vocab_dict = text_processing.VocabDict(data_params['vocab_question_file']) self.T_encoder = data_params['T_encoder'] # peek one example to see whether answer and gt_layout are in the data self.load_answer = ('valid_answers' in self.imdb[0]) and (self.imdb[0]['valid_answers'] is not None) self.load_gt_layout = ('gt_layout_tokens' in self.imdb[0]) and (self.imdb[0]['gt_layout_tokens'] is not None) if 'load_gt_layout' in data_params: self.load_gt_layout = data_params['load_gt_layout'] # decide whether or not to load gt textatt self.load_gt_txtatt = ('gt_txtatt' in self.imdb[0]) and (self.imdb[0]['gt_txtatt'] is not None) if 'load_gt_txtatt' in data_params: self.load_gt_txtatt = data_params['load_gt_txtatt'] # the answer dict is always loaded, regardless of self.load_answer self.answer_dict = text_processing.VocabDict(data_params['vocab_answer_file']) self.num_choices = self.answer_dict.num_vocab if not self.load_answer: print('imdb does not contain answers') else: self.load_binary_labels = ('load_binary_labels' in data_params) \ and data_params['load_binary_labels'] if self.load_binary_labels: print('loading softmax and binary classification labels.') else: print('loading softmax labels (but not binary labels).') # if 'overriding_layout' is set in data_params, force self.load_gt_layout to True # and overrides the ground-truth layout self.overriding_layout = None if 'overriding_layout' in data_params: print('"overriding_layout" key is set in data_params') print('overriding all layout with:', data_params['overriding_layout']) self.load_gt_layout = True self.load_gt_txtatt = False self.overriding_layout = data_params['overriding_layout'] if self.load_gt_layout: self.T_decoder = data_params['T_decoder'] self.assembler = data_params['assembler'] # self.prune_filter_module = (data_params['prune_filter_module'] # if 'prune_filter_module' in data_params # else False) else: print('imdb does not contain ground-truth layout, and "overriding_layout" key is not set') if 'use_count_module' in data_params and data_params['use_count_module']: print('Use Count module: all "how many" questions will use Count for answer') self.use_count_module = True else: print('Not using Count module') self.use_count_module = False # load one feature map to peek its size feats = np.load(self.imdb[0]['feature_path']) self.feat_H, self.feat_W, self.feat_D = feats.shape[1:] def load_one_batch(self, sample_ids): actual_batch_size = len(sample_ids) input_seq_batch = np.zeros((self.T_encoder, actual_batch_size), np.int32) seq_length_batch = np.zeros(actual_batch_size, np.int32) image_feat_batch = np.zeros((actual_batch_size, self.feat_H, self.feat_W, self.feat_D), np.float32) image_path_list = [None]*actual_batch_size qid_list = [None]*actual_batch_size qstr_list = [None]*actual_batch_size if self.load_answer: answer_label_batch = np.zeros(actual_batch_size, np.int32) if self.load_binary_labels: answer_binarylabel_batch = \ np.zeros((actual_batch_size, self.num_choices), np.float32) valid_answers_list = [None]*actual_batch_size all_answers_list = [None]*actual_batch_size if self.load_gt_layout: gt_layout_batch = np.zeros((self.T_decoder, actual_batch_size), np.int32) if self.load_gt_txtatt: gt_txtatt_batch = np.zeros((self.T_decoder, self.T_encoder, actual_batch_size, 1), np.bool) for n in range(len(sample_ids)): iminfo = self.imdb[sample_ids[n]] question_inds = [self.vocab_dict.word2idx(w) for w in iminfo['question_tokens']] seq_length = len(question_inds) input_seq_batch[:seq_length, n] = question_inds seq_length_batch[n] = seq_length image_feat_batch[n:n+1] = np.load(iminfo['feature_path']) image_path_list[n] = iminfo['image_path'] qid_list[n] = iminfo['question_id'] qstr_list[n] = iminfo['question_str'] if self.load_answer: valid_answers = iminfo['valid_answers'] valid_answers_list[n] = valid_answers all_answers = iminfo['valid_answers'] all_answers_list[n] = all_answers # randomly sample an answer from valid answers answer = np.random.choice(valid_answers) answer_idx = self.answer_dict.word2idx(answer) answer_label_batch[n] = answer_idx if self.load_binary_labels: valid_answer_inds = [self.answer_dict.word2idx(a) for a in valid_answers] answer_binarylabel_batch[n, valid_answer_inds] = 1. if self.load_gt_layout: if self.overriding_layout is not None: gt_layout_tokens = self.overriding_layout else: gt_layout_tokens = iminfo['gt_layout_tokens'][:] # make a copy for modificaton if self.use_count_module: is_count_question = ('how many' in iminfo['question_str'].lower()) if is_count_question: # overwrite describe with count assert(gt_layout_tokens[-1] == '_Describe') gt_layout_tokens[-1] = '_Count' # print('_Describe replaced by _Count in ' + iminfo['question_str']) # if self.prune_filter_module: # # remove duplicated consequtive modules (only keeping one _Filter) # for n_t in range(len(gt_layout_tokens)-1, 0, -1): # if (gt_layout_tokens[n_t-1] in {'_Filter', '_Find'} # and gt_layout_tokens[n_t] == '_Filter'): # gt_layout_tokens[n_t] = None # gt_layout_tokens = [t for t in gt_layout_tokens if t] gt_layout_batch[:, n] = self.assembler.module_list2tokens( gt_layout_tokens, self.T_decoder) if self.load_gt_txtatt: gt_txtatt = iminfo['gt_txtatt'] for t_decoder, ind in enumerate(gt_txtatt): if ind is not None: t_begin, t_end = ind gt_txtatt_batch[t_decoder, t_begin:t_end, n, 0] = True batch = dict(input_seq_batch=input_seq_batch, seq_length_batch=seq_length_batch, image_feat_batch=image_feat_batch, image_path_list=image_path_list, qid_list=qid_list, qstr_list=qstr_list) if self.load_answer: batch['answer_label_batch'] = answer_label_batch batch['valid_answers_list'] = valid_answers_list batch['all_answers_list'] = all_answers_list if self.load_binary_labels: batch['answer_binarylabel_batch'] = answer_binarylabel_batch if self.load_gt_layout: batch['gt_layout_batch'] = gt_layout_batch if self.load_gt_txtatt: batch['gt_txtatt_batch'] = gt_txtatt_batch return batch class DataReader: def __init__(self, imdb_file, shuffle=True, one_pass=False, prefetch_num=8, **kwargs): print('Loading imdb from file...', end=''); sys.stdout.flush() if imdb_file.endswith('.npy'): imdb = np.load(imdb_file) else: raise TypeError('unknown imdb format.') print('Done') self.imdb = imdb self.shuffle = shuffle self.one_pass = one_pass self.prefetch_num = prefetch_num self.data_params = kwargs # Vqa data loader self.batch_loader = BatchLoaderVqa(self.imdb, self.data_params) # Start prefetching thread self.prefetch_queue = queue.Queue(maxsize=self.prefetch_num) self.prefetch_thread = threading.Thread(target=_run_prefetch, args=(self.prefetch_queue, self.batch_loader, self.imdb, self.shuffle, self.one_pass, self.data_params)) self.prefetch_thread.daemon = True self.prefetch_thread.start() def batches(self): while True: # Get a batch from the prefetching queue if self.prefetch_queue.empty(): print('data reader: waiting for data loading (IO is slow)...') batch = self.prefetch_queue.get(block=True) if batch is None: assert(self.one_pass) print('data reader: one pass finished') raise StopIteration() yield batch def _run_prefetch(prefetch_queue, batch_loader, imdb, shuffle, one_pass, data_params): num_samples = len(imdb) batch_size = data_params['batch_size'] n_sample = 0 fetch_order = np.arange(num_samples) while True: # Shuffle the sample order for every epoch if n_sample == 0 and shuffle: fetch_order = np.random.permutation(num_samples) # Load batch from file # note that len(sample_ids) <= batch_size, not necessarily equal sample_ids = fetch_order[n_sample:n_sample+batch_size] batch = batch_loader.load_one_batch(sample_ids) prefetch_queue.put(batch, block=True) n_sample += len(sample_ids) if n_sample >= num_samples: # Put in a None batch to indicate a whole pass is over if one_pass: prefetch_queue.put(None, block=True) n_sample = 0
{ "repo_name": "ronghanghu/n2nmn", "path": "util/vqa_train/data_reader.py", "copies": "1", "size": "10411", "license": "bsd-2-clause", "hash": -869276417773364200, "line_mean": 47.1990740741, "line_max": 117, "alpha_frac": 0.5756411488, "autogenerated": false, "ratio": 3.807973664959766, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4883614813759766, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys import time import timeit import math import numpy as np import PIL.Image as Image from scipy.stats import spearmanr from scipy.stats import pearsonr from scipy.stats import kendalltau from .utils import tile_raster_images, image_from_nparray from .utils import tile_tensor4_from_list class Trainer(object): """ Arguments --------- model: a model to proceed training and testing. type = model instance. train_config: A dictionary containing: 'batch_size': number of data in a batch 'epochs': maximum number of epochs for training 'test_freq': test_model the trained model every test_freq 'save_freq': save data every save_freq 'regular_snap_freq': save model snapshot every regular_snap_freq 'n_imgs_to_record': number of images to record 'prefix': prefix of filenames of recording data snap_path: path to save snapshot file. output_path: path to save output data. """ def __init__(self, train_config, snap_path=None, output_path=None): self.test_freq = train_config.get('test_freq', None) assert self.test_freq is not None self.save_freq = train_config.get('save_freq', None) if self.save_freq is None: self.save_freq = self.test_freq self.regular_snap_freq = train_config.get('regular_snap_freq', 40) self.n_imgs_to_record = train_config.get('n_imgs_to_record', 20) self.prefix = train_config.get('prefix', '') self.set_path(snap_path, output_path) def set_path(self, snap_path, output_path=None): if snap_path is not None: if not os.path.isdir(snap_path): os.makedirs(snap_path) if output_path is not None: if not os.path.isdir(output_path): os.makedirs(output_path) else: output_path = snap_path self.snap_path = snap_path self.output_path = output_path def training_routine(self, model, get_train_outputs, rec_train, get_test_outputs, rec_test, train_batch_size, test_batch_size, train_data, test_data, epochs, prefix2='', check_mos_corr=False): """ Actual training routine. @type model: .models.model_basis.ModelBasis @type rec_train: .models.model_record.Record @type rec_test: .models.model_record.Record @type train_data: .data_load.dataset.Dataset @type test_data: .data_load.dataset.Dataset """ # check validity assert self.snap_path is not None # get numbers of training and Testing batches n_train_imgs = train_data.n_data n_test_imgs = test_data.n_data n_train_batches = int(n_train_imgs / train_batch_size) n_test_batches = int(n_test_imgs / test_batch_size) assert n_train_batches > 0, 'n_train_batches = %d' % (n_train_batches) assert n_test_batches > 0, 'n_test_batches = %d' % (n_test_batches) # check n_imgs_to_record n_valid_rec_batches = self.n_imgs_to_record // test_batch_size + 1 if n_valid_rec_batches > n_test_batches: n_valid_rec_batches = n_test_batches n_imgs_to_record = n_valid_rec_batches * test_batch_size # get numbers of data and images to monitor and write until_loss, until_im_info, until_img = rec_test.get_until_indices(1) # snapshot file names snapshot_file_latest = os.path.join( self.snap_path, self.prefix + prefix2 + 'snapshot_lastest.npy') snapshot_file_best = os.path.join( self.snap_path, self.prefix + prefix2 + 'snapshot_best.npy') snapshot_file_best_srcc = os.path.join( self.snap_path, self.prefix + prefix2 + 'snapshot_best_srcc.npy') snapshot_file_regular = os.path.join( self.snap_path, self.prefix + prefix2 + 'snapshot_{:03d}.npy') snapshot_file_fin = os.path.join( self.snap_path, self.prefix + prefix2 + 'snapshot.npy') # log file names log_file = os.path.join( self.snap_path, prefix2 + 'log.txt') log_test_file = os.path.join( self.output_path, prefix2 + 'log_test.txt') # Show information print('\nTrain', end='') if train_data.imagewise: print(' imagewise', end='') else: print(' patchwise', end='') print(' / Test', end='') if test_data.imagewise: print(' imagewise', end='') else: print(' patchwise', end='') print(' (%d epochs).' % (epochs)) print('Save a snapshot every %d epochs,' % self.save_freq, end='') print(' and test the model every %d epochs.' % self.test_freq) print(' - Regular snapshot: every %d epochs' % self.regular_snap_freq) print(' - Snapshot path: %s' % self.snap_path) print(' - Batch size: %d (train) / %d (test)' % ( train_batch_size, test_batch_size)) print(' - Training batches: %d (%d images)' % ( n_train_batches, n_train_imgs)) print(' - Testing batches: %d (%d images)' % ( n_test_batches, n_test_imgs), end='') print(' / Missed images: %d' % ( n_test_imgs - n_test_batches * test_batch_size)) print(' - Monitor data: %s' % (', '.join(rec_train.data_keys))) print(' - Monitor images: %s' % (', '.join(rec_test.data_keys))) print(' - Monitor im. data: %s' % (', '.join(rec_test.im_data_keys))) print(' - Num of rec. images: %d (%d x %d batches)' % ( n_imgs_to_record, test_batch_size, n_valid_rec_batches)) # get MOS list if check_mos_corr: # if check_mos_corr is true, the first value of # rec_im_data must be mos predicted. assert rec_test.im_data_keys[0] == 'mos_p' assert test_data.exist_score n_valid_test_imgs = n_test_batches * test_batch_size test_score_list = test_data.score_data[:n_valid_test_imgs] mos_p_list = np.zeros(n_valid_test_imgs, dtype='float32') print(' - Check SRCC/PLCC using %d images' % (n_valid_test_imgs)) start_time = timeit.default_timer() prev_time = start_time best_test_loss = np.inf # write current time in log file cur_time = 'Started at %s\n' % (time.strftime('%X %x')) key_str = 'cost, ' + ", ".join(rec_train.data_keys) + '\n' with open(log_file, 'a') as f_hist: f_hist.write(cur_time) f_hist.write(key_str) key_str = 'cost, ' + ", ".join(rec_train.data_keys) key_str += ', SRCC, PLCC\n' if check_mos_corr else '\n' with open(log_test_file, 'a') as f_hist: f_hist.write(cur_time) f_hist.write(key_str) best_score_set = (0., 0., -1) if check_mos_corr else (np.inf, 0., -1) # go through training epochs for epoch in range(epochs): # train model losses = np.zeros(rec_train.num_data + 1, dtype='float32') for batch_idx in range(n_train_batches): # get training loss losses += get_train_outputs() losses /= n_train_batches # write log with open(log_file, 'a') as f_hist: data = '%d' % (epoch + 1) for idx in range(-1, rec_train.num_data): data += '\t%.6f' % (losses[idx + 1]) data += '\n' f_hist.write(data) # show information end_time = timeit.default_timer() pr_str = ' {:3d}, cost {:.3f}, '.format(epoch + 1, losses[0]) for idx, key in enumerate(rec_train.data_keys): pr_str += '{:s} {:.3f}, '.format(key, losses[idx + 1]) minutes, seconds = divmod(end_time - prev_time, 60) pr_str += 'time {:02.0f}:{:05.2f}\n'.format(minutes, seconds) sys.stdout.write(pr_str) sys.stdout.flush() prev_time = end_time if (epoch + 1) % self.regular_snap_freq == 0: model.save(snapshot_file_regular.format(epoch + 1)) ################################################################## # test_model the trained model and save a snapshot # For every safe_freq and test_freq test_model = (epoch + 1) % self.test_freq == 0 save_data = (epoch + 1) % self.save_freq == 0 if test_model or save_data: if save_data: # make output folder numstr = '{:03d}'.format(epoch + 1) out_path = os.path.join( self.output_path, prefix2 + numstr + '/') if not os.path.isdir(out_path): os.makedirs(out_path) im_data = np.zeros( (rec_test.num_im_data, n_imgs_to_record), dtype='float32') losses = np.zeros(rec_test.num_data + 1, dtype='float32') for test_bat_idx in range(0, n_test_batches): # get testing loss outputs = get_test_outputs() losses += outputs[:until_loss] cur_im_data = outputs[until_loss:until_im_info] cur_images = outputs[until_im_info:until_img] # get predicted mos if check_mos_corr: mos_p = cur_im_data[0] idx_from = test_bat_idx * test_batch_size idx_to = (test_bat_idx + 1) * test_batch_size mos_p_list[idx_from:idx_to] = mos_p # write image data if (save_data and rec_test.num_im_data > 0 and test_bat_idx < n_valid_rec_batches): idx_from = test_bat_idx * test_batch_size idx_to = (test_bat_idx + 1) * test_batch_size im_data[:, idx_from:idx_to] = cur_im_data # write images if (save_data and rec_test.num_imgs > 0 and test_bat_idx < n_valid_rec_batches): if test_data.imagewise: rec_info = test_data.get_current_recon_info() draw_tiled_images( cur_images, rec_test.rec_imgs, test_bat_idx, out_path, rec_info['bat2img_idx_set'], rec_info['npat_img_list'], rec_info['filt_idx_list'], test_data.patch_size, test_data.patch_step) else: draw_images( cur_images, rec_test.rec_imgs, test_bat_idx, test_batch_size, out_path) losses /= n_test_batches # get SRCC and PLCC if check_mos_corr: rho_s, _ = spearmanr(test_score_list, mos_p_list) rho_p, _ = pearsonr(test_score_list, mos_p_list) if math.isnan(rho_s) or math.isnan(rho_p): print('@ Stop iteration! (NaN)') best_score_set = (0, 0, epoch) break else: if rho_s > best_score_set[0]: best_score_set = (rho_s, rho_p, epoch) model.save(snapshot_file_best_srcc) else: if losses[0] < best_score_set[0]: if rec_test.num_data >= 1: best_score_set = (losses[0], losses[1], epoch) else: best_score_set = (losses[0], 0, epoch) # save the latest snapshot model.save(snapshot_file_latest) # save the best snapshot if losses[0] < best_test_loss: best_test_loss = losses[0] print(' # BEST', end=' ') model.save(snapshot_file_best) # For every save_freq if save_data: # write image data if rec_test.num_im_data > 0: with open(out_path + 'info.txt', 'w') as f: # header data = 'epoch: %s (%s)\n' % ( numstr, ', '.join(rec_test.im_data_keys)) f.write(data) for idx in range(n_imgs_to_record): imidx = idx data = '%d' % idx for ii in range(rec_test.num_im_data): data += '\t%.6f' % (im_data[ii][imidx]) data += '\n' f.write(data) # write mos if check_mos_corr: with open(out_path + 'mos_res.txt', 'w') as f: # header data = 'epoch: %s (mos_p, mos)\n' % (numstr) f.write(data) for idx in range(n_valid_test_imgs): data = '{:.6f}\t{:.6f}\n'.format( mos_p_list[idx], test_score_list[idx]) f.write(data) data = 'SRCC: {:.4f}, PLCC: {:.4f}\n'.format( rho_s, rho_p) f.write(data) # write kernel images draw_kernels(rec_test.rec_kernels, self.output_path, prefix2, '_' + numstr) # write log with open(log_test_file, 'a') as f_hist: data = '{:d}'.format(epoch + 1) for idx in range(-1, rec_test.num_data): data += '\t{:.6f}'.format(losses[idx + 1]) if check_mos_corr: data += '\t{:.4f}\t{:.4f}'.format(rho_s, rho_p) data += '\n' f_hist.write(data) # show information end_time = timeit.default_timer() pr_str = ' * vcost {:.3f}, '.format(losses[0]) for idx, key in enumerate(rec_train.data_keys): pr_str += '{:s} {:.3f}, '.format(key, losses[idx + 1]) if check_mos_corr: pr_str += 'SRCC {:.3f}, PLCC {:.3f}, '.format(rho_s, rho_p) minutes, seconds = divmod(end_time - prev_time, 60) pr_str += 'time {:02.0f}:{:05.2f}\n'.format(minutes, seconds) sys.stdout.write(pr_str) sys.stdout.flush() prev_time = end_time end_time = timeit.default_timer() total_time = end_time - start_time print(' - Train ran for %.2fm' % ((total_time) / 60.)) print(' - Finished at %s' % (time.strftime('%X %x'))) if best_score_set[0] != 0: model.save(snapshot_file_fin) return best_score_set def testing_routine(self, get_test_outputs, rec_test, test_batch_size, test_data, prefix2='', check_mos_corr=False): """Actual testing routine: group patches for each image @type rec_test: .models.model_record.Record """ # get numbers of training and Testing batches n_test_imgs = test_data.n_images n_test_batches = int(n_test_imgs / test_batch_size) assert n_test_batches > 0 n_valid_test_imgs = n_test_batches * test_batch_size if self.n_imgs_to_record == 'all': n_imgs_to_record = n_valid_test_imgs else: n_valid_rec_batches = self.n_imgs_to_record // test_batch_size + 1 if n_valid_rec_batches > n_test_batches: n_valid_rec_batches = n_test_batches n_imgs_to_record = n_valid_rec_batches * test_batch_size # get numbers of data and images to monitor and write until_loss = rec_test.num_data + 1 until_im_info = until_loss + rec_test.num_im_data until_img = until_im_info + rec_test.num_imgs # Show information print('\nTest the model') if test_data.imagewise: print(' (imagewise)') else: print(' (patchwise)') print(' - Num of images in a batch: %d' % (test_batch_size)) print(' - Testing batches: %d (%d images)' % ( n_test_batches, n_test_imgs)) print(' - Missed images in validation: %d' % ( n_test_imgs - n_test_batches * test_batch_size)) print(' - Image recording batches: %d (%d images)' % ( n_valid_rec_batches, n_imgs_to_record)) print(' - Monitor data: %s' % (', '.join(rec_test.data_keys))) print(' - Monitor images: %s' % (', '.join(rec_test.data_keys))) print(' - Monitor im. data: %s' % (', '.join(rec_test.im_data_keys))) # get MOS list if check_mos_corr: # if check_mos_corr is true, the first value of # rec_im_data must be mos predicted. assert rec_test.im_data_keys[0] == 'mos_p' assert test_data.exist_score test_score_list = test_data.score_data[:n_valid_test_imgs] mos_p_list = np.zeros(n_valid_test_imgs, dtype='float32') print(' - Check SRCC/PLCC using %d images' % (n_valid_test_imgs)) start_time = timeit.default_timer() prev_time = start_time # write current time in log file cur_time = 'Started at %s\n' % (time.strftime('%X %x')) log_file = os.path.join(self.output_path, prefix2 + 'log_test.txt') with open(log_file, 'a') as f_hist: f_hist.write(cur_time) out_path = os.path.join(self.output_path, prefix2 + '/') if not os.path.isdir(out_path): os.makedirs(out_path) im_data = np.zeros( (rec_test.num_im_data, n_valid_test_imgs), dtype='float32') best_score_set = (0., 0.) if check_mos_corr else (np.inf, np.inf) losses = np.zeros(rec_test.num_data + 1, dtype='float32') for test_bat_idx in range(0, n_test_batches): # get testing loss outputs = get_test_outputs() losses += outputs[:until_loss] cur_im_data = outputs[until_loss:until_im_info] cur_images = outputs[until_im_info:until_img] # get predicted mos if check_mos_corr: mos_p = cur_im_data[0] idx_from = test_bat_idx * test_batch_size idx_to = (test_bat_idx + 1) * test_batch_size mos_p_list[idx_from:idx_to] = mos_p # write image data if rec_test.num_im_data > 0: idx_from = test_bat_idx * test_batch_size idx_to = (test_bat_idx + 1) * test_batch_size im_data[:, idx_from:idx_to] = cur_im_data # write images if rec_test.num_imgs > 0 and test_bat_idx < n_valid_rec_batches: if test_data.imagewise: rec_info = test_data.get_current_recon_info() draw_tiled_images( cur_images, rec_test.rec_imgs, test_bat_idx, out_path, rec_info['bat2img_idx_set'], rec_info['npat_img_list'], rec_info['filt_idx_list'], test_data.patch_size, test_data.patch_step) else: draw_images( cur_images, rec_test.rec_imgs, test_bat_idx, test_batch_size, out_path) rec_info = test_data.get_current_recon_info() draw_tiled_images( cur_images, rec_test.rec_imgs, test_bat_idx, out_path, rec_info['bat2img_idx_set'], rec_info['npat_img_list'], rec_info['filt_idx_list'], test_data.patch_size, test_data.patch_step) losses /= n_test_batches # get SRCC and PLCC if check_mos_corr: rho_s, _ = spearmanr(test_score_list, mos_p_list) rho_p, _ = pearsonr(test_score_list, mos_p_list) tau, _ = kendalltau(test_score_list, mos_p_list) rmse = np.sqrt(((test_score_list - mos_p_list) ** 2).mean()) best_score_set = (rho_s, rho_p) else: if rec_test.num_data >= 1: best_score_set = (losses[0], losses[1]) else: best_score_set = (losses[0], 0) # write image data if rec_test.num_im_data > 0: with open(out_path + 'info.txt', 'w') as f: # header data = 'imidx, %s\n' % ( ', '.join(rec_test.im_data_keys)) f.write(data) for idx in range(n_valid_test_imgs): imidx = idx data = '%d' % idx for ii in range(rec_test.num_im_data): data += '\t%.6f' % (im_data[ii][imidx]) data += '\n' f.write(data) # write mos if check_mos_corr: with open(out_path + 'mos_res.txt', 'w') as f: # header data = 'mos_p, mos\n' f.write(data) for idx in range(n_valid_test_imgs): data = '{:.6f}\t{:.6f}\n'.format( mos_p_list[idx], test_score_list[idx]) f.write(data) data = 'SRCC: {:.4f}, PLCC: {:.4f}'.format(rho_s, rho_p) data += ', KRCC: {:.4f}, RMSE: {:.4f}\n'.format(tau, rmse) f.write(data) # write kernel images draw_kernels(rec_test.rec_kernels, self.output_path, prefix2) # show information end_time = timeit.default_timer() pr_str = ' * vcost {:.3f}, '.format(losses[0]) for idx, key in enumerate(rec_test.data_keys): pr_str += '{:s} {:.3f}, '.format(key, losses[idx + 1]) if check_mos_corr: pr_str += 'SRCC {:.3f}, PLCC {:.3f}, '.format(rho_s, rho_p) pr_str += 'KRCC {:.3f}, RMSE {:.3f}, '.format(tau, rmse) minutes, seconds = divmod(end_time - prev_time, 60) pr_str += 'time {:02.0f}:{:05.2f}\n'.format(minutes, seconds) sys.stdout.write(pr_str) sys.stdout.flush() prev_time = end_time end_time = timeit.default_timer() total_time = end_time - start_time print(' - Test ran for %.2fm' % ((total_time) / 60.)) print(' - Finished at %s' % (time.strftime('%X %x'))) return best_score_set def draw_kernels(kernels, out_path, prefix='', suffix=''): if not os.path.isdir(out_path): os.makedirs(out_path) for idx in range(len(kernels)): kernel = kernels[idx].get_value(borrow=True) name = kernels[idx].name.replace('/', '_') assert len(kernel.shape) == 4 (nkern, nfeat, kern_sz0, kern_sz1) = kernel.shape tile = int(np.ceil(np.sqrt(nkern))) imgshape = ((kern_sz0 + 1) * tile - 1, (kern_sz1 + 1) * tile - 1) tot_kern_array = np.zeros((nfeat, imgshape[0] * imgshape[1])) feat_tile = int(np.ceil(np.sqrt(nfeat))) for fidx in range(nfeat): kern_array = tile_raster_images( X=kernel[:, fidx, :, :], img_shape=(kern_sz0, kern_sz1), tile_shape=(tile, tile), tile_spacing=(1, 1)) tot_kern_array[fidx] = kern_array.flatten() tot_kern_image = Image.fromarray(tile_raster_images( X=tot_kern_array, img_shape=imgshape, tile_shape=(feat_tile, feat_tile), tile_spacing=(2, 2))) img_name = '%s%s%s.png' % (prefix, name, suffix) tot_kern_image.save(os.path.join(out_path, img_name)) def draw_tiled_images(images, img_info_dict, bat_idx, out_path, bat2img_idx_set, npat_img_list, filt_idx_list=None, patch_size=None, patch_step=None): n_batch_imgs = len(npat_img_list) for ii, key in enumerate(img_info_dict): for idx in range(n_batch_imgs): idx_from, idx_to = bat2img_idx_set[idx] cur_img = images[ii][idx_from: idx_to] caxis = img_info_dict[key].get('caxis', None) scale = img_info_dict[key].get('scale', None) if scale: tile_spacing = ( int(-(patch_size[0] - patch_step[0]) * scale), int(-(patch_size[1] - patch_step[1]) * scale)) else: tile_spacing = (0, 0) nch = int(cur_img.shape[1]) if nch == 1 or nch == 3: tiled_array = tile_tensor4_from_list( X=cur_img, tile_shape=npat_img_list[idx][1:], idx_list=filt_idx_list[idx], tile_spacing=tile_spacing, caxis=caxis) img = Image.fromarray(tiled_array.astype(np.uint8)) img_name = '%d_%s.png' % (bat_idx * n_batch_imgs + idx, key) img.save(os.path.join(out_path, img_name)) else: for ch_idx in range(nch): tiled_array = tile_tensor4_from_list( X=cur_img[:, ch_idx, :, :], tile_shape=npat_img_list[idx][1:], idx_list=filt_idx_list[idx], tile_spacing=tile_spacing, caxis=caxis) img = Image.fromarray(tiled_array.astype(np.uint8)) img_name = '%d_%s_%02d.png' % ( bat_idx * n_batch_imgs + idx, key, ch_idx) img.save(os.path.join(out_path, img_name)) def draw_images(images, img_info_dict, bat_idx, n_batch_imgs, out_path): for ii, key in enumerate(img_info_dict): for idx in range(n_batch_imgs): cur_img = images[ii][idx] caxis = img_info_dict[key].get('caxis', None) nch = int(cur_img.shape[0]) if nch == 1 or nch == 3: img = image_from_nparray( np.transpose(cur_img, (1, 2, 0)), caxis=caxis) img_name = '%d_%s.png' % (bat_idx * n_batch_imgs + idx, key) img.save(os.path.join(out_path, img_name)) else: for ch_idx in range(nch): img = image_from_nparray( cur_img[ch_idx, :, :], caxis=caxis) img_name = '%d_%s_%02d.png' % ( bat_idx * n_batch_imgs + idx, key, ch_idx) img.save(os.path.join(out_path, img_name))
{ "repo_name": "jongyookim/IQA_BIECON_release", "path": "IQA_BIECON_release/trainer.py", "copies": "1", "size": "27661", "license": "mit", "hash": 5576336438958596000, "line_mean": 41.4248466258, "line_max": 79, "alpha_frac": 0.4845811793, "autogenerated": false, "ratio": 3.6073291601460618, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9591910339446061, "avg_score": 0, "num_lines": 652 }
from __future__ import absolute_import, division, print_function import os import sys import unittest from pathlib import Path import numpy as np from sprocket.util.hdf5 import HDF5 dirpath = os.path.dirname(os.path.realpath(__file__)) listf = os.path.join(dirpath, '/data/test.h5') class hdf5FunctionsTest(unittest.TestCase): def test_HDF5(self): data1d = np.random.rand(100) data1d2 = np.random.rand(50) data2d = np.random.rand(100).reshape(50, 2) # write test path = os.path.join(dirpath, 'data/test.h5') h5 = HDF5(path, 'w') h5.save(data1d, '1d') h5.save(data2d, '2d') h5.close() # open test tmph5 = HDF5(path, 'r') tmp1d = tmph5.read(ext='1d') tmp2d = tmph5.read(ext='2d') tmph5.close() assert np.allclose(tmp1d, data1d) assert np.allclose(tmp2d, data2d) # open test with 'with' statement with HDF5(path, 'r') as h5_with: assert np.allclose(h5_with.read('1d'), data1d) # read/write and replace test h5 = HDF5(path, 'a') tmp1d = h5.read(ext='1d') h5.save(data1d2, '1d') tmp1d2 = h5.read(ext='1d') h5.close() assert np.allclose(tmp1d, data1d) assert np.allclose(tmp1d2, data1d2) # remove files os.remove(path) def test_HDF5_current_dir(self): listf_current = os.path.split(listf)[-1] data1d = np.random.rand(50) try: h5_write = HDF5(Path(listf_current) if sys.version_info >= (3,6) else listf_current, 'w') h5_write.save(data1d, '1d') h5_write.close() h5_read = HDF5(os.curdir + os.sep + listf_current, 'r') read_data1d = h5_read.read(ext='1d') h5_read.close() assert np.allclose(data1d, read_data1d) except: # pragma: no cover raise finally: os.remove(listf_current)
{ "repo_name": "k2kobayashi/sprocket", "path": "sprocket/util/tests/test_hdf5.py", "copies": "1", "size": "1977", "license": "mit", "hash": -9121286587846112000, "line_mean": 27.652173913, "line_max": 101, "alpha_frac": 0.5700556399, "autogenerated": false, "ratio": 2.9729323308270676, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4042987970727068, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys import unittest import tempfile from itertools import product as it_product import blaze from blaze.datadescriptor import dd_as_py blaze.set_strategy('jit') import numpy as np from numpy.testing import assert_allclose def _clean_disk_arrays(): try: from shutil import rmtree rmtree(tmpdir) except Exception as e: print('Error cleaning up temp dir %s:\n%s' % (tmpdir, e)) def _mk_dir(): global tmpdir tmpdir = tempfile.mkdtemp(prefix='blztmp') def _store(name): return blaze.io.Storage(os.path.join(tmpdir, name + '.blz')) def _addition(a,b): return (a+b) def _expression(a, b): return (a+b)*(a+b) #------------------------------------------------------------------------ # Test Generation #------------------------------------------------------------------------ def _add_tests(): _pair = ['mem', 'dsk'] frame = sys._getframe(1) for expr, ltr in zip([_addition, _expression], ['R', 'Q']): for i in it_product(_pair, _pair, _pair): args = i + (ltr,) f = _build_tst(expr, *args) f.__name__ = 'test_{1}_{2}_to_{3}{0}'.format(f.__name__, *args) frame.f_locals[f.__name__] = f def _build_tst(kernel, storage1, storage2, storage3, R): def function(self): A = getattr(self, storage1 + 'A') B = getattr(self, storage2 + 'B') Rd = kernel(A, B) self.assert_(isinstance(Rd, blaze.Array)) self.assert_(Rd._data.capabilities.deferred) p = _store(storage3 + 'Rd') if storage3 == 'dsk' else None try: Rc = blaze.eval(Rd, storage=p) self.assert_(isinstance(Rc, blaze.Array)) npy_data = getattr(self, 'npy' + R) assert_allclose(np.array(dd_as_py(Rc._data)), npy_data) if storage3 == 'dsk': self.assert_(Rc._data.capabilities.persistent) else: self.assert_(not Rc._data.capabilities.persistent) finally: try: if p is not None: blaze.drop(p) except: pass # show the real error... return function #------------------------------------------------------------------------ # Tests #------------------------------------------------------------------------ class TestEvalScalar(unittest.TestCase): @classmethod def setUpClass(cls): cls.npyA = np.array(10) cls.npyB = np.arange(0.0, 100.0) cls.npyR = _addition(cls.npyA, cls.npyB) cls.npyQ = _expression(cls.npyA, cls.npyB) cls.memA = blaze.array(cls.npyA) cls.memB = blaze.array(cls.npyB) _mk_dir() cls.dskA = blaze.array(cls.npyA, storage=_store('dskA')) cls.dskB = blaze.array(cls.npyB, storage=_store('dskB')) @classmethod def tearDownClass(cls): _clean_disk_arrays() del(cls.npyA) del(cls.npyB) del(cls.npyR) del(cls.memA) del(cls.memB) del(cls.dskA) del(cls.dskB) # add all tests for all permutations # TODO: Enable. Currently segfaults # _add_tests() class TestEval1D(unittest.TestCase): @classmethod def setUpClass(cls): cls.npyA = np.arange(0.0, 100.0) cls.npyB = np.arange(0.0, 100.0) cls.npyR = _addition(cls.npyA, cls.npyB) cls.npyQ = _expression(cls.npyA, cls.npyB) cls.memA = blaze.array(cls.npyA) cls.memB = blaze.array(cls.npyB) _mk_dir() cls.dskA = blaze.array(cls.npyA, storage=_store('dskA')) cls.dskB = blaze.array(cls.npyB, storage=_store('dskB')) @classmethod def tearDownClass(cls): _clean_disk_arrays() del(cls.npyA) del(cls.npyB) del(cls.npyR) del(cls.memA) del(cls.memB) del(cls.dskA) del(cls.dskB) # add all tests for all permutations _add_tests() class TestEval2D(unittest.TestCase): @classmethod def setUpClass(cls): cls.npyA = np.arange(0.0, 100.0).reshape(20, 5) cls.npyB = np.arange(0.0, 100.0).reshape(20, 5) cls.npyR = _addition(cls.npyA, cls.npyB) cls.npyQ = _expression(cls.npyA, cls.npyB) cls.memA = blaze.array(cls.npyA) cls.memB = blaze.array(cls.npyB) _mk_dir() cls.dskA = blaze.array(cls.npyA, storage=_store('dskA')) cls.dskB = blaze.array(cls.npyB, storage=_store('dskB')) @classmethod def tearDownClass(cls): _clean_disk_arrays() del(cls.npyA) del(cls.npyB) del(cls.npyR) del(cls.memA) del(cls.memB) del(cls.dskA) del(cls.dskB) # add all tests for all permutations _add_tests() class TestStrategy(unittest.TestCase): def test_strategy(self): current = blaze.current_strategy() with blaze.strategy('blah'): self.assertEqual(blaze.current_strategy(), 'blah') self.assertEqual(blaze.current_strategy(), current) def isolated(): npyA = np.arange(0.0, 100.0).reshape(20, 5) npyB = np.arange(0.0, 100.0).reshape(20, 5) memA = blaze.array(npyA) memB = blaze.array(npyB) _mk_dir() dskA = blaze.array(npyA, storage=_store('dskA')) dskB = blaze.array(npyB, storage=_store('dskB')) expr = memA + memA #expr = memA + dskA #expr = dskA + dskA print(memA.dshape, expr.dshape) p = _store('dskRd') result = blaze.eval(expr, storage=p) #print(result) result2 = blaze.eval(result == npyA + npyA) assert np.all(result2) if __name__ == '__main__': #TestEval2D.setUpClass() #TestEval2D('test_dsk_mem_to_memfunction').debug() unittest.main(verbosity=2)
{ "repo_name": "zeeshanali/blaze", "path": "blaze/tests/test_eval.py", "copies": "2", "size": "5802", "license": "bsd-3-clause", "hash": -3369850830092426000, "line_mean": 26.7607655502, "line_max": 75, "alpha_frac": 0.5501551189, "autogenerated": false, "ratio": 3.1584104518236256, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4708565570723625, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys from cffi import FFI include_dirs = [os.path.join("extras", "libargon2", "include")] use_system_argon2 = os.environ.get("ARGON2_CFFI_USE_SYSTEM", "0") == "1" if use_system_argon2: include_dirs = [] # Add vendored integer types headers. if "win32" in str(sys.platform).lower(): int_base = os.path.join("extras", "msinttypes") inttypes = os.path.join(int_base, "inttypes") stdint = os.path.join(int_base, "stdint") vi = sys.version_info[0:2] if vi in [(2, 6), (2, 7)]: # VS 2008 needs both. include_dirs += [inttypes, stdint] elif vi in [(3, 3), (3, 4)]: # VS 2010 needs only inttypes.h include_dirs += [inttypes] ffi = FFI() ffi.set_source( "_ffi", "#include <argon2.h>", include_dirs=include_dirs, libraries=["argon2"], ) ffi.cdef( """\ typedef enum Argon2_type { Argon2_d = ..., Argon2_i = ..., Argon2_id = ..., } argon2_type; typedef enum Argon2_version { ARGON2_VERSION_10 = ..., ARGON2_VERSION_13 = ..., ARGON2_VERSION_NUMBER = ... } argon2_version; int argon2_hash(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen, char *encoded, const size_t encodedlen, argon2_type type, const uint32_t version); int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen, argon2_type type); const char *argon2_error_message(int error_code); typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate); typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate); typedef struct Argon2_Context { uint8_t *out; /* output array */ uint32_t outlen; /* digest length */ uint8_t *pwd; /* password array */ uint32_t pwdlen; /* password length */ uint8_t *salt; /* salt array */ uint32_t saltlen; /* salt length */ uint8_t *secret; /* key array */ uint32_t secretlen; /* key length */ uint8_t *ad; /* associated data array */ uint32_t adlen; /* associated data length */ uint32_t t_cost; /* number of passes */ uint32_t m_cost; /* amount of memory requested (KB) */ uint32_t lanes; /* number of lanes */ uint32_t threads; /* maximum number of threads */ uint32_t version; /* version number */ allocate_fptr allocate_cbk; /* pointer to memory allocator */ deallocate_fptr free_cbk; /* pointer to memory deallocator */ uint32_t flags; /* array of bool options */ } argon2_context; int argon2_ctx(argon2_context *context, argon2_type type); /* Error codes */ typedef enum Argon2_ErrorCodes { ARGON2_OK = ..., ARGON2_OUTPUT_PTR_NULL = ..., ARGON2_OUTPUT_TOO_SHORT = ..., ARGON2_OUTPUT_TOO_LONG = ..., ARGON2_PWD_TOO_SHORT = ..., ARGON2_PWD_TOO_LONG = ..., ARGON2_SALT_TOO_SHORT = ..., ARGON2_SALT_TOO_LONG = ..., ARGON2_AD_TOO_SHORT = ..., ARGON2_AD_TOO_LONG = ..., ARGON2_SECRET_TOO_SHORT = ..., ARGON2_SECRET_TOO_LONG = ..., ARGON2_TIME_TOO_SMALL = ..., ARGON2_TIME_TOO_LARGE = ..., ARGON2_MEMORY_TOO_LITTLE = ..., ARGON2_MEMORY_TOO_MUCH = ..., ARGON2_LANES_TOO_FEW = ..., ARGON2_LANES_TOO_MANY = ..., ARGON2_PWD_PTR_MISMATCH = ..., /* NULL ptr with non-zero length */ ARGON2_SALT_PTR_MISMATCH = ..., /* NULL ptr with non-zero length */ ARGON2_SECRET_PTR_MISMATCH = ..., /* NULL ptr with non-zero length */ ARGON2_AD_PTR_MISMATCH = ..., /* NULL ptr with non-zero length */ ARGON2_MEMORY_ALLOCATION_ERROR = ..., ARGON2_FREE_MEMORY_CBK_NULL = ..., ARGON2_ALLOCATE_MEMORY_CBK_NULL = ..., ARGON2_INCORRECT_PARAMETER = ..., ARGON2_INCORRECT_TYPE = ..., ARGON2_OUT_PTR_MISMATCH = ..., ARGON2_THREADS_TOO_FEW = ..., ARGON2_THREADS_TOO_MANY = ..., ARGON2_MISSING_ARGS = ..., ARGON2_ENCODING_FAIL = ..., ARGON2_DECODING_FAIL = ..., ARGON2_THREAD_FAIL = ..., ARGON2_DECODING_LENGTH_FAIL= ..., ARGON2_VERIFY_MISMATCH = ..., } argon2_error_codes; #define ARGON2_FLAG_CLEAR_PASSWORD ... #define ARGON2_FLAG_CLEAR_SECRET ... #define ARGON2_DEFAULT_FLAGS ... #define ARGON2_MIN_LANES ... #define ARGON2_MAX_LANES ... #define ARGON2_MIN_THREADS ... #define ARGON2_MAX_THREADS ... #define ARGON2_SYNC_POINTS ... #define ARGON2_MIN_OUTLEN ... #define ARGON2_MAX_OUTLEN ... #define ARGON2_MIN_MEMORY ... #define ARGON2_MAX_MEMORY_BITS ... #define ARGON2_MAX_MEMORY ... #define ARGON2_MIN_TIME ... #define ARGON2_MAX_TIME ... #define ARGON2_MIN_PWD_LENGTH ... #define ARGON2_MAX_PWD_LENGTH ... #define ARGON2_MIN_AD_LENGTH ... #define ARGON2_MAX_AD_LENGTH ... #define ARGON2_MIN_SALT_LENGTH ... #define ARGON2_MAX_SALT_LENGTH ... #define ARGON2_MIN_SECRET ... #define ARGON2_MAX_SECRET ... uint32_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism, uint32_t saltlen, uint32_t hashlen, argon2_type type); """ ) if __name__ == "__main__": ffi.compile()
{ "repo_name": "sserrot/champion_relationships", "path": "venv/Lib/site-packages/argon2/_ffi_build.py", "copies": "2", "size": "5277", "license": "mit", "hash": -6346051924984462000, "line_mean": 26.6282722513, "line_max": 75, "alpha_frac": 0.6109531931, "autogenerated": false, "ratio": 2.961279461279461, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9572232654379461, "avg_score": 0, "num_lines": 191 }
from __future__ import absolute_import, division, print_function import os import sys from conda.base.context import context from conda.cli.conda_argparse import ArgumentParser from conda.cli.main import init_loggers from conda.gateways.logging import initialize_logging try: from conda.exceptions import conda_exception_handler except ImportError as e: if 'CONDA_DEFAULT_ENV' in os.environ: sys.stderr.write(""" There was an error importing conda. It appears this was caused by installing conda-env into a conda environment. Like conda, conda-env needs to be installed into your base conda/Anaconda environment. Please deactivate your current environment, then re-install conda-env using this command: conda install -c conda conda-env If you are seeing this error and have not installed conda-env into an environment, please open a bug report at: https://github.com/conda/conda-env """.lstrip()) sys.exit(-1) else: raise e from . import main_attach from . import main_create from . import main_export from . import main_list from . import main_remove from . import main_upload from . import main_update # TODO: This belongs in a helper library somewhere # Note: This only works with `conda-env` as a sub-command. If this gets # merged into conda-env, this needs to be adjusted. def show_help_on_empty_command(): if len(sys.argv) == 1: # sys.argv == ['/path/to/bin/conda-env'] sys.argv.append('--help') def create_parser(): p = ArgumentParser() sub_parsers = p.add_subparsers() main_attach.configure_parser(sub_parsers) main_create.configure_parser(sub_parsers) main_export.configure_parser(sub_parsers) main_list.configure_parser(sub_parsers) main_remove.configure_parser(sub_parsers) main_upload.configure_parser(sub_parsers) main_update.configure_parser(sub_parsers) show_help_on_empty_command() return p def do_call(args, parser): relative_mod, func_name = args.func.rsplit('.', 1) # func_name should always be 'execute' from importlib import import_module module = import_module(relative_mod, __name__.rsplit('.', 1)[0]) exit_code = getattr(module, func_name)(args, parser) return exit_code def main(): initialize_logging() parser = create_parser() args = parser.parse_args() os.environ["CONDA_AUTO_UPDATE_CONDA"] = "false" context.__init__(argparse_args=args) init_loggers(context) return conda_exception_handler(do_call, args, parser) if __name__ == '__main__': sys.exit(main())
{ "repo_name": "Microsoft/PTVS", "path": "Python/Product/Miniconda/Miniconda3-x64/Lib/site-packages/conda_env/cli/main.py", "copies": "1", "size": "2566", "license": "apache-2.0", "hash": 527158863517042600, "line_mean": 27.8314606742, "line_max": 72, "alpha_frac": 0.7116134061, "autogenerated": false, "ratio": 3.544198895027624, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9755812301127624, "avg_score": 0, "num_lines": 89 }
from __future__ import absolute_import, division, print_function import os import sys from ginga import cmap as ginga_cmap from qtpy import QtGui, QtWidgets from glue.config import viewer_tool from glue.viewers.common.qt.tool import CheckableTool, Tool from glue.plugins.ginga_viewer.qt.utils import cmap2pixmap, ginga_graphic_to_roi from glue.utils import nonpartial from glue.plugins.tools.spectrum_tool.qt import SpectrumTool from glue.plugins.tools.pv_slicer.qt import PVSlicerMode # Find out location of ginga module so we can some of its icons GINGA_HOME = os.path.split(sys.modules['ginga'].__file__)[0] GINGA_ICON_DIR = os.path.join(GINGA_HOME, 'icons') @viewer_tool class RectangleROIMode(CheckableTool): tool_id = 'ginga:rectangle' icon = 'glue_square' tooltip = 'Rectangle' def activate(self): self.viewer._set_roi_mode('rectangle', True) def deactivate(self): self.viewer._set_roi_mode('rectangle', False) @viewer_tool class CircleROIMode(CheckableTool): tool_id = 'ginga:circle' icon = 'glue_circle' tooltip = 'select:circle' def activate(self): self.viewer._set_roi_mode('circle', True) def deactivate(self): self.viewer._set_roi_mode('circle', False) @viewer_tool class PolygonROIMode(CheckableTool): tool_id = 'ginga:polygon' icon = 'glue_lasso' tooltip = 'select:polygon' def activate(self): self.viewer._set_roi_mode('polygon', True) def deactivate(self): self.viewer._set_roi_mode('polygon', False) @viewer_tool class PanMode(CheckableTool): tool_id = 'ginga:pan' icon = 'glue_move' tooltip = 'Pan' def activate(self): self.viewer.mode_cb('pan', True) def deactivate(self): self.viewer.mode_cb('pan', False) @viewer_tool class FreePanMode(CheckableTool): tool_id = 'ginga:freepan' icon = os.path.join(GINGA_ICON_DIR, 'hand_48.png') tooltip = 'Free Pan' def activate(self): self.viewer.mode_cb('freepan', True) def deactivate(self): self.viewer.mode_cb('freepan', False) @viewer_tool class RotateMode(CheckableTool): tool_id = 'ginga:rotate' icon = os.path.join(GINGA_ICON_DIR, 'rotate_48.png') tooltip = 'Rotate' def activate(self): self.viewer.mode_cb('rotate', True) def deactivate(self): self.viewer.mode_cb('rotate', False) @viewer_tool class ContrastMode(CheckableTool): tool_id = 'ginga:contrast' icon = 'glue_contrast' tooltip = 'Rotate' def activate(self): self.viewer.mode_cb('contrast', True) def deactivate(self): self.viewer.mode_cb('contrast', False) @viewer_tool class CutsMode(CheckableTool): tool_id = 'ginga:cuts' icon = os.path.join(GINGA_ICON_DIR, 'cuts_48.png') tooltip = 'Cuts' def activate(self): self.viewer.mode_cb('cuts', True) def deactivate(self): self.viewer.mode_cb('cuts', False) class ColormapAction(QtWidgets.QAction): def __init__(self, label, cmap, parent): super(ColormapAction, self).__init__(label, parent) self.cmap = cmap pm = cmap2pixmap(cmap) self.setIcon(QtGui.QIcon(pm)) @viewer_tool class ColormapMode(Tool): icon = 'glue_rainbow' tool_id = 'ginga:colormap' action_text = 'Set color scale' tool_tip = 'Set color scale' def menu_actions(self): acts = [] for label in ginga_cmap.get_names(): cmap = ginga_cmap.get_cmap(label) a = ColormapAction(label, cmap, self.viewer) a.triggered.connect(nonpartial(self.viewer.client.set_cmap, cmap)) acts.append(a) return acts class GingaMode(CheckableTool): label = None icon = None shape = 'polygon' color = 'red' linestyle = 'solid' def __init__(self, viewer): super(CheckableTool, self).__init__(viewer) self.parent_canvas = self.viewer.canvas self._shape_tag = None self.parent_canvas.add_callback('draw-event', self._extract_callback) self.parent_canvas.add_callback('draw-down', self._clear_shape_cb) def _set_path_mode(self, enable): self.parent_canvas.enable_draw(True) self.parent_canvas.draw_context = self self.parent_canvas.set_drawtype(self.shape, color=self.color, linestyle=self.linestyle) bm = self.parent_canvas.get_bindmap() bm.set_mode('draw', mode_type='locked') def _clear_shape_cb(self, *args): try: self.parent_canvas.deleteObjectByTag(self._shape_tag) except: pass _clear_path = _clear_shape_cb @viewer_tool class GingaPVSlicerMode(GingaMode): icon = 'glue_slice' tool_id = 'ginga:slicer' action_text = 'Slice Extraction' tool_tip = 'Extract a slice from an arbitrary path' shape = 'path' def _extract_callback(self, canvas, tag): if self.parent_canvas.draw_context is not self: return self._shape_tag = tag obj = self.parent_canvas.getObjectByTag(tag) vx, vy = zip(*obj.points) return self._build_from_vertices(vx, vy) _build_from_vertices = PVSlicerMode._build_from_vertices @viewer_tool class GingaSpectrumMode(GingaMode, SpectrumTool): icon = 'glue_spectrum' tool_id = 'ginga:spectrum' action_text = 'Spectrum' tool_tip = 'Extract a spectrum from the selection' shape = 'rectangle' def __init__(self, widget=None): GingaMode.__init__(self, widget) SpectrumTool.__init__(self, widget, self) self._release_callback = self._update_profile self._move_callback = self._move_profile def _extract_callback(self, canvas, tag): if self.parent_canvas.draw_context is not self: return self._shape_tag = tag obj = self.parent_canvas.getObjectByTag(tag) roi = ginga_graphic_to_roi(obj) return self._update_from_roi(roi) def clear(self): pass
{ "repo_name": "saimn/glue", "path": "glue/plugins/ginga_viewer/qt/mouse_modes.py", "copies": "1", "size": "6049", "license": "bsd-3-clause", "hash": -4377492188591445000, "line_mean": 23.8930041152, "line_max": 80, "alpha_frac": 0.639940486, "autogenerated": false, "ratio": 3.34383637368712, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.448377685968712, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys from pudb.py3compat import PY3 if PY3: from configparser import ConfigParser else: from ConfigParser import ConfigParser # minor LGPL violation: stolen from python-xdg _home = os.environ.get('HOME', None) xdg_data_home = os.environ.get('XDG_DATA_HOME', os.path.join(_home, '.local', 'share') if _home else None) xdg_config_home = os.environ.get('XDG_CONFIG_HOME', os.path.join(_home, '.config') if _home else None) xdg_config_dirs = [xdg_config_home] if xdg_config_home else [] + \ os.environ.get('XDG_CONFIG_DIRS', '/etc/xdg').split(':') def get_save_config_path(*resource): if xdg_config_home is None: return None if not resource: resource = [XDG_CONF_RESOURCE] resource = os.path.join(*resource) assert not resource.startswith('/') path = os.path.join(xdg_config_home, resource) if not os.path.isdir(path): os.makedirs(path, 448) # 0o700 return path # end LGPL violation CONF_SECTION = "pudb" XDG_CONF_RESOURCE = "pudb" CONF_FILE_NAME = "pudb.cfg" SAVED_BREAKPOINTS_FILE_NAME = "saved-breakpoints-%d.%d" % sys.version_info[:2] BREAKPOINTS_FILE_NAME = "breakpoints-%d.%d" % sys.version_info[:2] def load_config(): from os.path import join, isdir cparser = ConfigParser() conf_dict = {} try: cparser.read([ join(cdir, XDG_CONF_RESOURCE, CONF_FILE_NAME) for cdir in xdg_config_dirs if isdir(cdir)]) if cparser.has_section(CONF_SECTION): conf_dict.update(dict(cparser.items(CONF_SECTION))) except: pass conf_dict.setdefault("shell", "internal") conf_dict.setdefault("theme", "classic") conf_dict.setdefault("line_numbers", False) conf_dict.setdefault("seen_welcome", "a") conf_dict.setdefault("sidebar_width", 0.5) conf_dict.setdefault("variables_weight", 1) conf_dict.setdefault("stack_weight", 1) conf_dict.setdefault("breakpoints_weight", 1) conf_dict.setdefault("current_stack_frame", "top") conf_dict.setdefault("stringifier", "type") conf_dict.setdefault("custom_theme", "") conf_dict.setdefault("custom_stringifier", "") conf_dict.setdefault("wrap_variables", True) conf_dict.setdefault("display", "auto") conf_dict.setdefault("prompt_on_quit", True) def normalize_bool_inplace(name): try: if conf_dict[name].lower() in ["0", "false", "off"]: conf_dict[name] = False else: conf_dict[name] = True except: pass normalize_bool_inplace("line_numbers") normalize_bool_inplace("wrap_variables") normalize_bool_inplace("prompt_on_quit") return conf_dict def save_config(conf_dict): from os.path import join cparser = ConfigParser() cparser.add_section(CONF_SECTION) for key in sorted(conf_dict): cparser.set(CONF_SECTION, key, str(conf_dict[key])) try: save_path = get_save_config_path() if not save_path: return outf = open(join(save_path, CONF_FILE_NAME), "w") cparser.write(outf) outf.close() except: pass def edit_config(ui, conf_dict): import urwid old_conf_dict = conf_dict.copy() def _update_theme(): ui.setup_palette(ui.screen) ui.screen.clear() def _update_line_numbers(): for sl in ui.source: sl._invalidate() def _update_prompt_on_quit(): pass def _update_current_stack_frame(): ui.update_stack() def _update_stringifier(): import pudb.var_view pudb.var_view.custom_stringifier_dict = {} ui.update_var_view() def _update_wrap_variables(): ui.update_var_view() def _update_config(check_box, new_state, option_newvalue): option, newvalue = option_newvalue new_conf_dict = {option: newvalue} if option == "theme": # only activate if the new state of the radio button is 'on' if new_state: if newvalue is None: # Select the custom theme entry dialog lb.set_focus(lb_contents.index(theme_edit_list_item)) return conf_dict.update(theme=newvalue) _update_theme() elif option == "line_numbers": new_conf_dict["line_numbers"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_line_numbers() elif option == "prompt_on_quit": new_conf_dict["prompt_on_quit"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_prompt_on_quit() elif option == "current_stack_frame": # only activate if the new state of the radio button is 'on' if new_state: conf_dict.update(new_conf_dict) _update_current_stack_frame() elif option == "stringifier": # only activate if the new state of the radio button is 'on' if new_state: if newvalue is None: lb.set_focus(lb_contents.index(stringifier_edit_list_item)) return conf_dict.update(stringifier=newvalue) _update_stringifier() elif option == "wrap_variables": new_conf_dict["wrap_variables"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_wrap_variables() heading = urwid.Text("This is the preferences screen for PuDB. " "Hit Ctrl-P at any time to get back to it.\n\n" "Configuration settings are saved in " "$HOME/.config/pudb or $XDG_CONFIG_HOME/pudb " "environment variable. If both variables are not set " "configurations settings will not be saved.\n") cb_line_numbers = urwid.CheckBox("Show Line Numbers", bool(conf_dict["line_numbers"]), on_state_change=_update_config, user_data=("line_numbers", None)) cb_prompt_on_quit = urwid.CheckBox("Prompt before quitting", bool(conf_dict["prompt_on_quit"]), on_state_change=_update_config, user_data=("prompt_on_quit", None)) # {{{ shells shell_info = urwid.Text("This is the shell that will be " "used when you hit '!'.\n") shells = ["internal", "classic", "ipython", "bpython", "ptpython"] shell_rb_group = [] shell_rbs = [ urwid.RadioButton(shell_rb_group, name, conf_dict["shell"] == name) for name in shells] # }}} # {{{ themes from pudb.theme import THEMES known_theme = conf_dict["theme"] in THEMES theme_rb_group = [] theme_edit = urwid.Edit(edit_text=conf_dict["custom_theme"]) theme_edit_list_item = urwid.AttrMap(theme_edit, "value") theme_rbs = [ urwid.RadioButton(theme_rb_group, name, conf_dict["theme"] == name, on_state_change=_update_config, user_data=("theme", name)) for name in THEMES]+[ urwid.RadioButton(theme_rb_group, "Custom:", not known_theme, on_state_change=_update_config, user_data=("theme", None)), theme_edit_list_item, urwid.Text("\nTo use a custom theme, see example-theme.py in the " "pudb distribution. Enter the full path to a file like it in " "the box above. '~' will be expanded to your home directory. " "Note that a custom theme will not be applied until you close " "this dialog."), ] # }}} # {{{ stack stack_rb_group = [] stack_opts = ["top", "bottom"] stack_info = urwid.Text("Show the current stack frame at the\n") stack_rbs = [ urwid.RadioButton(stack_rb_group, name, conf_dict["current_stack_frame"] == name, on_state_change=_update_config, user_data=("current_stack_frame", name)) for name in stack_opts ] # }}} # {{{ stringifier stringifier_opts = ["type", "str", "repr"] known_stringifier = conf_dict["stringifier"] in stringifier_opts stringifier_rb_group = [] stringifier_edit = urwid.Edit(edit_text=conf_dict["custom_stringifier"]) stringifier_info = urwid.Text("This is the default function that will be " "called on variables in the variables list. Note that you can change " "this on a per-variable basis by selecting a variable and hitting Enter " "or by typing t/s/r. Note that str and repr will be slower than type " "and have the potential to crash PuDB.\n") stringifier_edit_list_item = urwid.AttrMap(stringifier_edit, "value") stringifier_rbs = [ urwid.RadioButton(stringifier_rb_group, name, conf_dict["stringifier"] == name, on_state_change=_update_config, user_data=("stringifier", name)) for name in stringifier_opts ]+[ urwid.RadioButton(stringifier_rb_group, "Custom:", not known_stringifier, on_state_change=_update_config, user_data=("stringifier", None)), stringifier_edit_list_item, urwid.Text("\nTo use a custom stringifier, see " "example-stringifier.py in the pudb distribution. Enter the " "full path to a file like it in the box above. " "'~' will be expanded to your home directory. " "The file should contain a function called pudb_stringifier() " "at the module level, which should take a single argument and " "return the desired string form of the object passed to it. " "Note that if you choose a custom stringifier, the variables " "view will not be updated until you close this dialog."), ] # }}} # {{{ wrap variables cb_wrap_variables = urwid.CheckBox("Wrap variables", bool(conf_dict["wrap_variables"]), on_state_change=_update_config, user_data=("wrap_variables", None)) wrap_variables_info = urwid.Text("\nNote that you can change this option on " "a per-variable basis by selecting the " "variable and pressing 'w'.") # }}} # {{{ display display_info = urwid.Text("What driver is used to talk to your terminal. " "'raw' has the most features (colors and highlighting), " "but is only correct for " "XTerm and terminals like it. 'curses' " "has fewer " "features, but it will work with just about any terminal. 'auto' " "will attempt to pick between the two based on availability and " "the $TERM environment variable.\n\n" "Changing this setting requires a restart of PuDB.") displays = ["auto", "raw", "curses"] display_rb_group = [] display_rbs = [ urwid.RadioButton(display_rb_group, name, conf_dict["display"] == name) for name in displays] # }}} lb_contents = ( [heading] + [urwid.AttrMap(urwid.Text("Line Numbers:\n"), "group head")] + [cb_line_numbers] + [urwid.AttrMap(urwid.Text("\nPrompt on quit:\n"), "group head")] + [cb_prompt_on_quit] + [urwid.AttrMap(urwid.Text("\nShell:\n"), "group head")] + [shell_info] + shell_rbs + [urwid.AttrMap(urwid.Text("\nTheme:\n"), "group head")] + theme_rbs + [urwid.AttrMap(urwid.Text("\nStack Order:\n"), "group head")] + [stack_info] + stack_rbs + [urwid.AttrMap(urwid.Text("\nVariable Stringifier:\n"), "group head")] + [stringifier_info] + stringifier_rbs + [urwid.AttrMap(urwid.Text("\nWrap Variables:\n"), "group head")] + [cb_wrap_variables] + [wrap_variables_info] + [urwid.AttrMap(urwid.Text("\nDisplay driver:\n"), "group head")] + [display_info] + display_rbs ) lb = urwid.ListBox(urwid.SimpleListWalker(lb_contents)) if ui.dialog(lb, [ ("OK", True), ("Cancel", False), ], title="Edit Preferences"): # Only update the settings here that instant-apply (above) doesn't take # care of. # if we had a custom theme, it wasn't updated live if theme_rb_group[-1].state: newvalue = theme_edit.get_edit_text() conf_dict.update(theme=newvalue, custom_theme=newvalue) _update_theme() # Ditto for custom stringifiers if stringifier_rb_group[-1].state: newvalue = stringifier_edit.get_edit_text() conf_dict.update(stringifier=newvalue, custom_stringifier=newvalue) _update_stringifier() for shell, shell_rb in zip(shells, shell_rbs): if shell_rb.get_state(): conf_dict["shell"] = shell for display, display_rb in zip(displays, display_rbs): if display_rb.get_state(): conf_dict["display"] = display else: # The user chose cancel, revert changes conf_dict.update(old_conf_dict) _update_theme() # _update_line_numbers() is equivalent to _update_theme() _update_current_stack_frame() _update_stringifier() # {{{ breakpoint saving def parse_breakpoints(lines): # b [ (filename:lineno | function) [, "condition"] ] breakpoints = [] for arg in lines: if not arg: continue arg = arg[1:] filename = None lineno = None cond = None comma = arg.find(',') if comma > 0: # parse stuff after comma: "condition" cond = arg[comma+1:].lstrip() arg = arg[:comma].rstrip() colon = arg.rfind(':') funcname = None if colon > 0: filename = arg[:colon].strip() from pudb.lowlevel import lookup_module f = lookup_module(filename) if not f: continue else: filename = f arg = arg[colon+1:].lstrip() try: lineno = int(arg) except ValueError: continue else: continue from pudb.lowlevel import get_breakpoint_invalid_reason if get_breakpoint_invalid_reason(filename, lineno) is None: breakpoints.append((filename, lineno, False, cond, funcname)) return breakpoints def get_breakpoints_file_name(): from os.path import join save_path = get_save_config_path() if not save_path: return None else: return join(save_path, SAVED_BREAKPOINTS_FILE_NAME) def load_breakpoints(): from os.path import join, isdir file_names = [ join(cdir, XDG_CONF_RESOURCE, name) for cdir in xdg_config_dirs if isdir(cdir) for name in [SAVED_BREAKPOINTS_FILE_NAME, BREAKPOINTS_FILE_NAME] ] lines = [] for fname in file_names: try: rcFile = open(fname) except IOError: pass else: lines.extend([l.strip() for l in rcFile.readlines()]) rcFile.close() return parse_breakpoints(lines) def save_breakpoints(bp_list): """ :arg bp_list: a list of tuples `(file_name, line)` """ save_path = get_breakpoints_file_name() if not save_path: return histfile = open(get_breakpoints_file_name(), 'w') bp_list = set([(bp.file, bp.line, bp.cond) for bp in bp_list]) for bp in bp_list: line = "b %s:%d" % (bp[0], bp[1]) if bp[2]: line += ", %s" % bp[2] line += "\n" histfile.write(line) histfile.close() # }}} # vim:foldmethod=marker
{ "repo_name": "albfan/pudb", "path": "pudb/settings.py", "copies": "1", "size": "16295", "license": "mit", "hash": 7966609117641069000, "line_mean": 31.2673267327, "line_max": 84, "alpha_frac": 0.5655108929, "autogenerated": false, "ratio": 3.8179475164011247, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48834584093011246, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys from setuptools import setup, Extension try: from Cython.Distutils import build_ext from Cython.Build import cythonize except ImportError: print("Could not import Cython. Install `cython` and rerun.") sys.exit(1) extra_compile_args = [] extra_link_args = [] glfw3_lib = 'glfw3' mcpp_lib = 'mcpp' tess2_lib = 'tess2' platform = sys.platform.lower() if 'darwin' in platform or 'linux' in platform: extra_compile_args.extend(['-I/usr/local/include', '-I/opt/local/include']) extra_link_args.extend(['-L/usr/local/lib', '-L/opt/local/lib']) if 'win32' in platform: glfw3_lib = 'glfw3dll' glfw3_root = os.environ.get('GLFW_ROOT') if glfw3_root is not None: extra_compile_args.append('-I%s' % (os.path.join(glfw3_root, 'include'),)) extra_link_args.append('/LIBPATH:%s' % (os.path.join(glfw3_root, 'lib-vc2012'),)) mcpp_root = os.environ.get('MCPP_ROOT') if mcpp_root is not None: extra_compile_args.append('-I%s' % (os.path.join(mcpp_root, 'src'),)) extra_link_args.append('/LIBPATH:%s' % (os.path.join(mcpp_root, 'lib'),)) tess2_root = os.environ.get('TESS2_ROOT') if tess2_root is not None: extra_compile_args.append('-I%s' % (os.path.join(tess2_root, 'include'),)) extra_link_args.append('/LIBPATH:%s' % (os.path.join(tess2_root, 'lib-vc2012'),)) _all_ = { 'clibs.glfw3': Extension('clibs.glfw3.glfw3', ['clibs/glfw3/glfw3.pyx'], libraries=[glfw3_lib], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args ), 'clibs.mcpp': Extension('clibs.mcpp.mcpp_lib', ['clibs/mcpp/mcpp_lib.pyx'], libraries=[mcpp_lib], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args ), 'clibs.openal': Extension('clibs.openal.al', ['clibs/openal/al.pyx'], libraries=[], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args + ['-framework', 'OpenAL'] ), 'clibs.opengl': Extension('clibs.opengl.gl3', ['clibs/opengl/gl3.pyx'], libraries=[], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args + ['-framework', 'OpenGL'] ), 'clibs.tess2': Extension('clibs.tess2.tesselator', ['clibs/tess2/tesselator.pyx'], libraries=[tess2_lib], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args ), } selection = [arg for arg in sys.argv if arg.startswith('clibs.')] for arg in selection: sys.argv.remove(arg) ext_modules = cythonize(list(filter(None, [_all_.get(arg) for arg in selection]))) setup( name="clibs", version = "0.0.1", license = 'MIT', author="Daniel Filonik", author_email="d.filonik@hdr.qut.edu.au", cmdclass={'build_ext': build_ext}, packages=['clibs'] + selection, package_data={package: ['*.pyx', '*.pxd'] for package in selection}, requires=['cython'], ext_modules=ext_modules, zip_safe=True )
{ "repo_name": "filonik/clibs", "path": "setup.py", "copies": "1", "size": "3025", "license": "mit", "hash": 4576642634832667600, "line_mean": 35.4578313253, "line_max": 109, "alpha_frac": 0.6476033058, "autogenerated": false, "ratio": 2.91988416988417, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.406748747568417, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import sys from virtualenv.builders.legacy import LegacyBuilder from virtualenv.builders.venv import VenvBuilder from virtualenv.flavors.posix import PosixFlavor from virtualenv.flavors.windows import WindowsFlavor def select_flavor(): # Determine if we're running under Windows or not. if (sys.platform.startswith("win") or (sys.platform == "cli" and os.name == "nt")): return WindowsFlavor return PosixFlavor def select_builder(python, builders=None): # Determine what Python we're going to be using. If this is None we'll use # the Python which we're currently running under. if python is None: python = sys.executable # If we were not given a list of builders we'll default to one that # contains both of our builders if builders is None: builders = [VenvBuilder, LegacyBuilder] # Loop over our builders and return the first one that is acceptable for # the target Python. for builder in builders: if builder.check_available(python): return builder # If we got to this point then we haven't selected a builder then we need # to raise an error. raise RuntimeError("No available builders for the target Python.") def create(destination, python=None, **kwargs): # Determine which builder to use based on the capabiltiies of the target # python. builder_type = select_builder(python) # Determine which flavor to use, based on the platform we're running on. flavor_type = select_flavor() # Instantiate our selected builder with the values given to us, and then # create our virtual environment using the given builder. builder = builder_type(python=python, flavor=flavor_type(), **kwargs) builder.create(destination)
{ "repo_name": "ionelmc/virtualenv", "path": "virtualenv/core.py", "copies": "1", "size": "1845", "license": "mit", "hash": 3673681554003491000, "line_mean": 33.8113207547, "line_max": 87, "alpha_frac": 0.718699187, "autogenerated": false, "ratio": 4.392857142857143, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5611556329857144, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import os import sys import netCDF4 import ruamel.yaml as yaml from six import raise_from from docopt import docopt __all__ = [ 'main', 'build' ] __doc__ = """ Generate ncml based on a yaml file. Usage: yaml2ncml INFILE [--output=OUTFILE] yaml2ncml (-h | --help | --version) Examples: yaml2ncml roms.yaml yaml2ncml roms.yaml --output=roms.ncml Arguments: file yaml file. Options: -h --help Show this screen. -v --version Show version. """ def str_att(name, value): if isinstance(value, list): try: value = ','.join(value) except TypeError as e: raise_from(ValueError('Expected `str` got {!r}'.format(value)), e) msg = ' <attribute name="{:s}" type="String" value="{:s}"/>\n' return msg.format(name, value) def header(): text = '<?xml version="1.0" encoding="UTF-8"?>\n<netcdf xmlns=' text += '"http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2">\n' text += str_att('Conventions', 'CF-1.6, SGRID-0.1, ACDD-1.3') text += str_att('cdm_data_type', 'Grid') return text def footer(text): text += '</netcdf>\n' return text def add_global_atts(text, a): d = a['dataset'] for key, value in d.items(): # Handle simple attribute pairs first. if key in ['id', 'license', 'summary', 'title', 'project', 'naming_authority', 'references', 'acknowledgments']: text += str_att(key, value) elif key in ['creator', 'publisher']: email = value.get("email", None) if email: text += str_att('_'.join([key, 'email']), email) url = value.get("url", None) if url: text += str_att('_'.join([key, 'url']), url) name = value.get("name", None) if name: text += str_att('_'.join([key, 'name']), name) elif key in ['contributor']: role = value.get("role", None) text += str_att('_'.join([key, 'role']), role) email = value.get("email", None) if email: text += str_att('_'.join([key, 'email']), email) url = value.get("url", None) if url: text += str_att('_'.join([key, 'url']), url) name = value.get("name", None) if name: text += str_att('_'.join([key, 'name']), name) return text def add_bed_coord(text, a): ncfile = os.path.join(a['aggregation']['dir'], a['aggregation']['sample_file']) nc = netCDF4.Dataset(ncfile) bed_coord_var = """<variable name="Nbed" shape="Nbed" type="double"> <attribute name="long_name" value="pseudo coordinate at seabed points"/> <attribute name="standard_name" value="ocean_sigma_coordinate"/> <attribute name="positive" value="up"/> <attribute name="formula_terms" value="sigma: Nbed eta: zeta depth: h"/> <values start="-1.0" increment="-0.01"/> </variable>\n """ if 'Nbed' in nc.dimensions.keys(): text += bed_coord_var return text def add_var_atts(text, a): ncfile = os.path.join(a['aggregation']['dir'], a['aggregation']['sample_file']) nc = netCDF4.Dataset(ncfile) ncv = nc.variables # Get a list of all variables more than 1D. vars = [var for var, vart in ncv.items() if vart.ndim > 1] # identify all the rho, u and v vars rho_vars = [var for var in vars if 'eta_rho' in ncv[var].dimensions and 'xi_rho' in ncv[var].dimensions] u_vars = [var for var in vars if 'eta_u' in ncv[var].dimensions and 'xi_u' in ncv[var].dimensions] v_vars = [var for var in vars if 'eta_v' in ncv[var].dimensions and 'xi_v' in ncv[var].dimensions] vars_all = set(vars) vars_include = set(a['variables']['include']) vars_exclude = set(a['variables']['exclude']) # include/exclude only variables that actually occur in variable list vars_include = vars_all.intersection(vars_include) vars_exclude = vars_all.intersection(vars_exclude) # If there are variables excluded, exclude them and keep all rest. # If no variables are excluded, take just the included variables # If no variables are included or excluded, take all variables (leave # list of variables unchanged) if vars_exclude: vars_display = vars_all - vars_all.intersection(vars_exclude) else: if vars_include: vars_display = vars_all.intersection(vars_include) else: vars_display = vars_all # remove some variables we never want (if they exist) Tobc = set(['Tobc_in', 'Tobc_out']) vars_display = vars_display - vars_display.intersection(Tobc) vars_display = list(vars_display) # add the variable attributes: S-grid stuff, display=T|F, ... for var in vars: text += '<variable name="{:s}">\n'.format(var) try: text += str_att('standard_name', cf[var]) except: pass text += str_att('grid', 'grid') if 'Nbed' in ncv[var].dimensions: text += str_att('coordinates', ncv[var].coordinates+' Nbed') if var in vars_display: text += str_att('display', 'True') else: text += str_att('display', 'False') text += str_att('coverage_content_type', 'modelResult') if var in rho_vars: text += str_att('location', 'face') elif var in u_vars: text += str_att('location', 'edge1') elif var in v_vars: text += str_att('location', 'edge2') text += '</variable>\n\n' # write standard_name for time coordinate variable var = 'ocean_time' if var in ncv.keys(): try: text += '\n<variable name="{:s}">\n'.format(var) text += str_att('standard_name', cf[var]) text += '</variable>\n\n' except: pass nc.close() return text def write_grid_var(text): grid_var = """<variable name="grid" type="int"> <attribute name="cf_role" value="grid_topology"/> <attribute name="topology_dimension" type="int" value="2"/> <attribute name="node_dimensions" value="xi_psi eta_psi"/> <attribute name="face_dimensions" value="xi_rho: xi_psi (padding: both) eta_rho: eta_psi (padding: both)"/> <attribute name="edge1_dimensions" value="xi_u: xi_psi eta_u: eta_psi (padding: both)"/> <attribute name="edge2_dimensions" value="xi_v: xi_psi (padding: both) eta_v: eta_psi"/> <attribute name="node_coordinates" value="lon_psi lat_psi"/> <attribute name="face_coordinates" value="lon_rho lat_rho"/> <attribute name="edge1_coordinates" value="lon_u lat_u"/> <attribute name="edge2_coordinates" value="lon_v lat_v"/> <attribute name="vertical_dimensions" value="s_rho: s_w (padding: none)"/> </variable>\n""" # noqa text += grid_var return text def add_aggregation_scan(text, a): agg = a['aggregation'] text += '<aggregation dimName="{:s}" type="joinExisting">\n'.format( agg['time_var']) text += '<scan location="{:s}" regExp="{:s}" subdirs="false"/>\n</aggregation>\n'\ .format(agg['dir'], agg['pattern']) # noqa return text # Map ROMS variables to CF standard_names. cf = dict(ocean_time='time', zeta='sea_surface_height_above_geopotential_datum', temp='sea_water_potential_temperature', salt='sea_water_salinity', u='sea_water_x_velocity', v='sea_water_y_velocity', ubar='barotropic_sea_water_x_velocity', vbar='barotropic_sea_water_y_velocity', Hwave='sea_surface_wave_significant_height', bed_thickness='sediment_bed_thickness') #sediment_bed_thickness not in CF standard_names def build(yml): text = header() text = add_global_atts(text, yml) text = add_var_atts(text, yml) text = write_grid_var(text) text = add_bed_coord(text, yml) text = add_aggregation_scan(text, yml) text = footer(text) return text def main(): args = docopt(__doc__, version='0.6.0') fname = args.get('INFILE') fout = args.get('--output', None) with open(fname, 'r') as stream: yml = yaml.load(stream, Loader=yaml.RoundTripLoader) text = build(yml) if fout: with open(fout, 'w') as f: f.write("{:s}".format(text)) else: sys.stdout.write(text)
{ "repo_name": "ocefpaf/yaml2ncml", "path": "yaml2ncml/yaml2ncml.py", "copies": "1", "size": "8605", "license": "mit", "hash": -3814965847861699600, "line_mean": 31.8435114504, "line_max": 99, "alpha_frac": 0.5764090645, "autogenerated": false, "ratio": 3.469758064516129, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9542746870893976, "avg_score": 0.0006840516244306716, "num_lines": 262 }
from __future__ import absolute_import, division, print_function import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) import decatur from decatur import config, utils ############################################################################### # EXCLUDE MULTIPLE EPHEMERIDES, UNCERTAIN, AND HEARTBEAT SYSTEMS ############################################################################### run = False if run: kebc = utils.load_catalog() # Exclude EBs with multiple ephemerides kebc_keep = kebc[kebc['Mult'] == 1] # Exclude EBs flagged as uncertain in KEBC df_unc = pd.read_csv('{}/unc_list.csv'.format(config.repo_data_dir), comment='#') mask_unc = ~np.in1d(kebc_keep['KIC'], df_unc['KIC']) kebc_keep = kebc_keep[mask_unc] # Exclude EBs flagged as heartbeats in KEBC df_hb = pd.read_csv('{}/hb_list.csv'.format(config.repo_data_dir), comment='#') mask_hb = ~np.in1d(kebc_keep['KIC'], df_hb['KIC']) kebc_keep = kebc_keep[mask_hb] kebc_keep.to_csv('{}/kebc_keep.csv'.format(config.repo_data_dir), index=False) ############################################################################### # DOWNLOAD LIGHT CURVES ############################################################################### run = False if run: kebc = decatur.utils.load_catalog(catalog_file='kebc_keep.csv') for kic in kebc['KIC']: eb = decatur.eclipsing_binary.EclipsingBinary.from_kic(kic) ############################################################################### # GENERATE AUTOCORRELATION FUNCTIONS ############################################################################### detrend_list = [4815612, 4839180, 4931073, 10960995] sap_list = [4815612, 4931073, 7199774, 7691527, 10031409] run = False if run: decatur.analyze_sample.compute_periodicity('acf', period_max=200., window=1.5, catalog_file='kebc_keep.csv', detrend_list=detrend_list, sap_list=sap_list) ############################################################################### # GENERATE REFERENCE PERIODOGRAMS # These are for reference in the visual inspection program. # higher oversampling periodograms are generated when looking for # multiple rotation periods ############################################################################### run = False if run: decatur.analyze_sample.compute_periodicity('periodogram', period_max=100., window=1.5, catalog_file='kebc_keep.csv') ############################################################################### # INSPECT AND CLASSIFY LIGHT CURVES, CHECK ROTATION PERIODS ############################################################################### run = False if run: decatur.inspector.create_results_file(catalog_file='kebc_keep.csv') run = False if run: gadget = decatur.inspector.InspectorGadget('grid_pgrams.20170609.h5', 'acfs.20170510.h5', zoom_pan=0.15) gadget.gogo_gadget() ############################################################################### # MEASURE ROTATION PERIODS FROM THE ACF ############################################################################### run = False if run: decatur.analyze_sample.find_acf_peaks('acfs.20170510.h5') ############################################################################### # GENERATE OVERSAMPLED PERIODOGRAMS ON A UNIFORM FREQUENCY GRID ############################################################################### run = False if run: decatur.mulitperiodic.generate_frequency_periodograms(detrend_list=detrend_list, sap_list=sap_list) ############################################################################### # SEARCH FOR MULTIPLE ROTATION PERIODS ############################################################################### run = False if run: decatur.mulitperiodic.detect_multiple_periods('all_results.csv', 'grid_pgrams.20170609.h5') ############################################################################### # CREATE LATEX TABLE ############################################################################### run = False if run: decatur.tables.latex_rotation_table(start=80, stop=100) plt.style.use('publish') ############################################################################### # TIDAL EQUILIBRIUM TIMESCALES ############################################################################### run = False if run: print('Alpha is ratio of orbital to rotational angular momentum at ' 'equilibrium. \nSee Hut (1981).') print('\n1 M_sun + 0.1 M_sun in 0.5 day orbit') alpha_1 = utils.equilibrium_stability(0.5, 1, 1, 0.1) print('alpha = {:.2f}'.format(alpha_1)) print('\n1 M_sun + 1 M_sun in 1 day orbit') alpha_1 = utils.equilibrium_stability(1, 1, 1, 1) print('alpha = {:.2f}'.format(alpha_1)) ############################################################################### # FRACTION OF SP EBs WITH ECLIPSE WIDTHS LESS THAN 0.1 ############################################################################### run = False if run: df = utils.collect_results() df = df[df['class'] == 'sp'] df['swidth'][df['swidth'] < 0] = 0 width_total = df['pwidth'] + df['swidth'] narrow = width_total < 0.1 print('Percentage of EBs with pwidth + swidth < 0.1:') print('{:.1f}'.format(np.sum(narrow) / len(df) * 100)) ############################################################################### # FIG 1. EXAMPLE CLASSIFICATION LIGHT CURVES ############################################################################### run = False if run: decatur.results_plots.class_examples() ############################################################################### # FIG 2. ROTATION PERIOD MEASUREMENT EXAMPLE ############################################################################### run = False if run: decatur.results_plots.prot_measurement_example() ############################################################################### # FIG 3. ACF PEAK HEIGHT DISTRIBUTIONS BY CLASS ############################################################################### run = False if run: decatur.results_plots.peak_heights_vs_class() ############################################################################### # FIG 4. MULTIPLE PERIODOGRAM PEAK FINDING EXAMPLE ############################################################################### run = False if run: decatur.results_plots.multiperiod_example('grid_pgrams.20170609.h5') ############################################################################### # FIG 5. ORBITAL PERIOD HISTOGRAMS FOR CLASSES ############################################################################### run = False if run: decatur.results_plots.classification_p_orb_hist() ############################################################################### # FIG 6. PERIOD RATIO VS. ORBITAL PERIOD # FIG 7. PERIOD RATIO VS. ORBITAL PERIOD WITH ECCENTRICITY ############################################################################### run = False if run: decatur.results_plots.plot_prot_porb() ############################################################################### # FIG 8. SYNCHRONIZATION VS. ECCENTRICITY ############################################################################### run = False if run: decatur.results_plots.sync_vs_ecc() ############################################################################### # FIG 9. ORBITAL PERIOD VS. G-K COLOR # FIG 15. P_ORB VS. G-K FOR CONTACT BINARIES ############################################################################### run = False if run: decatur.results_plots.sync_vs_gk() ############################################################################### # SPECTRAL TYPE BREAKDOWN ############################################################################### run = False if run: decatur.analyze_sample.spectral_type_breakdown() ############################################################################### # FIG 10. PERIOD RATIO HISTOGRAMS VS. G-K COLOR ############################################################################### run = False if run: decatur.results_plots.sync_vs_gk_hist() ############################################################################### # FIG 11. PERIOD RATIO HISTOGRAMS VS. MASS RATIO (ECLIPSE DEPTH) ############################################################################### run = False if run: decatur.results_plots.sync_vs_depth() ############################################################################### # FIG 12. RELATIVE SHEAR VS ROTATION PERIOD ############################################################################### run = False if run: decatur.results_plots.multiperiodic() ############################################################################### # FIG. 13. PERIOD RATIO RANGES VS. ORBITAL PERIOD ############################################################################### run = False if run: decatur.results_plots.multi_p_orb_p_rot() ############################################################################### # FIG 14. EVOLVED STAR/RS CVN CANDIDATE ############################################################################### run = False if run: decatur.results_plots.rs_cvn_candidate()
{ "repo_name": "jlurie/decatur", "path": "tests/paper.py", "copies": "1", "size": "9876", "license": "mit", "hash": 3658238776590735400, "line_mean": 39.1463414634, "line_max": 84, "alpha_frac": 0.3828473066, "autogenerated": false, "ratio": 4.660689004247287, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0005363395235653277, "num_lines": 246 }
from __future__ import absolute_import, division, print_function import os import sys try: import sphinx_rtd_theme except ImportError: sphinx_rtd_theme = None # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath(".")) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = "symantecssl" copyright = "2014 Rackspace Barbican Team" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # base_dir = os.path.join(os.path.dirname(__file__), os.pardir) about = {} with open(os.path.join(base_dir, "symantecssl", "__about__.py")) as f: exec(f.read(), about) version = release = about["__version__"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. if sphinx_rtd_theme: html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] else: html_theme = "default" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Output file base name for HTML help builder. htmlhelp_basename = "symantecssldoc" # -- Options for LaTeX output ------------------------------------------------- latex_elements = { } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]) latex_documents = [ ( "index", "symantecssl.tex", "symantecssl Documentation", "Rackspace Barbican Team", "manual", ), ] # -- Options for manual page output ------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "symantecssl", "symantecssl Documentation", ["Rackspace Barbican Team"], 1, ) ] # -- Options for Texinfo output ----------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "symantecssl", "symantecssl Documentation", "Rackspace Barbican Team", "symantecssl", "Supports working with the Symantec SSL service", "Miscellaneous", ), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "http://docs.python.org/": None, } epub_theme = "epub"
{ "repo_name": "grigouze/symantecssl", "path": "docs/conf.py", "copies": "5", "size": "3873", "license": "apache-2.0", "hash": -2321553010709284400, "line_mean": 28.3409090909, "line_max": 79, "alpha_frac": 0.6493674154, "autogenerated": false, "ratio": 3.8614157527417747, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7010783168141774, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import tempfile import unittest import warnings import blaze from blaze.datadescriptor import dd_as_py # A CSV toy example csv_buf = u"""k1,v1,1,False k2,v2,2,True k3,v3,3,False """ csv_schema = "{ f0: string; f1: string; f2: int16; f3: bool }" csv_ldict = [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False} ] class TestOpenCSV(unittest.TestCase): def setUp(self): handle, self.fname = tempfile.mkstemp(suffix='.csv') self.url = self.fname with os.fdopen(handle, "w") as f: f.write(csv_buf) def tearDown(self): os.unlink(self.fname) def test_open(self): store = blaze.Storage(self.url, mode='r') a = blaze.open(store, schema=csv_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) def test_open_dialect(self): store = blaze.Storage(self.url, mode='r') a = blaze.open(store, schema=csv_schema, dialect='excel') self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) def test_open_has_header(self): store = blaze.Storage(self.url, mode='r') a = blaze.open(store, schema=csv_schema, has_header=False) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) def test_append(self): store = blaze.Storage(self.url, mode='r+') a = blaze.open(store, schema=csv_schema) blaze.append(a, ["k4", "v4", 4, True]) self.assertEqual(dd_as_py(a._data), csv_ldict + \ [{u'f0': u'k4', u'f1': u'v4', u'f2': 4, u'f3': True}]) def test_deprecated_open(self): url = "csv://" + self.fname store = blaze.Storage(url, mode='r') a = blaze.open(store, schema=csv_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) json_buf = u"[1, 2, 3, 4, 5]" json_schema = "var, int8" class TestOpenJSON(unittest.TestCase): def setUp(self): handle, self.fname = tempfile.mkstemp(suffix='.json') self.url = self.fname with os.fdopen(handle, "w") as f: f.write(json_buf) def tearDown(self): os.unlink(self.fname) def test_open(self): store = blaze.Storage(self.url, mode='r') a = blaze.open(store, schema=json_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1, 2, 3, 4, 5]) def test_deprecated_open(self): url = "json://" + self.fname store = blaze.Storage(url, mode='r') a = blaze.open(store, schema=json_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1, 2, 3, 4, 5]) if __name__ == '__main__': unittest.main(verbosity=2)
{ "repo_name": "aburan28/blaze", "path": "blaze/tests/test_array_opening.py", "copies": "7", "size": "3020", "license": "bsd-3-clause", "hash": -7763266689859111000, "line_mean": 30.1340206186, "line_max": 66, "alpha_frac": 0.5887417219, "autogenerated": false, "ratio": 2.814538676607642, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0018981811088596189, "num_lines": 97 }
from __future__ import absolute_import, division, print_function import os import tempfile import unittest import blaze from blaze.datadescriptor import dd_as_py # A CSV toy example csv_buf = u"""k1,v1,1,False k2,v2,2,True k3,v3,3,False """ csv_schema = "{ f0: string, f1: string, f2: int16, f3: bool }" csv_ldict = [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False} ] class TestOpenCSV(unittest.TestCase): def setUp(self): handle, self.fname = tempfile.mkstemp(suffix='.csv') self.url = self.fname with os.fdopen(handle, "w") as f: f.write(csv_buf) def tearDown(self): os.unlink(self.fname) def test_open(self): store = blaze.Storage(self.url, mode='r') a = blaze.from_csv(store, schema=csv_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) def test_from_dialect(self): store = blaze.Storage(self.url, mode='r') a = blaze.from_csv(store, schema=csv_schema, dialect='excel') self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) def test_from_has_header(self): store = blaze.Storage(self.url, mode='r') a = blaze.from_csv(store, schema=csv_schema, has_header=False) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) def test_append(self): store = blaze.Storage(self.url, mode='r+') a = blaze.from_csv(store, schema=csv_schema) blaze.append(a, ["k4", "v4", 4, True]) self.assertEqual(dd_as_py(a._data), csv_ldict + \ [{u'f0': u'k4', u'f1': u'v4', u'f2': 4, u'f3': True}]) def test_deprecated_open(self): url = "csv://" + self.fname store = blaze.Storage(url, mode='r') a = blaze.from_csv(store, schema=csv_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), csv_ldict) json_buf = u"[1, 2, 3, 4, 5]" json_schema = "var * int8" class TestOpenJSON(unittest.TestCase): def setUp(self): handle, self.fname = tempfile.mkstemp(suffix='.json') self.url = self.fname with os.fdopen(handle, "w") as f: f.write(json_buf) def tearDown(self): os.unlink(self.fname) def test_open(self): store = blaze.Storage(self.url, mode='r') a = blaze.from_json(store, schema=json_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1, 2, 3, 4, 5]) def test_deprecated_open(self): url = "json://" + self.fname store = blaze.Storage(url, mode='r') a = blaze.from_json(store, schema=json_schema) self.assert_(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1, 2, 3, 4, 5]) if __name__ == '__main__': unittest.main(verbosity=2)
{ "repo_name": "mwiebe/blaze", "path": "blaze/tests/test_array_opening.py", "copies": "1", "size": "3037", "license": "bsd-3-clause", "hash": -9196627735526026000, "line_mean": 29.9897959184, "line_max": 70, "alpha_frac": 0.5884096148, "autogenerated": false, "ratio": 2.8016605166051662, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3890070131405166, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import tempfile from functools import partial import pytest from bag8.project import Project from bag8.utils import check_call as base_check_call from bag8.utils import inspect check_call = partial(base_check_call, exit=False) @pytest.mark.exclusive @pytest.mark.needdocker() def test_build(client): # rmi first Project('busybox').rmi() out, err, code = check_call(['bag8', 'build', 'busybox']) assert code == 0, err assert len(client.images('bag8/busybox')) == 1 @pytest.mark.needdocker() def test_develop(slave_id): # not exist -> create out, err, code = check_call(['bag8', 'develop', 'busybox', '-c', 'echo "hi"', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip().split('\n')[-1] == 'hi', err + '\n' + out # check container exist p = Project('busybox', develop=True, prefix=slave_id) assert len(p.containers(['busybox'])) == 1 # started -> re-use out, err, code = check_call(['bag8', 'develop', 'busybox', '-c', 'echo "yo"', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip() == 'yo', err + '\n' + out # stop p.stop(timeout=0) assert len(p.containers(['busybox'])) == 0 # before test tmp_file = tempfile.NamedTemporaryFile().name if os.path.exists(tmp_file): os.remove(tmp_file) # not started -> start -> reuse and touch file in shared volume out, err, code = check_call(['bag8', 'develop', 'busybox', '-c', 'touch "{0}"'.format(tmp_file), '-p', slave_id]) assert code == 0, err + '\n' + out local_tmp_file = tmp_file.replace('/tmp/', '') assert os.path.exists(local_tmp_file), \ 'not found: {}'.format(local_tmp_file) os.remove(local_tmp_file) out, err, code = check_call(['bag8', 'develop', 'busybox', '-c', 'env', '-p', slave_id]) assert code == 0, err + '\n' + out assert 'DUMMY=yo' in out.split(), err + '\n' + out @pytest.mark.needdocker() def test_develop_no_recreate(slave_id): # develop check_call(['bag8', 'develop', 'busybox', '-c', 'echo "hi"', '-p', slave_id]) container = '{0}_busybox_1'.format(slave_id) # rm out, err, code = check_call(['docker', 'rm', '-f', container]) assert code == 0, err + '\n' + out assert out.strip() == container # should not recreate container link out, err, code = check_call(['bag8', 'develop', 'busybox', '-c', 'echo "hi"', '-p', slave_id]) assert code == 0, err + '\n' + out assert err.strip() == 'Creating {0}_busybox_1...'.format(slave_id), err + '\n' + out # noqa assert out.strip() == 'hi', err + '\n' + out @pytest.mark.needdocker() def test_dns(): # not exist -> create out, err, code = check_call(['bag8', 'dns']) assert code == 0, err + '\n' + out assert inspect('dnsdock')['State']['Running'] @pytest.mark.needdocker() def test_execute(slave_id): # up a container to execute command in check_call(['bag8', 'up', 'busybox', '-p', slave_id]) # execute something out, err, code = check_call(['bag8', 'exec', 'busybox', '-c', 'echo "hi"', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip() == 'hi' # execute something in link container out, err, code = check_call(['bag8', 'exec', 'busybox', '-s', 'link', '-c', 'echo "hi link"', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip() == 'hi link' @pytest.mark.needdocker() def test_logs(slave_id): # run some messages check_call(['bag8', 'run', 'busybox', '--keep', '-c', 'echo "busybox"', '-p', slave_id]) # logs main out, err, code = check_call(['bag8', 'logs', 'busybox', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip() == 'busybox' # logs service out, err, code = check_call(['bag8', 'logs', 'busybox', '-s', 'link', '--no-follow', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip() == '' # logs ? out, err, code = check_call(['bag8', 'logs', 'busybox', '-s', 'what', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip() == 'no container for {0}_what_x'.format(slave_id) @pytest.mark.exclusive @pytest.mark.needdocker() def test_nginx(config, slave_id): conf_path = os.path.join(config.tmpfolder, 'nginx', 'conf.d') # up a container to proxify check_call(['bag8', 'up', 'busybox', '-p', slave_id]) out, err, code = check_call(['bag8', 'nginx', '--no-ports']) assert code == 0, err + '\n' + out assert inspect('nginx')['State']['Running'] site_conf_path = os.path.join(conf_path, 'busybox.conf') assert os.path.exists(site_conf_path) with open(site_conf_path) as site_conf: assert site_conf.readlines()[1].strip() == 'server link.docker:1234;' out, err, code = check_call(['bag8', 'nginx', '--no-ports', '--upstream-server-domain', '192.168.0.1']) assert code == 0, err + '\n' + out assert inspect('nginx')['State']['Running'] site_conf_path = os.path.join(conf_path, 'busybox.conf') assert os.path.exists(site_conf_path) with open(site_conf_path) as site_conf: assert site_conf.readlines()[1].strip() == 'server 192.168.0.1:1234;' # in filtered projects to overide upstream domain out, err, code = check_call(['bag8', 'nginx', '--no-ports', '-p', 'busybox', '-p', 'link', '--upstream-server-domain', '192.168.0.1']) assert code == 0, err + '\n' + out assert inspect('nginx')['State']['Running'] site_conf_path = os.path.join(conf_path, 'busybox.conf') assert os.path.exists(site_conf_path) with open(site_conf_path) as site_conf: assert site_conf.readlines()[1].strip() == 'server 192.168.0.1:1234;' # not in filtered projects to overide upstream domain out, err, code = check_call(['bag8', 'nginx', '--no-ports', '-p', 'link', '--upstream-server-domain', '192.168.0.1']) assert code == 0, err + '\n' + out assert inspect('nginx')['State']['Running'] site_conf_path = os.path.join(conf_path, 'busybox.conf') assert os.path.exists(site_conf_path) with open(site_conf_path) as site_conf: assert site_conf.readlines()[1].strip() == 'server link.docker:1234;' @pytest.mark.exclusive @pytest.mark.needdocker() def test_pull(client): # rmi first Project('busybox').rmi() assert len(client.images('bag8/busybox')) == 0 out, err, code = check_call(['bag8', 'pull', 'busybox']) assert code == 0, err assert len(client.images('bag8/busybox')) == 1 @pytest.mark.needdocker() def test_push(): pass # lets say it works @pytest.mark.needdocker() def test_rm(slave_id): # up a container to proxify check_call(['bag8', 'up', 'busybox', '-p', slave_id]) # check container exist p = Project('busybox', prefix=slave_id) assert [c.name for c in p.containers()] == [ '{0}_busybox_1'.format(p.name), '{0}_link_1'.format(p.name), ] # recursive rm check_call(['bag8', 'rm', 'busybox', '-p', slave_id]) assert len(p.containers(stopped=True)) == 0 # new up check_call(['bag8', 'up', 'busybox', '-p', slave_id]) assert len(p.containers(stopped=True)) == 2 # single rm check_call(['bag8', 'rm', 'busybox', '-p', slave_id, '-s', 'busybox']) assert len(p.containers()) == 1 assert [c.name for c in p.containers()][0] == '{0}_link_1'.format(slave_id) @pytest.mark.exclusive @pytest.mark.needdocker() def test_rmi(client): # initial test assert len(client.images('bag8/busybox')) == 1 # rmi first Project('busybox').rmi() assert len(client.images('bag8/busybox')) == 0 @pytest.mark.needdocker() def test_run(slave_id): # not exist -> create out, err, code = check_call(['bag8', 'run', 'busybox', '-c', 'echo "hi"', '-p', slave_id]) assert code == 0, err + '\n' + out assert out.strip().split('\n')[-1] == 'hi' @pytest.mark.needdocker() def test_start(slave_id): # up a container to proxify check_call(['bag8', 'up', 'busybox', '-p', slave_id]) # check container exist p = Project('busybox', prefix=slave_id) assert len(p.containers(['busybox'])) == 1 # stop all check_call(['bag8', 'stop', 'busybox', '-p', slave_id]) assert [c.name for c in p.containers()] == [] # start all check_call(['bag8', 'start', 'busybox', '-p', slave_id]) assert [c.name for c in p.containers()] == [ '{0}_busybox_1'.format(slave_id), '{0}_link_1'.format(slave_id), ] # stop all again check_call(['bag8', 'stop', 'busybox', '-p', slave_id]) assert [c.name for c in p.containers()] == [] # start one check_call(['bag8', 'start', 'busybox', '-p', slave_id, '-s', 'link']) assert [c.name for c in p.containers()] == [ '{0}_link_1'.format(slave_id), ] @pytest.mark.needdocker() def test_stop(slave_id): # up a container to proxify check_call(['bag8', 'up', 'busybox', '-p', slave_id]) # check container exist p = Project('busybox', prefix=slave_id) assert len(p.containers(['busybox'])) == 1 # stop check_call(['bag8', 'stop', 'busybox', '-p', slave_id]) assert len(p.containers(['busybox'])) == 0 assert len(p.containers(['busybox'], stopped=True)) == 1 # start all again check_call(['bag8', 'start', 'busybox', '-p', slave_id]) assert [c.name for c in p.containers()] == [ '{0}_busybox_1'.format(slave_id), '{0}_link_1'.format(slave_id), ] # stop one check_call(['bag8', 'stop', 'busybox', '-p', slave_id, '-s', 'busybox']) assert [c.name for c in p.containers()] == [ '{0}_link_1'.format(slave_id), ] @pytest.mark.needdocker() def test_up(slave_id): # up a container to proxify with prefix check_call(['bag8', 'up', 'busybox', '-p', slave_id]) # check container exist p = Project('busybox', prefix=slave_id) assert len(p.containers(['busybox'])) == 1
{ "repo_name": "novafloss/bag8", "path": "bag8/tests/test_cli.py", "copies": "1", "size": "10623", "license": "mit", "hash": 6714268961105525000, "line_mean": 30.0614035088, "line_max": 96, "alpha_frac": 0.5532335498, "autogenerated": false, "ratio": 3.2666051660516606, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.931983871585166, "avg_score": 0, "num_lines": 342 }
from __future__ import absolute_import, division, print_function import os import types import warnings from itertools import count import numpy as np from sunpy.extern import six from sunpy.extern.six.moves import map, zip __all__ = ['to_signed', 'unique', 'print_table', 'replacement_filename', 'merge', 'common_base', 'minimal_pairs', 'polyfun_at', 'expand_list', 'expand_list_generator', 'Deprecated'] def to_signed(dtype): """ Return dtype that can hold data of passed dtype but is signed. Raise ValueError if no such dtype exists. Parameters ---------- dtype : `numpy.dtype` dtype whose values the new dtype needs to be able to represent. Returns ------- `numpy.dtype` """ if dtype.kind == "u": if dtype.itemsize == 8: raise ValueError("Cannot losslessly convert uint64 to int.") dtype = "int{0:d}".format(min(dtype.itemsize * 2 * 8, 64)) return np.dtype(dtype) def unique(itr, key=None): """ not documented yet Parameters ---------- itr : iterable Object to be iterated over key : object not documented yet Returns ------- not documented yet .. todo:: improve documentation. what does this function do? """ items = set() if key is None: for elem in itr: if elem not in items: yield elem items.add(elem) else: for elem in itr: x = key(elem) if x not in items: yield elem items.add(x) def print_table(lst, colsep=' ', linesep='\n'): """ ? Parameters ---------- lst : ? ? colsep : ? ? linesep : ? ? Returns ------- ? .. todo:: improve documentation. """ width = [max(map(len, col)) for col in zip(*lst)] return linesep.join( colsep.join( col.ljust(n) for n, col in zip(width, row) ) for row in lst ) def polyfun_at(coeff, p): """ Return value of polynomial with coefficients (highest first) at point (can also be an np.ndarray for more than one point) p. Parameters ---------- coeff : not documented yet not documented yet p : not documented yet not documented yet Returns ------- not documented yet .. todo:: improve documentation. what does this do? Does numpy have this functionality? """ return np.sum(k * p ** n for n, k in enumerate(reversed(coeff))) def minimal_pairs(one, other): """ Find pairs of values in one and other with minimal distance. Assumes one and other are sorted in the same sort sequence. Parameters ---------- one, other : sequence Sequence of scalars to find pairs from. Returns ------- `tuple` Pairs of values in `one` and `other` with minimal distance .. todo:: improve documentation. what does this do? """ lbestdiff = bestdiff = bestj = besti = None for i, freq in enumerate(one): lbestj = bestj bestdiff, bestj = None, None for j, o_freq in enumerate(other[lbestj:]): j = lbestj + j if lbestj else j diff = abs(freq - o_freq) if bestj is not None and diff > bestdiff: break if bestj is None or bestdiff > diff: bestj = j bestdiff = diff if lbestj is not None and lbestj != bestj: yield (besti, lbestj, lbestdiff) besti = i lbestdiff = bestdiff elif lbestdiff is None or bestdiff < lbestdiff: besti = i lbestdiff = bestdiff yield (besti, bestj, lbestdiff) DONT = object() def find_next(one, other, pad=DONT): """ Given two sorted sequences one and other, for every element in one, return the one larger than it but nearest to it in other. If no such exists and pad is not DONT, return value of pad as "partner". .. todo:: improve documentation. what does this do? """ n = 0 for elem1 in one: for elem2 in other[n:]: n += 1 if elem2 > elem1: yield elem1, elem2 break else: if pad is not DONT: yield elem1, pad def common_base(objs): """ Find class that every item of objs is an instance of. .. todo:: improve documentation. what does this do? """ for cls in objs[0].__class__.__mro__: if all(isinstance(obj, cls) for obj in objs): break return cls def merge(items, key=(lambda x: x)): """ Given sorted lists of iterables, return new iterable that returns elements of all iterables sorted with respect to key. .. todo:: improve documentation. what does this do? """ state = {} for item in map(iter, items): try: first = next(item) except StopIteration: continue else: state[item] = (first, key(first)) while state: for item, (value, tk) in six.iteritems(state): # Value is biggest. if all(tk >= k for it, (v, k) in six.iteritems(state) if it is not item): yield value break try: n = next(item) state[item] = (n, key(n)) except StopIteration: del state[item] def replacement_filename(path): """ Return replacement path for already used path. Enumerates until an unused filename is found. E.g., "/home/florian/foo.fits" becomes "/home/florian/foo.0.fits", if that is used "/home/florian/foo.1.fits", etc. .. todo:: improve documentation. what does this do? """ if not os.path.exists(path): return path else: dir_, filename = os.path.split(path) base, ext = os.path.splitext(filename) for c in count(): name = base + '.' + str(c) + ext newpath = os.path.join(dir_, name) if not os.path.exists(newpath): return newpath def expand_list(input): """ Expand a list of lists. Parameters ---------- input : `list` Returns ------- `list` A flat list consisting of the entries of the input. References ---------- Taken from :http://stackoverflow.com/a/2185971/2486799 .. todo:: improve documentation. Can this handle Arbitrarily nested lists? """ return [item for item in expand_list_generator(input)] def expand_list_generator(input): """ .. todo:: improve documentation. what does this function do? """ for item in input: if type(item) in [list, tuple]: for nested_item in expand_list_generator(item): yield nested_item else: yield item #============================================================================== # Deprecation decorator: http://code.activestate.com/recipes/391367-deprecated/ # and http://www.artima.com/weblogs/viewpost.jsp?thread=240845 #============================================================================== class Deprecated(object): """ Use this decorator to deprecate a function or method, you can pass an additional message to the decorator: @Deprecated("no more") """ def __init__(self, message=""): self.message = message def __call__(self, func): def newFunc(*args, **kwargs): warnings.warn("Call to deprecated function {0}. \n {1}".format( func.__name__, self.message), category=Warning, stacklevel=2) return func(*args, **kwargs) newFunc.__name__ = func.__name__ newFunc.__doc__ = func.__doc__ newFunc.__dict__.update(func.__dict__) return newFunc
{ "repo_name": "Alex-Ian-Hamilton/sunpy", "path": "sunpy/util/util.py", "copies": "1", "size": "8079", "license": "bsd-2-clause", "hash": 2408865092647867400, "line_mean": 25.145631068, "line_max": 86, "alpha_frac": 0.5391756405, "autogenerated": false, "ratio": 4.23205866946045, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.527123430996045, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import unittest import dask.array as da import numpy as np from netCDF4 import Dataset from odvc import ocean_s_coordinate_g1 from odvc.utils import ( get_formula_terms, get_formula_terms_dims, get_formula_terms_variables, prepare_arrays, z_shape, ) data_path = os.path.join(os.path.dirname(__file__), "data") class OceanSCoordinateG1(unittest.TestCase): def setUp(self): roms = "ocean_s_coordinate_g1_roms.nc" self.nc = Dataset(os.path.join(data_path, roms)) formula_terms_variable = get_formula_terms_variables(self.nc)[0] formula_terms = get_formula_terms(formula_terms_variable) dims = get_formula_terms_dims(self.nc, formula_terms) new_shape = z_shape(self.nc, dims) arrays = prepare_arrays(self.nc, formula_terms, new_shape) s = arrays["s"] c = arrays["C"] eta = arrays["eta"] depth = arrays["depth"] depth_c = arrays["depth_c"] self.z = ocean_s_coordinate_g1(s, c, eta, depth, depth_c) self.sliced = self.z[0, :, 30, 80] def tearDown(self): self.nc.close() unittest.TestCase.tearDown(self) def test_shape(self): assert self.z.shape == (1, 36, 82, 130) def test_slice(self): assert isinstance(self.sliced, da.Array) def test_slice_ndarray(self): assert isinstance(self.sliced.compute(), np.ndarray) def test_z_values(self): z_comp = np.array( [ -2531.46656205, -2337.58793694, -2167.67949235, -2018.28088531, -1886.27977235, -1768.84270488, -1663.35273478, -1567.35533466, -1478.516278, -1394.59779732, -1313.46227081, -1233.11474357, -1151.79449631, -1068.11831429, -981.26114252, -891.13435155, -798.4970414, -704.92970128, -612.62956129, -524.05182095, -441.49011516, -366.71960543, -300.79609284, -244.03541034, -196.13254143, -156.34993361, -123.71062861, -97.1566744, -75.65879794, -58.28034096, -44.20608553, -32.74776123, -23.33605136, -15.50607592, -8.88076055, -3.15458049, ] ) np.testing.assert_allclose(self.sliced.compute(), z_comp)
{ "repo_name": "pyoceans/odvc", "path": "tests/test_ocean_s_coordinate_g1.py", "copies": "3", "size": "2760", "license": "mit", "hash": 4291468013574247000, "line_mean": 28.0526315789, "line_max": 72, "alpha_frac": 0.5141304348, "autogenerated": false, "ratio": 3.4074074074074074, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 95 }
from __future__ import absolute_import, division, print_function import os import warnings from collections import OrderedDict from glue.core.data import Component, Data from glue.config import data_factory __all__ = ['is_hdf5', 'hdf5_reader'] def extract_hdf5_datasets(handle): ''' Recursive function that returns a dictionary with all the datasets found in an HDF5 file or group. `handle` should be an instance of h5py.highlevel.File or h5py.highlevel.Group. ''' import h5py datasets = {} for group in handle: if isinstance(handle[group], h5py.highlevel.Group): sub_datasets = extract_hdf5_datasets(handle[group]) for key in sub_datasets: datasets[key] = sub_datasets[key] elif isinstance(handle[group], h5py.highlevel.Dataset): if handle[group].dtype.kind in ('f', 'i', 'V'): datasets[handle[group].name] = handle[group] return datasets def is_hdf5(filename): # All hdf5 files begin with the same sequence with open(filename, 'rb') as infile: return infile.read(8) == b'\x89HDF\r\n\x1a\n' @data_factory(label="HDF5 file", identifier=is_hdf5, priority=100) def hdf5_reader(filename, format='auto', auto_merge=False, **kwargs): """ Read in all datasets from an HDF5 file Parameters ---------- source: str or HDUList The pathname to the FITS file. If an HDUList is passed in, simply use that. """ import h5py from astropy.table import Table # Open file file_handle = h5py.File(filename, 'r') # Define function to read # Read in all datasets datasets = extract_hdf5_datasets(file_handle) label_base = os.path.basename(filename).rpartition('.')[0] if not label_base: label_base = os.path.basename(filename) data_by_shape = {} groups = OrderedDict() for key in datasets: label = '{0}[{1}]'.format( label_base, key ) if datasets[key].dtype.kind in ('f', 'i'): if auto_merge and datasets[key].value.shape in data_by_shape: data = data_by_shape[datasets[key].value.shape] else: data = Data(label=label) data_by_shape[datasets[key].value.shape] = data groups[label] = data data.add_component(component=datasets[key].value, label=key) else: table = Table.read(datasets[key], format='hdf5') data = Data(label=label) groups[label] = data for column_name in table.columns: column = table[column_name] if column.ndim == 1: component = Component(column, units=column.unit) data.add_component(component=component, label=column_name) else: warnings.warn("HDF5: Ignoring vector column {0}".format(column_name)) # Close HDF5 file file_handle.close() return [groups[idx] for idx in groups]
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/data_factories/hdf5.py", "copies": "4", "size": "3091", "license": "bsd-3-clause", "hash": -452199982591098240, "line_mean": 29.3039215686, "line_max": 89, "alpha_frac": 0.5949530896, "autogenerated": false, "ratio": 3.8831658291457285, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00010893246187363835, "num_lines": 102 }
from __future__ import absolute_import, division, print_function import os import warnings from qtpy import QtCore, QtGui, QtWidgets from qtpy.QtCore import Qt from glue.external import six from glue.core.callback_property import add_callback from glue.viewers.common.qt.tool import CheckableTool from glue.icons.qt import get_icon __all__ = ['BasicToolbar'] class BasicToolbar(QtWidgets.QToolBar): tool_activated = QtCore.Signal() tool_deactivated = QtCore.Signal() def __init__(self, parent): """ Create a new toolbar object """ super(BasicToolbar, self).__init__(parent=parent) self.actions = {} self.tools = {} self.setIconSize(QtCore.QSize(25, 25)) self.layout().setSpacing(1) self.setFocusPolicy(Qt.StrongFocus) self._active_tool = None self.setup_default_modes() def setup_default_modes(self): pass @property def active_tool(self): return self._active_tool @active_tool.setter def active_tool(self, new_tool): old_tool = self._active_tool # If the tool is as before, we don't need to do anything if old_tool is new_tool: return # Otheriwse, if the tool changes, then we need to disable the previous # tool... if old_tool is not None: self.deactivate_tool(old_tool) if isinstance(old_tool, CheckableTool): button = self.actions[old_tool.tool_id] if button.isChecked(): button.blockSignals(True) button.setChecked(False) button.blockSignals(False) # ... and enable the new one if new_tool is not None: self.activate_tool(new_tool) if isinstance(new_tool, CheckableTool): button = self.actions[new_tool.tool_id] if not button.isChecked(): button.blockSignals(True) button.setChecked(True) button.blockSignals(False) if isinstance(new_tool, CheckableTool): self._active_tool = new_tool self.parent().set_status(new_tool.status_tip) self.tool_activated.emit() else: self._active_tool = None self.parent().set_status('') self.tool_deactivated.emit() def activate_tool(self, tool): tool.activate() def deactivate_tool(self, tool): if isinstance(tool, CheckableTool): tool.deactivate() def add_tool(self, tool): parent = QtWidgets.QToolBar.parent(self) if isinstance(tool.icon, six.string_types): if os.path.exists(tool.icon): icon = QtGui.QIcon(tool.icon) else: icon = get_icon(tool.icon) else: icon = tool.icon action = QtWidgets.QAction(icon, tool.action_text, parent) def toggle(checked): if checked: self.active_tool = tool else: self.active_tool = None def trigger(checked): self.active_tool = tool parent.addAction(action) if isinstance(tool, CheckableTool): action.toggled.connect(toggle) else: action.triggered.connect(trigger) shortcut = None if tool.shortcut is not None: # Make sure that the keyboard shortcut is unique for m in self.tools.values(): if tool.shortcut == m.shortcut: warnings.warn("Tools '{0}' and '{1}' have the same shortcut " "('{2}'). Ignoring shortcut for " "'{1}'".format(m.tool_id, tool.tool_id, tool.shortcut)) break else: shortcut = tool.shortcut action.setShortcut(tool.shortcut) action.setShortcutContext(Qt.WidgetShortcut) if shortcut is None: action.setToolTip(tool.tool_tip) else: action.setToolTip(tool.tool_tip + " [shortcut: {0}]".format(shortcut)) action.setCheckable(isinstance(tool, CheckableTool)) self.actions[tool.tool_id] = action menu_actions = tool.menu_actions() if len(menu_actions) > 0: menu = QtWidgets.QMenu(self) for ma in tool.menu_actions(): ma.setParent(self) menu.addAction(ma) action.setMenu(menu) menu.triggered.connect(trigger) self.addAction(action) # Bind tool visibility to tool.enabled def toggle(state): action.setVisible(state) action.setEnabled(state) add_callback(tool, 'enabled', toggle) self.tools[tool.tool_id] = tool return action
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/common/qt/toolbar.py", "copies": "3", "size": "4898", "license": "bsd-3-clause", "hash": 8000714395341098000, "line_mean": 29.0490797546, "line_max": 89, "alpha_frac": 0.5624744794, "autogenerated": false, "ratio": 4.292725679228747, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6355200158628748, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from appr.commands.command_base import CommandBase from appr.pack import ApprPackage class PullCmd(CommandBase): name = 'pull' help_message = "download a package" def __init__(self, options): super(PullCmd, self).__init__(options) self.package = options.package self.registry_host = options.registry_host self.version = options.version self.version_parts = options.version_parts self.dest = options.dest self.media_type = options.media_type if options.media_type is self.default_media_type: self.media_type = os.getenv("APPR_DEFAULT_MEDIA_TYPE", self.default_media_type) self.tarball = options.tarball self.path = None self.ssl_verify = options.cacert or not options.insecure @classmethod def _add_arguments(cls, parser): cls._add_registryhost_option(parser) cls._add_mediatype_option(parser) cls._add_packagename_option(parser) cls._add_packageversion_option(parser) parser.add_argument("--dest", default="./", help="directory used to extract resources") parser.add_argument("--tarball", action="store_true", default=False, help="download the tar.gz") def _call(self): client = self.RegistryClient(self.registry_host, requests_verify=self.ssl_verify) pullpack = client.pull_json(self.package, version_parts=self.version_parts, media_type=self.media_type) self.media_type = pullpack.get('media_type', '-') package = ApprPackage(pullpack['blob'], b64_encoded=True) filename = pullpack['filename'] self.path = os.path.join(self.dest, filename) if self.tarball: with open(self.path, 'wb') as tarfile: tarfile.write(package.blob) else: self.path = self.path.split(".tar.gz")[0] package.extract(self.path) def _render_dict(self): return { "pull": self.package, "media_type": self.media_type, "version": self.version, "path": self.path} def _render_console(self): return "Pull package: %s... \n%s" % (self.package, self.path)
{ "repo_name": "app-registry/appr", "path": "appr/commands/pull.py", "copies": "2", "size": "2329", "license": "apache-2.0", "hash": -6064321086907732000, "line_mean": 37.1803278689, "line_max": 95, "alpha_frac": 0.6161442679, "autogenerated": false, "ratio": 3.881666666666667, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000726264014752967, "num_lines": 61 }
from __future__ import absolute_import, division, print_function import os from appr.formats.utils import kub_factory from appr.commands.command_base import CommandBase, LoadVariables class DeployCmd(CommandBase): name = 'deploy' help_message = "deploy a package on kubernetes" default_media_type = "kpm" def __init__(self, options): super(DeployCmd, self).__init__(options) self.package = options.package self.registry_host = options.registry_host self.force = options.force self.dry_run = options.dry_run self.namespace = options.namespace self.api_proxy = options.api_proxy self.version = options.version self.version_parts = options.version_parts self.tmpdir = options.tmpdir self.variables = options.variables self.format = options.media_type if options.media_type is self.default_media_type: self.format = os.getenv("APPR_DEFAULT_MEDIA_TYPE", self.default_media_type) self.status = None self._kub = None @classmethod def _add_arguments(cls, parser): cls._add_registryhost_option(parser) cls._add_mediatype_option(parser, default=cls.default_media_type) cls._add_packagename_option(parser) cls._add_packageversion_option(parser) parser.add_argument("--tmpdir", default="/tmp/", help="directory used to extract resources") parser.add_argument("--dry-run", action='store_true', default=False, help="do not create the resources on kubernetes") parser.add_argument("-n", "--namespace", help="kubernetes namespace", default=None) parser.add_argument("--api-proxy", help="kubectl proxy url", nargs="?", const="http://localhost:8001") parser.add_argument("-x", "--variables", help="variables", default={}, action=LoadVariables) parser.add_argument("--force", action='store_true', default=False, help="force upgrade, delete and recreate resources") def kub(self): if self._kub is None: self._kub = kub_factory(self.format, self.package, endpoint=self.registry_host, variables=self.variables, namespace=self.namespace, version=self.version_parts) return self._kub def _call(self): self.status = self.kub().deploy(dest=self.tmpdir, force=self.force, dry=self.dry_run, proxy=self.api_proxy, fmt=self.output) def _render_dict(self): return self.status def _render_console(self): """ Handled by deploy """ return ''
{ "repo_name": "app-registry/appr", "path": "appr/commands/deploy.py", "copies": "2", "size": "2784", "license": "apache-2.0", "hash": -9176044098071153000, "line_mean": 39.9411764706, "line_max": 93, "alpha_frac": 0.6041666667, "autogenerated": false, "ratio": 4.211800302571861, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5815966969271861, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from bag8.project import Project from bag8.yaml import Yaml CURR_DIR = os.path.realpath('.') def test_data(): # normal project = Project('busybox') assert Yaml(project).data == { 'busybox': { 'dockerfile': os.path.join(project.build_path, 'Dockerfile'), 'environment': { 'BAG8_LINKS': 'link', 'DNSDOCK_ALIAS': 'busybox.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'nothing here', 'NGINX_UPSTREAM_SERVER_DOMAIN': 'link.docker', }, 'image': 'bag8/busybox', 'links': [ 'link:link' ] }, 'link': { 'environment': { 'BAG8_LINKS': '', 'DNSDOCK_ALIAS': 'link.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'nothing here too' }, 'expose': [1234], 'image': 'bag8/link' } } # develop project = Project('busybox', develop=True) assert Yaml(project).data == { 'busybox': { 'dockerfile': os.path.join(project.build_path, 'Dockerfile'), 'environment': { 'BAG8_LINKS': 'link', 'DNSDOCK_ALIAS': 'busybox.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'yo', 'NGINX_UPSTREAM_SERVER_DOMAIN': 'link.docker', }, 'image': 'bag8/busybox', 'links': [ 'link:link' ], 'volumes': [ '{}:/tmp'.format(CURR_DIR) ] }, 'link': { 'environment': { 'BAG8_LINKS': '', 'DNSDOCK_ALIAS': 'link.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'nothing here too' }, 'expose': [1234], 'image': 'bag8/link' } } def test_service_dicts(): # normal project = Project('busybox') assert sorted(Yaml(project).service_dicts) == sorted([ { 'name': 'busybox', 'bag8_name': 'busybox', 'dockerfile': os.path.join(project.build_path, 'Dockerfile'), 'environment': { 'BAG8_LINKS': 'link', 'DNSDOCK_ALIAS': 'busybox.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'nothing here', 'NGINX_UPSTREAM_SERVER_DOMAIN': 'link.docker', }, 'image': 'bag8/busybox', 'links': [ 'link:link' ] }, { 'name': 'link', 'bag8_name': 'link', 'environment': { 'BAG8_LINKS': '', 'DNSDOCK_ALIAS': 'link.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'nothing here too' }, 'expose': [1234], 'image': 'bag8/link' } ]) # develop project = Project('busybox', develop=True) assert sorted(Yaml(project).service_dicts) == sorted([ { 'name': 'busybox', 'bag8_name': 'busybox', 'dockerfile': os.path.join(project.build_path, 'Dockerfile'), 'environment': { 'BAG8_LINKS': 'link', 'DNSDOCK_ALIAS': 'busybox.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'yo', 'NGINX_UPSTREAM_SERVER_DOMAIN': 'link.docker', }, 'image': 'bag8/busybox', 'links': [ 'link:link' ], 'volumes': [ '{}:/tmp'.format(CURR_DIR) ] }, { 'name': 'link', 'bag8_name': 'link', 'environment': { 'BAG8_LINKS': '', 'DNSDOCK_ALIAS': 'link.docker', 'DNSDOCK_IMAGE': '', 'DUMMY': 'nothing here too' }, 'expose': [1234], 'image': 'bag8/link' } ]) # complex name project = Project('link.2') assert sorted(Yaml(project).service_dicts) == sorted([ { 'name': 'link2', 'bag8_name': 'link.2', 'dockerfile': os.path.join(project.build_path, 'Dockerfile'), 'environment': { 'BAG8_LINKS': '', 'DNSDOCK_ALIAS': 'link2.docker', 'DNSDOCK_IMAGE': '', }, 'image': 'bag8/busybox', 'links': [] } ])
{ "repo_name": "novafloss/bag8", "path": "bag8/tests/test_yaml.py", "copies": "1", "size": "4636", "license": "mit", "hash": 437238647660886600, "line_mean": 27.6172839506, "line_max": 73, "alpha_frac": 0.4109145815, "autogenerated": false, "ratio": 3.9828178694158076, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48937324509158076, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from ...external.qt.QtGui import ( QMainWindow, QMessageBox, QWidget) from ...external.qt.QtCore import Qt from ...core.application_base import ViewerBase from ..decorators import set_cursor from ..layer_artist_model import QtLayerArtistContainer, LayerArtistView from .. import get_qapp from ..mime import LAYERS_MIME_TYPE, LAYER_MIME_TYPE from .glue_mdi_area import GlueMdiSubWindow __all__ = ['DataViewer'] class DataViewer(QMainWindow, ViewerBase): """Base class for all Qt DataViewer widgets. This defines a minimal interface, and implemlements the following:: * An automatic call to unregister on window close * Drag and drop support for adding data """ _container_cls = QtLayerArtistContainer LABEL = 'Override this' def __init__(self, session, parent=None): """ :type session: :class:`~glue.core.Session` """ QMainWindow.__init__(self, parent) ViewerBase.__init__(self, session) self.setWindowIcon(get_qapp().windowIcon()) self._view = LayerArtistView() self._view.setModel(self._container.model) self._tb_vis = {} # store whether toolbars are enabled self.setAttribute(Qt.WA_DeleteOnClose) self.setAcceptDrops(True) self.setAnimated(False) self._toolbars = [] self._warn_close = True self.setContentsMargins(2, 2, 2, 2) self._mdi_wrapper = None # GlueMdiSubWindow that self is embedded in self.statusBar().setStyleSheet("QStatusBar{font-size:10px}") # close window when last plot layer deleted self._container.on_empty(lambda: self.close(warn=False)) self._container.on_changed(self.update_window_title) def remove_layer(self, layer): self._container.pop(layer) def dragEnterEvent(self, event): """ Accept the event if it has data layers""" if event.mimeData().hasFormat(LAYER_MIME_TYPE): event.accept() elif event.mimeData().hasFormat(LAYERS_MIME_TYPE): event.accept() else: event.ignore() def dropEvent(self, event): """ Add layers to the viewer if contained in mime data """ if event.mimeData().hasFormat(LAYER_MIME_TYPE): self.request_add_layer(event.mimeData().data(LAYER_MIME_TYPE)) assert event.mimeData().hasFormat(LAYERS_MIME_TYPE) for layer in event.mimeData().data(LAYERS_MIME_TYPE): self.request_add_layer(layer) event.accept() def mousePressEvent(self, event): """ Consume mouse press events, and prevent them from propagating down to the MDI area """ event.accept() apply_roi = set_cursor(Qt.WaitCursor)(ViewerBase.apply_roi) def close(self, warn=True): self._warn_close = warn super(DataViewer, self).close() self._warn_close = True def mdi_wrap(self): """Wrap this object in a GlueMdiSubWindow""" sub = GlueMdiSubWindow() sub.setWidget(self) self.destroyed.connect(sub.close) sub.resize(self.size()) self._mdi_wrapper = sub return sub @property def position(self): target = self._mdi_wrapper or self pos = target.pos() return pos.x(), pos.y() @position.setter def position(self, xy): x, y = xy self.move(x, y) def move(self, x=None, y=None): """ Move the viewer to a new XY pixel location You can also set the position attribute to a new tuple directly. Parameters ---------- x : int (optional) New x position y : int (optional) New y position """ x0, y0 = self.position if x is None: x = x0 if y is None: y = y0 if self._mdi_wrapper is not None: self._mdi_wrapper.move(x, y) else: QMainWindow.move(self, x, y) @property def viewer_size(self): sz = QMainWindow.size(self) return sz.width(), sz.height() @viewer_size.setter def viewer_size(self, value): width, height = value self.resize(width, height) if self._mdi_wrapper is not None: self._mdi_wrapper.resize(width, height) def closeEvent(self, event): """ Call unregister on window close """ if not self._confirm_close(): event.ignore() return if self._hub is not None: self.unregister(self._hub) super(DataViewer, self).closeEvent(event) event.accept() def _confirm_close(self): """Ask for close confirmation :rtype: bool. True if user wishes to close. False otherwise """ if self._warn_close and (not os.environ.get('GLUE_TESTING')) and self.isVisible(): buttons = QMessageBox.Ok | QMessageBox.Cancel dialog = QMessageBox.warning(self, "Confirm Close", "Do you want to close this window?", buttons=buttons, defaultButton=QMessageBox.Cancel) return dialog == QMessageBox.Ok return True def _confirm_large_data(self, data): warn_msg = ("WARNING: Data set has %i points, and may render slowly." " Continue?" % data.size) title = "Add large data set?" ok = QMessageBox.Ok cancel = QMessageBox.Cancel buttons = ok | cancel result = QMessageBox.question(self, title, warn_msg, buttons=buttons, defaultButton=cancel) return result == ok def layer_view(self): return self._view def options_widget(self): return QWidget() def addToolBar(self, tb): super(DataViewer, self).addToolBar(tb) self._toolbars.append(tb) self._tb_vis[tb] = True def show_toolbars(self): """Re-enable any toolbars that were hidden with `hide_toolbars()` Does not re-enable toolbars that were hidden by other means """ for tb in self._toolbars: if self._tb_vis.get(tb, False): tb.setEnabled(True) def hide_toolbars(self): """ Disable all the toolbars in the viewer. This action can be reversed by calling `show_toolbars()` """ for tb in self._toolbars: self._tb_vis[tb] = self._tb_vis.get(tb, False) or tb.isVisible() tb.setEnabled(False) def set_focus(self, state): if state: css = """ DataViewer { border: 2px solid; border-color: rgb(56, 117, 215); } """ self.setStyleSheet(css) self.show_toolbars() else: css = """ DataViewer { border: none; } """ self.setStyleSheet(css) self.hide_toolbars() def __str__(self): return self.LABEL def unregister(self, hub): """ Override to perform cleanup operations when disconnecting from hub """ pass @property def window_title(self): return str(self) def update_window_title(self): self.setWindowTitle(self.window_title)
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/data_viewer.py", "copies": "1", "size": "7526", "license": "bsd-3-clause", "hash": 6262726998563272000, "line_mean": 29.2248995984, "line_max": 90, "alpha_frac": 0.5721498804, "autogenerated": false, "ratio": 4.12609649122807, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.519824637162807, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from flask import Flask, request from flask_cors import CORS from appr.api.config import DevelopmentConfig, ProductionConfig from appr.exception import InvalidUsage def getvalues(): jsonbody = request.get_json(force=True, silent=True) values = request.values.to_dict() if jsonbody: values.update(jsonbody) return values def create_app(): app = Flask(__name__) CORS(app) setting = os.getenv('APP_ENV', "development") if setting != 'production': app.config.from_object(DevelopmentConfig) else: app.config.from_object(ProductionConfig) from appr.api.info import info_app from appr.api.registry import registry_app app.register_blueprint(info_app, url_prefix='/cnr') app.register_blueprint(registry_app, url_prefix='/cnr') app.logger.info("Start service") return app def repo_name(namespace, name): def _check(name, scope): if name is None: raise InvalidUsage("%s: %s is malformed" % (scope, name), {'name': name}) _check(namespace, 'namespace') _check(name, 'package-name') return "%s/%s" % (namespace, name) if __name__ == "__main__": application = create_app() application.run(host='0.0.0.0')
{ "repo_name": "app-registry/appr", "path": "appr/api/app.py", "copies": "2", "size": "1307", "license": "apache-2.0", "hash": -2522829662725542400, "line_mean": 26.2291666667, "line_max": 85, "alpha_frac": 0.6679418516, "autogenerated": false, "ratio": 3.580821917808219, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5248763769408219, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from functools import partial from collections import Counter import numpy as np from glue.core import Coordinates from qtpy import QtCore, QtWidgets from glue.utils.qt import load_ui from glue.utils.qt.widget_properties import (TextProperty, ButtonProperty, ValueProperty, CurrentComboProperty) from glue.utils import nonpartial from glue.icons.qt import get_icon class SliceWidget(QtWidgets.QWidget): label = TextProperty('_ui_label') slider_label = TextProperty('_ui_slider.label') slider_unit = TextProperty('_ui_slider.text_unit') slice_center = ValueProperty('_ui_slider.slider') mode = CurrentComboProperty('_ui_mode') use_world = ButtonProperty('_ui_slider.checkbox_world') slice_changed = QtCore.Signal(int) mode_changed = QtCore.Signal(str) def __init__(self, label='', world=None, lo=0, hi=10, parent=None, aggregation=None, world_unit=None, world_warning=False): super(SliceWidget, self).__init__(parent) if aggregation is not None: raise NotImplemented("Aggregation option not implemented") self._world = np.asarray(world) self._world_warning = world_warning self._world_unit = world_unit layout = QtWidgets.QVBoxLayout() layout.setContentsMargins(3, 1, 3, 1) layout.setSpacing(0) top = QtWidgets.QHBoxLayout() top.setContentsMargins(3, 3, 3, 3) label = QtWidgets.QLabel(label) top.addWidget(label) mode = QtWidgets.QComboBox() mode.addItem('x', 'x') mode.addItem('y', 'y') mode.addItem('slice', 'slice') mode.currentIndexChanged.connect(lambda x: self.mode_changed.emit(self.mode)) mode.currentIndexChanged.connect(self._update_mode) top.addWidget(mode) layout.addLayout(top) slider = load_ui('data_slice_widget.ui', None, directory=os.path.dirname(__file__)) self._ui_slider = slider slider.button_first.setStyleSheet('border: 0px') slider.button_first.setIcon(get_icon('playback_first')) slider.button_prev.setStyleSheet('border: 0px') slider.button_prev.setIcon(get_icon('playback_prev')) slider.button_back.setStyleSheet('border: 0px') slider.button_back.setIcon(get_icon('playback_back')) slider.button_stop.setStyleSheet('border: 0px') slider.button_stop.setIcon(get_icon('playback_stop')) slider.button_forw.setStyleSheet('border: 0px') slider.button_forw.setIcon(get_icon('playback_forw')) slider.button_next.setStyleSheet('border: 0px') slider.button_next.setIcon(get_icon('playback_next')) slider.button_last.setStyleSheet('border: 0px') slider.button_last.setIcon(get_icon('playback_last')) slider.slider.setMinimum(lo) slider.slider.setMaximum(hi) slider.slider.setValue((lo + hi) / 2) slider.slider.valueChanged.connect(lambda x: self.slice_changed.emit(self.mode)) slider.slider.valueChanged.connect(nonpartial(self.set_label_from_slider)) slider.label.setMinimumWidth(80) slider.label.setText(str(slider.slider.value())) slider.label.editingFinished.connect(nonpartial(self.set_slider_from_label)) self._play_timer = QtCore.QTimer() self._play_timer.setInterval(500) self._play_timer.timeout.connect(nonpartial(self._play_slice)) slider.button_first.clicked.connect(nonpartial(self._browse_slice, 'first')) slider.button_prev.clicked.connect(nonpartial(self._browse_slice, 'prev')) slider.button_back.clicked.connect(nonpartial(self._adjust_play, 'back')) slider.button_stop.clicked.connect(nonpartial(self._adjust_play, 'stop')) slider.button_forw.clicked.connect(nonpartial(self._adjust_play, 'forw')) slider.button_next.clicked.connect(nonpartial(self._browse_slice, 'next')) slider.button_last.clicked.connect(nonpartial(self._browse_slice, 'last')) slider.checkbox_world.toggled.connect(nonpartial(self.set_label_from_slider)) if world is None: self.use_world = False slider.checkbox_world.hide() else: self.use_world = not world_warning if world_unit: self.slider_unit = world_unit else: self.slider_unit = '' layout.addWidget(slider) self.setLayout(layout) self._ui_label = label self._ui_mode = mode self._update_mode() self._frozen = False self._play_speed = 0 self.set_label_from_slider() def set_label_from_slider(self): value = self._ui_slider.slider.value() if self.use_world: text = str(self._world[value]) if self._world_warning: self._ui_slider.label_warning.show() else: self._ui_slider.label_warning.hide() self.slider_unit = self._world_unit else: text = str(value) self._ui_slider.label_warning.hide() self.slider_unit = '' self._ui_slider.label.setText(text) def set_slider_from_label(self): text = self._ui_slider.label.text() if self.use_world: # Don't want to assume world is sorted, pick closest value value = np.argmin(np.abs(self._world - float(text))) self._ui_slider.label.setText(str(self._world[value])) else: value = int(text) self._ui_slider.slider.setValue(value) def _adjust_play(self, action): if action == 'stop': self._play_speed = 0 elif action == 'back': if self._play_speed > 0: self._play_speed = -1 else: self._play_speed -= 1 elif action == 'forw': if self._play_speed < 0: self._play_speed = +1 else: self._play_speed += 1 if self._play_speed == 0: self._play_timer.stop() else: self._play_timer.start() self._play_timer.setInterval(500 / abs(self._play_speed)) def _play_slice(self): if self._play_speed > 0: self._browse_slice('next', play=True) elif self._play_speed < 0: self._browse_slice('prev', play=True) def _browse_slice(self, action, play=False): imin = self._ui_slider.slider.minimum() imax = self._ui_slider.slider.maximum() value = self._ui_slider.slider.value() # If this was not called from _play_slice, we should stop the # animation. if not play: self._adjust_play('stop') if action == 'first': value = imin elif action == 'last': value = imax elif action == 'prev': value = value - 1 if value < imin: value = imax elif action == 'next': value = value + 1 if value > imax: value = imin else: raise ValueError("Action should be one of first/prev/next/last") self._ui_slider.slider.setValue(value) def _update_mode(self, *args): if self.mode != 'slice': self._ui_slider.hide() self._adjust_play('stop') else: self._ui_slider.show() def freeze(self): self.mode = 'slice' self._ui_mode.setEnabled(False) self._ui_slider.hide() self._frozen = True @property def frozen(self): return self._frozen class DataSlice(QtWidgets.QWidget): """ A DatSlice widget provides an inteface for selection slices through an N-dimensional dataset QtCore.Signals ------- slice_changed : triggered when the slice through the data changes """ slice_changed = QtCore.Signal() def __init__(self, data=None, parent=None): """ :param data: :class:`~glue.core.data.Data` instance, or None """ super(DataSlice, self).__init__(parent) self._slices = [] self._data = None layout = QtWidgets.QVBoxLayout() layout.setSpacing(4) layout.setContentsMargins(0, 3, 0, 3) self.layout = layout self.setLayout(layout) self.set_data(data) @property def ndim(self): return len(self.shape) @property def shape(self): return tuple() if self._data is None else self._data.shape def _clear(self): for _ in range(self.layout.count()): self.layout.takeAt(0) for s in self._slices: s.close() self._slices = [] def set_data(self, data): """ Change datasets :parm data: :class:`~glue.core.data.Data` instance """ # remove old widgets self._clear() self._data = data if data is None or data.ndim < 3: return # create slider widget for each dimension... for i, s in enumerate(data.shape): # TODO: For now we simply pass a single set of world coordinates, # but we will need to generalize this in future. We deliberately # check the type of data.coords here since we want to treat # subclasses differently. if type(data.coords) != Coordinates: world = data.coords.world_axis(data, i) world_unit = data.coords.world_axis_unit(i) world_warning = len(data.coords.dependent_axes(i)) > 1 else: world = None world_unit = None world_warning = False slider = SliceWidget(data.get_world_component_id(i).label, hi=s - 1, world=world, world_unit=world_unit, world_warning=world_warning) if i == self.ndim - 1: slider.mode = 'x' elif i == self.ndim - 2: slider.mode = 'y' else: slider.mode = 'slice' self._slices.append(slider) # save ref to prevent PySide segfault self.__on_slice = partial(self._on_slice, i) self.__on_mode = partial(self._on_mode, i) slider.slice_changed.connect(self.__on_slice) slider.mode_changed.connect(self.__on_mode) if s == 1: slider.freeze() # ... and add to the layout for s in self._slices[::-1]: self.layout.addWidget(s) if s is not self._slices[0]: line = QtWidgets.QFrame() line.setFrameShape(QtWidgets.QFrame.HLine) line.setFrameShadow(QtWidgets.QFrame.Sunken) self.layout.addWidget(line) s.show() # this somehow fixes #342 self.layout.addStretch(5) def _on_slice(self, index, slice_val): self.slice_changed.emit() def _on_mode(self, index, mode_index): s = self.slice def isok(ss): # valid slice description: 'x' and 'y' both appear c = Counter(ss) return c['x'] == 1 and c['y'] == 1 if isok(s): self.slice_changed.emit() return for i in range(len(s)): if i == index: continue if self._slices[i].frozen: continue for mode in 'x', 'y', 'slice': if self._slices[i].mode == mode: continue ss = list(s) ss[i] = mode if isok(ss): self._slices[i].mode = mode return else: raise RuntimeError("Corrupted Data Slice") @property def slice(self): """ A description of the slice through the dataset A tuple of lenght equal to the dimensionality of the data Each element is an integer, 'x', or 'y' 'x' and 'y' indicate the horizontal and vertical orientation of the slice """ if self.ndim < 3: return {0: tuple(), 1: ('x',), 2: ('y', 'x')}[self.ndim] return tuple(s.mode if s.mode != 'slice' else s.slice_center for s in self._slices) @slice.setter def slice(self, value): for v, s in zip(value, self._slices): if v in ['x', 'y']: s.mode = v else: s.mode = 'slice' s.slice_center = v if __name__ == "__main__": from glue.utils.qt import get_qapp app = get_qapp() widget = SliceWidget() widget.show() app.exec_()
{ "repo_name": "saimn/glue", "path": "glue/viewers/common/qt/data_slice_widget.py", "copies": "1", "size": "13066", "license": "bsd-3-clause", "hash": -6819085015225970000, "line_mean": 31.1031941032, "line_max": 85, "alpha_frac": 0.5538803, "autogenerated": false, "ratio": 4.028985507246377, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5082865807246377, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from glue.core.data_factories.helpers import has_extension from glue.core.data_factories.pandas import panda_process from glue.config import data_factory __all__ = [] @data_factory(label="Excel", identifier=has_extension('xls xlsx')) def panda_read_excel(path, sheet=None, **kwargs): """ A factory for reading excel data using pandas. :param path: path/to/file :param sheet: The sheet to read. If `None`, all sheets are read. :param kwargs: All other kwargs are passed to pandas.read_excel :return: core.data.Data object. """ try: import pandas as pd except ImportError: raise ImportError('Pandas is required for Excel input.') try: import xlrd except ImportError: raise ImportError('xlrd is required for Excel input.') name = os.path.basename(path) if '.xls' in name: name = name.rsplit('.xls', 1)[0] xl_workbook = xlrd.open_workbook(path) if sheet is None: sheet_names = xl_workbook.sheet_names() else: sheet_names = [sheet] all_data = [] for sheet in sheet_names: indf = pd.read_excel(path, sheet, **kwargs) data = panda_process(indf) data.label = "{0}:{1}".format(name, sheet) all_data.append(data) return all_data
{ "repo_name": "saimn/glue", "path": "glue/core/data_factories/excel.py", "copies": "5", "size": "1367", "license": "bsd-3-clause", "hash": 3723305937751760400, "line_mean": 26.34, "line_max": 68, "alpha_frac": 0.6488661302, "autogenerated": false, "ratio": 3.6356382978723403, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 50 }
from __future__ import absolute_import, division, print_function import os from glue.core import Subset from glue.config import data_exporter __all__ = [] def data_to_astropy_table(data): if isinstance(data, Subset): mask = data.to_mask() data = data.data else: mask = None from astropy.table import Table table = Table() for cid in data.visible_components: comp = data.get_component(cid) if comp.categorical: values = comp.labels else: values = comp.data if mask is not None: values = values[mask] table[cid.label] = values return table def table_exporter(fmt, label, extension): @data_exporter(label=label, extension=extension) def factory(data, filename): if os.path.exists(filename): os.remove(filename) return data_to_astropy_table(data).write(filename, format=fmt) # rename function to its variable reference below # allows pickling to work factory.__name__ = '%s_factory' % fmt.replace('.', '_') return factory ipac_exporter = table_exporter('ascii.ipac', 'IPAC Catalog', ['tbl']) latex_exporter = table_exporter('ascii.latex', 'LaTeX Table', ['tex']) votable_exporter = table_exporter('votable', 'VO Table', ['xml', 'vot']) fits_exporter = table_exporter('fits', 'FITS Table', ['fits', 'fit'])
{ "repo_name": "saimn/glue", "path": "glue/core/data_exporters/astropy_table.py", "copies": "2", "size": "1396", "license": "bsd-3-clause", "hash": -912792003874775000, "line_mean": 24.3818181818, "line_max": 72, "alpha_frac": 0.6303724928, "autogenerated": false, "ratio": 3.7628032345013476, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5393175727301347, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from glue.core.subset import Subset from qtpy import QtWidgets from glue.utils.qt import load_ui from glue.external.echo.qt import autoconnect_callbacks_to_qt class VolumeLayerStyleWidget(QtWidgets.QWidget): def __init__(self, layer_artist): super(VolumeLayerStyleWidget, self).__init__() self.ui = load_ui('layer_style_widget.ui', self, directory=os.path.dirname(__file__)) self.state = layer_artist.state if self.state.subset_mode == 'outline': self.ui.radio_subset_outline.setChecked(True) else: self.ui.radio_subset_data.setChecked(True) self.layer_artist = layer_artist self.layer = layer_artist.layer # autoconnect needs to come after setting up the component IDs connect_kwargs = {'value_alpha': dict(value_range=(0., 1.))} autoconnect_callbacks_to_qt(self.state, self.ui, connect_kwargs) # Set up radio buttons for subset mode selection if this is a subset if isinstance(self.layer, Subset): self._radio_size = QtWidgets.QButtonGroup() self._radio_size.addButton(self.ui.radio_subset_outline) self._radio_size.addButton(self.ui.radio_subset_data) self.ui.radio_subset_outline.toggled.connect(self._update_subset_mode) self.ui.radio_subset_data.toggled.connect(self._update_subset_mode) self.ui.valuetext_vmin.setEnabled(False) else: self.ui.radio_subset_outline.hide() self.ui.radio_subset_data.hide() self.ui.label_subset_mode.hide() def _update_subset_mode(self): if self.ui.radio_subset_outline.isChecked(): self.state.subset_mode = 'outline' self.ui.valuetext_vmin.hide() self.ui.valuetext_vmax.hide() else: self.state.subset_mode = 'data' self.ui.valuetext_vmin.show() self.ui.valuetext_vmax.show()
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/volume/layer_style_widget.py", "copies": "1", "size": "2060", "license": "bsd-2-clause", "hash": 8303252644797740000, "line_mean": 35.1403508772, "line_max": 82, "alpha_frac": 0.6359223301, "autogenerated": false, "ratio": 3.759124087591241, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48950464176912406, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from glue.external.modest_image import imshow from qtpy.QtCore import Qt from qtpy import QtCore, QtWidgets, QtGui from glue.core.callback_property import add_callback, delay_callback from glue import core from glue.config import viewer_tool from glue.viewers.image.ds9norm import DS9Normalize from glue.viewers.image.client import MplImageClient from glue.viewers.common.qt.mpl_toolbar import MatplotlibViewerToolbar from glue.viewers.common.qt.mouse_mode import (RectangleMode, CircleMode, PolyMode, ContrastMode) from glue.icons.qt import get_icon from glue.utils.qt.widget_properties import CurrentComboProperty, ButtonProperty, connect_current_combo, _find_combo_data from glue.viewers.common.qt.data_slice_widget import DataSlice from glue.viewers.common.qt.data_viewer import DataViewer from glue.viewers.common.qt.mpl_widget import MplWidget, defer_draw from glue.utils import nonpartial, Pointer from glue.utils.qt import cmap2pixmap, update_combobox, load_ui from glue.viewers.common.qt.tool import Tool from glue.viewers.scatter.layer_artist import ScatterLayerArtist from glue.viewers.scatter.qt.layer_style_widget import ScatterLayerStyleWidget # We do the following import to register the custom Qt Widget there from glue.viewers.image.qt.rgb_edit import RGBEdit # pylint: disable=W0611 WARN_THRESH = 10000000 # warn when contouring large images __all__ = ['ImageWidget', 'StandaloneImageWidget', 'ImageWidgetBase'] class ImageWidgetBase(DataViewer): """ Widget for ImageClient This base class avoids any matplotlib-specific logic """ LABEL = "Image Viewer" _property_set = DataViewer._property_set + \ 'data attribute rgb_mode rgb_viz ratt gatt batt slice'.split() attribute = CurrentComboProperty('ui.attributeComboBox', 'Current attribute') data = CurrentComboProperty('ui.displayDataCombo', 'Current data') aspect_ratio = CurrentComboProperty('ui.aspectCombo', 'Aspect ratio for image') rgb_mode = ButtonProperty('ui.rgb', 'RGB Mode?') rgb_viz = Pointer('ui.rgb_options.rgb_visible') _layer_style_widget_cls = {ScatterLayerArtist: ScatterLayerStyleWidget} def __init__(self, session, parent=None): super(ImageWidgetBase, self).__init__(session, parent) self._setup_widgets() self.client = self.make_client() self._connect() def _setup_widgets(self): self.central_widget = self.make_central_widget() self.label_widget = QtWidgets.QLabel("", self.central_widget) self.setCentralWidget(self.central_widget) self.option_widget = QtWidgets.QWidget() self.ui = load_ui('options_widget.ui', self.option_widget, directory=os.path.dirname(__file__)) self.ui.slice = DataSlice() self.ui.slice_layout.addWidget(self.ui.slice) self._tweak_geometry() self.ui.aspectCombo.addItem("Square Pixels", userData='equal') self.ui.aspectCombo.addItem("Automatic", userData='auto') def make_client(self): """ Instantiate and return an ImageClient subclass """ raise NotImplementedError() def make_central_widget(self): """ Create and return the central widget to display the image """ raise NotImplementedError() def _tweak_geometry(self): self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) self.ui.rgb_options.hide() self.statusBar().setSizeGripEnabled(False) self.setFocusPolicy(Qt.StrongFocus) @defer_draw def add_data(self, data): """ Add a new dataset to the viewer """ # overloaded from DataViewer # need to delay callbacks, otherwise might # try to set combo boxes to nonexisting items with delay_callback(self.client, 'display_data', 'display_attribute'): # If there is not already any image data set, we can't add 1-D # datasets (tables/catalogs) to the image widget yet. if data.data.ndim == 1 and self.client.display_data is None: QtWidgets.QMessageBox.information(self.window(), "Note", "Cannot create image viewer from a 1-D " "dataset. You will need to first " "create an image viewer using data " "with 2 or more dimensions, after " "which you will be able to overlay 1-D " "data as a scatter plot.", buttons=QtWidgets.QMessageBox.Ok) return r = self.client.add_layer(data) if r is not None and self.client.display_data is not None: self.add_data_to_combo(data) if self.client.can_image_data(data): self.client.display_data = data self.set_attribute_combo(self.client.display_data) return r is not None @defer_draw def add_subset(self, subset): self.client.add_scatter_layer(subset) assert subset in self.client.artists def add_data_to_combo(self, data): """ Add a data object to the combo box, if not already present """ if not self.client.can_image_data(data): return combo = self.ui.displayDataCombo try: pos = _find_combo_data(combo, data) except ValueError: combo.addItem(data.label, userData=data) @property def ratt(self): """ComponentID assigned to R channel in RGB Mode""" return self.ui.rgb_options.attributes[0] @ratt.setter def ratt(self, value): att = list(self.ui.rgb_options.attributes) att[0] = value self.ui.rgb_options.attributes = att @property def gatt(self): """ComponentID assigned to G channel in RGB Mode""" return self.ui.rgb_options.attributes[1] @gatt.setter def gatt(self, value): att = list(self.ui.rgb_options.attributes) att[1] = value self.ui.rgb_options.attributes = att @property def batt(self): """ComponentID assigned to B channel in RGB Mode""" return self.ui.rgb_options.attributes[2] @batt.setter def batt(self, value): att = list(self.ui.rgb_options.attributes) att[2] = value self.ui.rgb_options.attributes = att @property def slice(self): return self.client.slice @slice.setter def slice(self, value): self.client.slice = value def set_attribute_combo(self, data): """ Update attribute combo box to reflect components in data""" labeldata = ((f.label, f) for f in data.visible_components) update_combobox(self.ui.attributeComboBox, labeldata) def _connect(self): ui = self.ui ui.monochrome.toggled.connect(self._update_rgb_console) ui.rgb_options.colors_changed.connect(self.update_window_title) # sync client and widget slices ui.slice.slice_changed.connect(lambda: setattr(self, 'slice', self.ui.slice.slice)) update_ui_slice = lambda val: setattr(ui.slice, 'slice', val) add_callback(self.client, 'slice', update_ui_slice) add_callback(self.client, 'display_data', self.ui.slice.set_data) # sync window title to data/attribute add_callback(self.client, 'display_data', nonpartial(self._display_data_changed)) add_callback(self.client, 'display_attribute', nonpartial(self._display_attribute_changed)) add_callback(self.client, 'display_aspect', nonpartial(self.client._update_aspect)) # sync data/attribute combos with client properties connect_current_combo(self.client, 'display_data', self.ui.displayDataCombo) connect_current_combo(self.client, 'display_attribute', self.ui.attributeComboBox) connect_current_combo(self.client, 'display_aspect', self.ui.aspectCombo) def _display_data_changed(self): if self.client.display_data is None: self.ui.attributeComboBox.clear() return with self.client.artists.ignore_empty(): self.set_attribute_combo(self.client.display_data) self.client.add_layer(self.client.display_data) self.client._update_and_redraw() self.update_window_title() def _display_attribute_changed(self): if self.client.display_attribute is None: return self.client._update_and_redraw() self.update_window_title() @defer_draw def _update_rgb_console(self, is_monochrome): if is_monochrome: self.ui.rgb_options.hide() self.ui.mono_att_label.show() self.ui.attributeComboBox.show() self.client.rgb_mode(False) else: self.ui.mono_att_label.hide() self.ui.attributeComboBox.hide() self.ui.rgb_options.show() rgb = self.client.rgb_mode(True) if rgb is not None: self.ui.rgb_options.artist = rgb def register_to_hub(self, hub): super(ImageWidgetBase, self).register_to_hub(hub) self.client.register_to_hub(hub) dc_filt = lambda x: x.sender is self.client._data display_data_filter = lambda x: x.data is self.client.display_data hub.subscribe(self, core.message.DataCollectionAddMessage, handler=lambda x: self.add_data_to_combo(x.data), filter=dc_filt) hub.subscribe(self, core.message.DataCollectionDeleteMessage, handler=lambda x: self.remove_data_from_combo(x.data), filter=dc_filt) hub.subscribe(self, core.message.DataUpdateMessage, handler=lambda x: self._sync_data_labels() ) hub.subscribe(self, core.message.ComponentsChangedMessage, handler=lambda x: self.set_attribute_combo(x.data), filter=display_data_filter) def unregister(self, hub): super(ImageWidgetBase, self).unregister(hub) for obj in [self, self.client]: hub.unsubscribe_all(obj) def remove_data_from_combo(self, data): """ Remove a data object from the combo box, if present """ combo = self.ui.displayDataCombo pos = combo.findText(data.label) if pos >= 0: combo.removeItem(pos) def _set_norm(self, mode): """ Use the `ContrastMouseMode` to adjust the transfer function """ # at least one of the clip/vmin pairs will be None clip_lo, clip_hi = mode.get_clip_percentile() vmin, vmax = mode.get_vmin_vmax() stretch = mode.stretch return self.client.set_norm(clip_lo=clip_lo, clip_hi=clip_hi, stretch=stretch, vmin=vmin, vmax=vmax, bias=mode.bias, contrast=mode.contrast) @property def window_title(self): if self.client.display_data is None or self.client.display_attribute is None: title = '' else: data = self.client.display_data.label a = self.client.rgb_mode() if a is None: # monochrome mode title = "%s - %s" % (self.client.display_data.label, self.client.display_attribute.label) else: r = a.r.label if a.r is not None else '' g = a.g.label if a.g is not None else '' b = a.b.label if a.b is not None else '' title = "%s Red = %s Green = %s Blue = %s" % (data, r, g, b) return title def _sync_data_combo_labels(self): combo = self.ui.displayDataCombo for i in range(combo.count()): combo.setItemText(i, combo.itemData(i).label) def _sync_data_labels(self): self.update_window_title() self._sync_data_combo_labels() def __str__(self): return "Image Widget" def _confirm_large_image(self, data): """Ask user to confirm expensive operations :rtype: bool. Whether the user wishes to continue """ warn_msg = ("WARNING: Image has %i pixels, and may render slowly." " Continue?" % data.size) title = "Contour large image?" ok = QtWidgets.QMessageBox.Ok cancel = QtWidgets.QMessageBox.Cancel buttons = ok | cancel result = QtWidgets.QMessageBox.question(self, title, warn_msg, buttons=buttons, defaultButton=cancel) return result == ok def options_widget(self): return self.option_widget @defer_draw def restore_layers(self, rec, context): with delay_callback(self.client, 'display_data', 'display_attribute'): self.client.restore_layers(rec, context) for artist in self.layers: self.add_data_to_combo(artist.layer.data) self.set_attribute_combo(self.client.display_data) self._sync_data_combo_labels() def closeEvent(self, event): # close window and all plugins super(ImageWidgetBase, self).closeEvent(event) class ImageWidget(ImageWidgetBase): """ A matplotlib-based image widget """ _toolbar_cls = MatplotlibViewerToolbar tools = ['select:rectangle', 'select:circle', 'select:polygon', 'image:contrast', 'image:colormap'] def make_client(self): return MplImageClient(self._data, self.central_widget.canvas.fig, layer_artist_container=self._layer_artist_container) def make_central_widget(self): return MplWidget() def initialize_toolbar(self): super(ImageWidget, self).initialize_toolbar() # connect viewport update buttons to client commands to # allow resampling cl = self.client self.toolbar.actions['mpl:home'].triggered.connect(nonpartial(cl.check_update)) self.toolbar.actions['mpl:forward'].triggered.connect(nonpartial(cl.check_update)) self.toolbar.actions['mpl:back'].triggered.connect(nonpartial(cl.check_update)) def paintEvent(self, event): super(ImageWidget, self).paintEvent(event) pos = self.central_widget.canvas.mapFromGlobal(QtGui.QCursor.pos()) x, y = pos.x(), self.central_widget.canvas.height() - pos.y() self._update_intensity_label(x, y) def _intensity_label(self, x, y): x, y = self.client.axes.transData.inverted().transform([(x, y)])[0] value = self.client.point_details(x, y)['value'] lbl = '' if value is None else "data: %s" % value return lbl def _update_intensity_label(self, x, y): lbl = self._intensity_label(x, y) self.label_widget.setText(lbl) fm = self.label_widget.fontMetrics() w, h = fm.width(lbl), fm.height() g = QtCore.QRect(20, self.central_widget.geometry().height() - h, w, h) self.label_widget.setGeometry(g) def _connect(self): super(ImageWidget, self)._connect() self.ui.rgb_options.current_changed.connect(lambda: self._toolbars[0].set_mode(self._contrast)) self.central_widget.canvas.resize_end.connect(self.client.check_update) def set_cmap(self, cmap): self.client.set_cmap(cmap) class StandaloneImageWidget(QtWidgets.QMainWindow): """ A simplified image viewer, without any brushing or linking, but with the ability to adjust contrast and resample. """ window_closed = QtCore.Signal() _toolbar_cls = MatplotlibViewerToolbar tools = ['image:contrast', 'image:colormap'] def __init__(self, image=None, wcs=None, parent=None, **kwargs): """ :param image: Image to display (2D numpy array) :param parent: Parent widget (optional) :param kwargs: Extra keywords to pass to imshow """ super(StandaloneImageWidget, self).__init__(parent) self.central_widget = MplWidget() self.setCentralWidget(self.central_widget) self._setup_axes() self._im = None self._norm = DS9Normalize() self.initialize_toolbar() if image is not None: self.set_image(image=image, wcs=wcs, **kwargs) def _setup_axes(self): from glue.viewers.common.viz_client import init_mpl _, self._axes = init_mpl(self.central_widget.canvas.fig, axes=None, wcs=True) self._axes.set_aspect('equal', adjustable='datalim') def set_image(self, image=None, wcs=None, **kwargs): """ Update the image shown in the widget """ if self._im is not None: self._im.remove() self._im = None kwargs.setdefault('origin', 'upper') if wcs is not None: self._axes.reset_wcs(wcs) self._im = imshow(self._axes, image, norm=self._norm, cmap='gray', **kwargs) self._im_array = image self._wcs = wcs self._redraw() @property def axes(self): """ The Matplolib axes object for this figure """ return self._axes def show(self): super(StandaloneImageWidget, self).show() self._redraw() def _redraw(self): self.central_widget.canvas.draw() def set_cmap(self, cmap): self._im.set_cmap(cmap) self._redraw() def mdi_wrap(self): """ Embed this widget in a GlueMdiSubWindow """ from glue.app.qt.mdi_area import GlueMdiSubWindow sub = GlueMdiSubWindow() sub.setWidget(self) self.destroyed.connect(sub.close) self.window_closed.connect(sub.close) sub.resize(self.size()) self._mdi_wrapper = sub return sub def closeEvent(self, event): self.window_closed.emit() return super(StandaloneImageWidget, self).closeEvent(event) def _set_norm(self, mode): """ Use the `ContrastMouseMode` to adjust the transfer function """ clip_lo, clip_hi = mode.get_clip_percentile() vmin, vmax = mode.get_vmin_vmax() stretch = mode.stretch self._norm.clip_lo = clip_lo self._norm.clip_hi = clip_hi self._norm.stretch = stretch self._norm.bias = mode.bias self._norm.contrast = mode.contrast self._norm.vmin = vmin self._norm.vmax = vmax self._im.set_norm(self._norm) self._redraw() def initialize_toolbar(self): # TODO: remove once Python 2 is no longer supported - see below for # simpler code. from glue.config import viewer_tool self.toolbar = self._toolbar_cls(self) for tool_id in self.tools: mode_cls = viewer_tool.members[tool_id] mode = mode_cls(self) self.toolbar.add_tool(mode) self.addToolBar(self.toolbar)
{ "repo_name": "saimn/glue", "path": "glue/viewers/image/qt/viewer_widget.py", "copies": "1", "size": "19555", "license": "bsd-3-clause", "hash": -8239916408426576000, "line_mean": 35.4832089552, "line_max": 121, "alpha_frac": 0.6049603682, "autogenerated": false, "ratio": 3.9489095315024234, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5053869899702423, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from idaskins import UI_DIR from PyQt5 import uic from PyQt5.Qt import qApp from PyQt5.QtCore import Qt from PyQt5.QtGui import QCursor, QFont, QKeySequence from PyQt5.QtWidgets import QShortcut, QWidget Ui_ObjectInspector, ObjectInspectorBase = uic.loadUiType( os.path.join(UI_DIR, 'ObjectInspector.ui') ) class ObjectInspector(ObjectInspectorBase): """ Rudimentary Qt object inspector. Allows for easier finding of object names and classes for usage in QSS stylesheets. """ def __init__(self, *args, **kwargs): super(ObjectInspector, self).__init__(*args, **kwargs) self._selected_widget = None self._ui = Ui_ObjectInspector() self._ui.setupUi(self) # Make everything monospace. font = QFont('Monospace') font.setStyleHint(QFont.TypeWriter) self._ui.teInspectionResults.setFont(font) # Register signals. self._update_key = QShortcut(QKeySequence(Qt.Key_F7), self) self._ui.btnSelectParent.released.connect(self.select_parent) self._update_key.activated.connect(self.update_inspection) def update_inspection(self): widget = qApp.widgetAt(QCursor.pos()) self.update_selected_widget(widget) def select_parent(self): if self._selected_widget: parent = self._selected_widget.parent() if parent and parent.inherits('QWidget'): self.update_selected_widget(parent) def update_selected_widget(self, widget): if self._selected_widget: self._selected_widget.destroyed.disconnect( self.on_selected_widget_destroyed ) self._selected_widget = widget if widget: self._ui.btnSelectParent.setEnabled(widget.parent() is not None) self._ui.teInspectionResults.setText(( "Type: {}\n" "Name: {}\n" "Number of children: {}\n" "QSS: {}" ).format( widget.metaObject().className(), widget.objectName() or '<none>', len(widget.children()), widget.styleSheet() or '<none>', )) self._selected_widget.destroyed.connect( self.on_selected_widget_destroyed ) else: self._ui.teInspectionResults.setText('<no object under cursor>') def on_selected_widget_destroyed(self, obj): self._selected_widget = None
{ "repo_name": "zyantific/IDASkins", "path": "plugins/idaskins/objectinspector.py", "copies": "1", "size": "2576", "license": "mit", "hash": 2552390391094649300, "line_mean": 31.6075949367, "line_max": 76, "alpha_frac": 0.6129658385, "autogenerated": false, "ratio": 4.031298904538341, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.514426474303834, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from odo.backends.hdfstore import discover from contextlib import contextmanager from odo.utils import tmpfile from odo.chunks import chunks from odo import into, append, convert, resource, discover, odo import datashape import pandas as pd from datetime import datetime import numpy as np try: f = pd.HDFStore('foo') except (RuntimeError, ImportError) as e: import pytest pytest.skip('skipping test_hdfstore.py %s' % e) else: f.close() os.remove('foo') df = pd.DataFrame([['a', 1, 10., datetime(2000, 1, 1)], ['ab', 2, 20., datetime(2000, 2, 2)], ['abc', 3, 30., datetime(2000, 3, 3)], ['abcd', 4, 40., datetime(2000, 4, 4)]], columns=['name', 'a', 'b', 'time']) @contextmanager def file(df): with tmpfile('.hdf5') as fn: f = pd.HDFStore(fn) f.put('/data', df, format='table', append=True) try: yield fn, f, f.get_storer('/data') finally: f.close() def test_discover(): with file(df) as (fn, f, dset): assert str(discover(dset)) == str(discover(df)) assert str(discover(f)) == str(discover({'data': df})) def test_discover(): with tmpfile('hdf5') as fn: df.to_hdf(fn, '/a/b/data') df.to_hdf(fn, '/a/b/data2') df.to_hdf(fn, '/a/data') hdf = pd.HDFStore(fn) try: assert discover(hdf) == discover({'a': {'b': {'data': df, 'data2': df}, 'data': df}}) finally: hdf.close() def eq(a, b): if isinstance(a, pd.DataFrame): a = into(np.ndarray, a) if isinstance(b, pd.DataFrame): b = into(np.ndarray, b) c = a == b if isinstance(c, np.ndarray): c = c.all() return c def test_chunks(): with file(df) as (fn, f, dset): c = convert(chunks(pd.DataFrame), dset) assert eq(convert(np.ndarray, c), df) def test_resource_no_info(): with tmpfile('.hdf5') as fn: r = resource('hdfstore://' + fn) assert isinstance(r, pd.HDFStore) r.close() def test_resource_of_dataset(): with tmpfile('.hdf5') as fn: ds = datashape.dshape('{x: int32, y: 3 * int32}') r = resource('hdfstore://'+fn+'::/x', dshape=ds) assert r r.parent.close() def test_append(): with file(df) as (fn, f, dset): append(dset, df) append(dset, df) assert discover(dset).shape == (len(df) * 3,) def test_into_resource(): with tmpfile('.hdf5') as fn: d = into('hdfstore://' + fn + '::/x', df) assert discover(d) == discover(df) assert eq(into(pd.DataFrame, d), df) d.parent.close() def test_convert_pandas(): with file(df) as (fn, f, dset): assert eq(convert(pd.DataFrame, dset), df) def test_convert_chunks(): with file(df) as (fn, f, dset): c = convert(chunks(pd.DataFrame), dset, chunksize=len(df) / 2) assert len(list(c)) == 2 assert eq(convert(pd.DataFrame, c), df) def test_append_chunks(): with file(df) as (fn, f, dset): append(dset, chunks(pd.DataFrame)([df, df])) assert discover(dset).shape[0] == len(df) * 3 def test_append_other(): with tmpfile('.hdf5') as fn: x = into(np.ndarray, df) dset = into('hdfstore://'+fn+'::/data', x) assert discover(dset) == discover(df) dset.parent.close() def test_fixed_shape(): with tmpfile('.hdf5') as fn: df.to_hdf(fn, 'foo') r = resource('hdfstore://'+fn+'::/foo') assert isinstance(r.shape, list) assert discover(r).shape == (len(df),) r.parent.close() def test_fixed_convert(): with tmpfile('.hdf5') as fn: df.to_hdf(fn, 'foo') r = resource('hdfstore://'+fn+'::/foo') assert eq(convert(pd.DataFrame, r), df) r.parent.close() def test_append_vs_write(): import pandas.util.testing as tm with tmpfile('.hdf5') as fn: df.to_hdf(fn, 'foo', append=True) store = odo(df, 'hdfstore://%s::foo' % fn) try: newdf = odo(store, pd.DataFrame) finally: store.parent.close() tm.assert_frame_equal(newdf, pd.concat([df, df])) with tmpfile('.hdf5') as fn: store = odo(df, 'hdfstore://%s::foo' % fn, mode='w') try: newdf = odo(store, pd.DataFrame) finally: store.parent.close() tm.assert_frame_equal(newdf, df)
{ "repo_name": "cowlicks/odo", "path": "odo/backends/tests/test_hdfstore.py", "copies": "4", "size": "4599", "license": "bsd-3-clause", "hash": 7903338533433737000, "line_mean": 25.4310344828, "line_max": 83, "alpha_frac": 0.5475103283, "autogenerated": false, "ratio": 3.2524752475247523, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5799985575824753, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from qtpy import QtCore, QtWidgets from glue.utils.qt import get_qapp from glue.utils.qt import load_ui, connect_color from glue.utils.qt.widget_properties import CurrentComboProperty, ValueProperty, connect_value, connect_current_combo from glue.icons.qt import POINT_ICONS, symbol_icon class ScatterLayerStyleWidget(QtWidgets.QWidget): size = ValueProperty('ui.value_size') symbol = CurrentComboProperty('ui.combo_symbol') alpha = ValueProperty('ui.slider_alpha', value_range=(0, 1)) def __init__(self, layer_artist): super(ScatterLayerStyleWidget, self).__init__() self.ui = load_ui('layer_style_widget.ui', self, directory=os.path.dirname(__file__)) self._setup_symbol_combo() self.layer = layer_artist.layer # Set up connections self._connect_global() # Set initial values self.symbol = self.layer.style.marker self.size = self.layer.style.markersize self.ui.label_color.setColor(self.layer.style.color) self.alpha = self.layer.style.alpha def _connect_global(self): connect_current_combo(self.layer.style, 'marker', self.ui.combo_symbol) connect_value(self.layer.style, 'markersize', self.ui.value_size) connect_color(self.layer.style, 'color', self.ui.label_color) connect_value(self.layer.style, 'alpha', self.ui.slider_alpha, value_range=(0, 1)) def _setup_symbol_combo(self): self._symbols = list(POINT_ICONS.keys()) for idx, symbol in enumerate(self._symbols): icon = symbol_icon(symbol) self.ui.combo_symbol.addItem(icon, '', userData=symbol) self.ui.combo_symbol.setIconSize(QtCore.QSize(16, 16)) if __name__ == "__main__": app = get_qapp() options = ScatterLayerStyleWidget() options.show() app.exec_()
{ "repo_name": "saimn/glue", "path": "glue/viewers/scatter/qt/layer_style_widget.py", "copies": "2", "size": "1941", "license": "bsd-3-clause", "hash": 6604689418227823000, "line_mean": 34.2909090909, "line_max": 117, "alpha_frac": 0.6640906749, "autogenerated": false, "ratio": 3.607806691449814, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0010272840781315358, "num_lines": 55 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtCore, QtWidgets from glue.utils.qt import load_ui from glue.utils import nonpartial class ComponentSelector(QtWidgets.QWidget): """ An interface to view the components and data of a DataCollection Components can be draged and dropped. The currently-selected componentID is stored in the Component property. The currently-selected Data is stored in the Data property. Usage: >>> widget = ComponentSelector() >>> widget.setup(data_collection) """ component_changed = QtCore.Signal() def __init__(self, parent=None): super(ComponentSelector, self).__init__(parent) self._data = None self._ui = load_ui('component_selector.ui', self, directory=os.path.dirname(__file__)) self._init_widgets() self._connect() def _init_widgets(self): self._ui.component_selector.setDragEnabled(True) self._ui.setMinimumWidth(300) def _connect(self): # attach Qt signals ds = self._ui.data_selector ds.currentIndexChanged.connect(nonpartial(self._set_components)) self._ui.component_selector.currentItemChanged.connect( lambda *args: self.component_changed.emit()) def set_current_row(self, row): """Select which component is selected :param row: Row number """ self._ui.component_selector.setCurrentRow(row) def set_data_row(self, row): """Select which data object is selected :param row: Row number """ self._ui.data_selector.setCurrentIndex(row) def setup(self, data_collection): """ Set up the widgets. :param data_collection: Object to browse :type data_colleciton: :class:`~glue.core.data_collection.DataCollection` """ self._data = data_collection self._set_data() self._set_components() def _set_components(self): """ Set list of component widgets to match current data set """ index = self._ui.data_selector.currentIndex() if index < 0: return data = self._data[index] cids = data.components c_list = self._ui.component_selector c_list.clear() for c in cids: item = QtWidgets.QListWidgetItem(c.label) c_list.addItem(item) c_list.set_data(item, c) def _set_data(self): """ Populate the data list with data sets in the collection """ d_list = self._ui.data_selector for d in self._data: d_list.addItem(d.label) @property def component(self): """Returns the currently-selected ComponentID :rtype: :class:`~glue.core.data.ComponentID` """ item = self._ui.component_selector.currentItem() return self._ui.component_selector.get_data(item) @component.setter def component(self, component): w = self._ui.component_selector for i in range(w.count()): item = w.item(i) if w.get_data(item) is component: w.setCurrentRow(i) return else: raise ValueError("Component not found: %s" % component) @property def data(self): index = self._ui.data_selector.currentIndex() if index < 0: return return self._data[index] @data.setter def data(self, value): for i, d in enumerate(self._data): if d is value: self._ui.data_selector.setCurrentIndex(i) return else: raise ValueError("Data is not part of the DataCollection") def main(): # pragma: no cover import glue import numpy as np from glue.utils.qt import get_qapp d = glue.core.Data(label="hi") d2 = glue.core.Data(label="there") c1 = glue.core.Component(np.array([1, 2, 3])) c2 = glue.core.Component(np.array([1, 2, 3])) c3 = glue.core.Component(np.array([1, 2, 3])) dc = glue.core.DataCollection() dc.append(d) dc.append(d2) d.add_component(c1, "a") d.add_component(c2, "b") d2.add_component(c3, "c") app = get_qapp() w = ComponentSelector() w.setup(dc) w.show() app.exec_() if __name__ == "__main__": # pragma: no cover main()
{ "repo_name": "saimn/glue", "path": "glue/dialogs/common/qt/component_selector.py", "copies": "1", "size": "4412", "license": "bsd-3-clause", "hash": -1965189886523367700, "line_mean": 27.8366013072, "line_max": 72, "alpha_frac": 0.5947416138, "autogenerated": false, "ratio": 3.8838028169014085, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9977849117114981, "avg_score": 0.00013906271728549575, "num_lines": 153 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtCore, QtWidgets from qtpy.QtCore import Qt from glue.utils.qt import load_ui from glue.utils import nonpartial class ComponentSelector(QtWidgets.QWidget): """ An interface to view the components and data of a DataCollection Components can be draged and dropped. The currently-selected componentID is stored in the Component property. The currently-selected Data is stored in the Data property. Usage: >>> widget = ComponentSelector() >>> widget.setup(data_collection) """ component_changed = QtCore.Signal() def __init__(self, parent=None): super(ComponentSelector, self).__init__(parent) self._data = None self._ui = load_ui('component_selector.ui', self, directory=os.path.dirname(__file__)) self._init_widgets() self._connect() def _init_widgets(self): self._ui.component_selector.setDragEnabled(True) self._ui.setMinimumWidth(300) def _connect(self): # attach Qt signals ds = self._ui.data_selector ds.currentIndexChanged.connect(nonpartial(self._set_components)) self._ui.component_selector.currentItemChanged.connect( lambda *args: self.component_changed.emit()) def set_current_row(self, row): """Select which component is selected :param row: Row number """ self._ui.component_selector.setCurrentRow(row) def set_data_row(self, row): """Select which data object is selected :param row: Row number """ self._ui.data_selector.setCurrentIndex(row) def setup(self, data_collection): """ Set up the widgets. :param data_collection: Object to browse :type data_colleciton: :class:`~glue.core.data_collection.DataCollection` """ self._data = data_collection self._set_data() self._set_components() def _set_components(self): """ Set list of component widgets to match current data set """ index = self._ui.data_selector.currentIndex() if index < 0: return data = self._data[index] c_list = self._ui.component_selector c_list.clear() # Coordinate components if len(data.coordinate_components) > 0: item = QtWidgets.QListWidgetItem('Coordinate components') item.setFlags(item.flags() & ~Qt.ItemIsEnabled) c_list.addItem(item) for c in data.coordinate_components: item = QtWidgets.QListWidgetItem(c.label) c_list.addItem(item) c_list.set_data(item, c) if len(set(data.primary_components) - set(data.coordinate_components)) > 0: item = QtWidgets.QListWidgetItem('Main components') item.setFlags(item.flags() & ~Qt.ItemIsEnabled) c_list.addItem(item) for c in data.primary_components: if c not in data.coordinate_components: item = QtWidgets.QListWidgetItem(c.label) c_list.addItem(item) c_list.set_data(item, c) # We allow 'hidden' components because we want to show things like coordinates, # but we don't want to include hidden AND derived components which are # generated from links. if len(set(data.derived_components) & set(data.visible_components)) > 0: item = QtWidgets.QListWidgetItem('Derived components') item.setFlags(item.flags() & ~Qt.ItemIsEnabled) c_list.addItem(item) for c in data.derived_components: if not c.hidden: item = QtWidgets.QListWidgetItem(c.label) c_list.addItem(item) c_list.set_data(item, c) def _set_data(self): """ Populate the data list with data sets in the collection """ d_list = self._ui.data_selector for d in self._data: d_list.addItem(d.label) @property def component(self): """Returns the currently-selected ComponentID :rtype: :class:`~glue.core.data.ComponentID` """ item = self._ui.component_selector.currentItem() return self._ui.component_selector.get_data(item) @component.setter def component(self, component): w = self._ui.component_selector for i in range(w.count()): item = w.item(i) if w.get_data(item) is component: w.setCurrentRow(i) return else: raise ValueError("Component not found: %s" % component) @property def data(self): index = self._ui.data_selector.currentIndex() if index < 0: return return self._data[index] @data.setter def data(self, value): for i, d in enumerate(self._data): if d is value: self._ui.data_selector.setCurrentIndex(i) return else: raise ValueError("Data is not part of the DataCollection") def main(): # pragma: no cover import glue import numpy as np from glue.utils.qt import get_qapp d = glue.core.Data(label="hi") d2 = glue.core.Data(label="there") c1 = glue.core.Component(np.array([1, 2, 3])) c2 = glue.core.Component(np.array([1, 2, 3])) c3 = glue.core.Component(np.array([1, 2, 3])) dc = glue.core.DataCollection() dc.append(d) dc.append(d2) d.add_component(c1, "a") d.add_component(c2, "b") d2.add_component(c3, "c") app = get_qapp() w = ComponentSelector() w.setup(dc) w.show() app.exec_() if __name__ == "__main__": # pragma: no cover main()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/dialogs/common/qt/component_selector.py", "copies": "3", "size": "5850", "license": "bsd-3-clause", "hash": -4024027942271601000, "line_mean": 31.1428571429, "line_max": 87, "alpha_frac": 0.592991453, "autogenerated": false, "ratio": 3.979591836734694, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003125861155243121, "num_lines": 182 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtGui, compat from glue.viewers.common.qt.tool import Tool, CheckableTool from glue.config import viewer_tool from ..extern.vispy import app, io RECORD_START_ICON = os.path.join(os.path.dirname(__file__), 'glue_record_start.png') RECORD_STOP_ICON = os.path.join(os.path.dirname(__file__), 'glue_record_stop.png') ROTATE_ICON = os.path.join(os.path.dirname(__file__), 'glue_rotate.png') @viewer_tool class ResetTool(Tool): icon = 'glue_home' tool_id = 'vispy:reset' action_text = 'Reset the view' tool_tip = 'Reset the view' def activate(self): self.viewer._vispy_widget.view.camera.reset() self.viewer._vispy_widget._toggle_perspective() @viewer_tool class SaveTool(Tool): icon = 'glue_filesave' tool_id = 'vispy:save' action_text = 'Save the figure' tool_tip = 'Save the figure' shortcut = 'Ctrl+Shift+S' def activate(self): outfile, file_filter = compat.getsavefilename(caption='Save File', filters='PNG Files (*.png);;' 'JPEG Files (*.jpeg);;' 'TIFF Files (*.tiff);;') # This indicates that the user cancelled if not outfile: return img = self.viewer._vispy_widget.canvas.render() try: file_filter = str(file_filter).split()[0] io.imsave(outfile, img, format=file_filter) except ImportError: # TODO: give out a window to notify that only .png file format is supported if '.' not in outfile: outfile += '.png' io.write_png(outfile, img) @viewer_tool class RecordTool(Tool): icon = RECORD_START_ICON tool_id = 'vispy:record' action_text = 'Record an animation' tool_tip = 'Start/Stop the recording' def __init__(self, viewer): super(RecordTool, self).__init__(viewer=viewer) self.record_timer = app.Timer(connect=self.record) self.writer = None self.next_action = 'start' def activate(self): if self.next_action == 'start': # pop up a window for file saving outfile, file_filter = compat.getsavefilename(caption='Save Animation', filters='GIF Files (*.gif);;') # if outfile is not set, the user cancelled if outfile: import imageio self.set_icon(RECORD_STOP_ICON) self.writer = imageio.get_writer(outfile) self.record_timer.start(0.1) self.next_action = 'stop' else: self.record_timer.stop() if self.writer is not None: self.writer.close() self.set_icon(RECORD_START_ICON) self.next_action = 'start' def set_icon(self, icon): self.viewer.toolbar.actions[self.tool_id].setIcon(QtGui.QIcon(icon)) def record(self, event): im = self.viewer._vispy_widget.canvas.render() self.writer.append_data(im) @viewer_tool class RotateTool(CheckableTool): icon = ROTATE_ICON tool_id = 'vispy:rotate' action_text = 'Continuously rotate view' tool_tip = 'Start/Stop rotation' timer = None def activate(self): if self.timer is None: self.timer = app.Timer(connect=self.rotate) self.timer.start(0.1) def deactivate(self): self.timer.stop() def rotate(self, event): self.viewer._vispy_widget.view.camera.azimuth -= 1. # set speed as constant first
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/common/tools.py", "copies": "1", "size": "3759", "license": "bsd-2-clause", "hash": 7443118557678038000, "line_mean": 29.314516129, "line_max": 90, "alpha_frac": 0.5746209098, "autogenerated": false, "ratio": 3.831804281345566, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9902218207890643, "avg_score": 0.0008413966509846421, "num_lines": 124 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtGui, compat try: from glue.viewers.common.tool import Tool, CheckableTool except ImportError: # glue-core <0.15 from glue.viewers.common.qt.tool import Tool, CheckableTool from glue.config import viewer_tool from ..extern.vispy import app, io RECORD_START_ICON = os.path.join(os.path.dirname(__file__), 'glue_record_start.png') RECORD_STOP_ICON = os.path.join(os.path.dirname(__file__), 'glue_record_stop.png') ROTATE_ICON = os.path.join(os.path.dirname(__file__), 'glue_rotate.png') @viewer_tool class ResetTool(Tool): icon = 'glue_home' tool_id = 'vispy:reset' action_text = 'Reset the view' tool_tip = 'Reset the view' def activate(self): self.viewer._vispy_widget.view.camera.reset() self.viewer._vispy_widget._toggle_perspective() self.viewer.state.reset_limits() @viewer_tool class SaveTool(Tool): icon = 'glue_filesave' tool_id = 'vispy:save' action_text = 'Save the figure to a file' tool_tip = 'Save the figure to a file' def activate(self): outfile, file_filter = compat.getsavefilename(caption='Save File', filters='PNG Files (*.png);;' 'JPEG Files (*.jpeg);;' 'TIFF Files (*.tiff);;', selectedfilter='PNG Files (*.png);;') # This indicates that the user cancelled if not outfile: return img = self.viewer._vispy_widget.canvas.render() try: file_filter = str(file_filter).split()[0] io.imsave(outfile, img, format=file_filter) except ImportError: # TODO: give out a window to notify that only .png file format is supported if '.' not in outfile: outfile += '.png' io.write_png(outfile, img) @viewer_tool class RecordTool(CheckableTool): icon = RECORD_START_ICON tool_id = 'vispy:record' action_text = 'Record an animation' tool_tip = 'Start/Stop the recording' def __init__(self, viewer): super(RecordTool, self).__init__(viewer=viewer) self.record_timer = app.Timer(connect=self.record) self.writer = None self.next_action = 'start' def activate(self): # pop up a window for file saving outfile, file_filter = compat.getsavefilename(caption='Save Animation', filters='GIF Files (*.gif);;') # if outfile is not set, the user cancelled if outfile: import imageio self.set_icon(RECORD_STOP_ICON) self.writer = imageio.get_writer(outfile) self.record_timer.start(0.1) def deactivate(self): self.record_timer.stop() if self.writer is not None: self.writer.close() self.set_icon(RECORD_START_ICON) def set_icon(self, icon): self.viewer.toolbar.actions[self.tool_id].setIcon(QtGui.QIcon(icon)) def record(self, event): im = self.viewer._vispy_widget.canvas.render() self.writer.append_data(im) @viewer_tool class RotateTool(CheckableTool): icon = ROTATE_ICON tool_id = 'vispy:rotate' action_text = 'Continuously rotate view' tool_tip = 'Start/Stop rotation' timer = None def activate(self): if self.timer is None: self.timer = app.Timer(connect=self.rotate) self.timer.start(0.1) def deactivate(self): self.timer.stop() def rotate(self, event): self.viewer._vispy_widget.view.camera.azimuth -= 1. # set speed as constant first
{ "repo_name": "astrofrog/glue-3d-viewer", "path": "glue_vispy_viewers/common/tools.py", "copies": "2", "size": "3840", "license": "bsd-2-clause", "hash": -2273169019433526800, "line_mean": 29.4761904762, "line_max": 91, "alpha_frac": 0.5859375, "autogenerated": false, "ratio": 3.8057482656095143, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5391685765609514, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from qtpy import QtWidgets from glue import core from glue.plugins.dendro_viewer.client import DendroClient from glue.viewers.common.qt.mpl_toolbar import MatplotlibViewerToolbar from glue.viewers.common.qt.mouse_mode import PickMode from glue.utils.qt import load_ui from glue.utils.qt.widget_properties import (ButtonProperty, CurrentComboProperty, connect_bool_button, connect_current_combo) from glue.viewers.common.qt.data_viewer import DataViewer from glue.viewers.common.qt.mpl_widget import MplWidget, defer_draw from glue.utils import nonpartial class DendroWidget(DataViewer): """ An interactive dendrogram display """ LABEL = 'Dendrogram' _property_set = DataViewer._property_set + \ 'ylog height parent order'.split() ylog = ButtonProperty('ui.ylog', 'log scaling on y axis?') height = CurrentComboProperty('ui.heightCombo', 'height attribute') parent = CurrentComboProperty('ui.parentCombo', 'parent attribute') order = CurrentComboProperty('ui.orderCombo', 'layout sorter attribute') _toolbar_cls = MatplotlibViewerToolbar tools = ['Pick'] def __init__(self, session, parent=None): super(DendroWidget, self).__init__(session, parent) self.central_widget = MplWidget() self.option_widget = QtWidgets.QWidget() self.setCentralWidget(self.central_widget) self.ui = load_ui('options_widget.ui', self.option_widget, directory=os.path.dirname(__file__)) self.client = DendroClient(self._data, self.central_widget.canvas.fig, layer_artist_container=self._layer_artist_container) self._connect() self.initialize_toolbar() self.statusBar().setSizeGripEnabled(False) def _connect(self): ui = self.ui cl = self.client connect_bool_button(cl, 'ylog', ui.ylog) connect_current_combo(cl, 'parent_attr', ui.parentCombo) connect_current_combo(cl, 'height_attr', ui.heightCombo) connect_current_combo(cl, 'order_attr', ui.orderCombo) def initialize_toolbar(self): super(DendroWidget, self).initialize_toolbar() def on_move(mode): if mode._drag: self.client.apply_roi(mode.roi()) self.toolbar.tools['Pick']._move_callback = on_move def apply_roi(self, roi): self.client.apply_roi(roi) def _update_combos(self, data=None): data = data or self.client.display_data if data is None: return for combo in [self.ui.heightCombo, self.ui.parentCombo, self.ui.orderCombo]: combo.blockSignals(True) ids = [] idx = combo.currentIndex() old = combo.itemData(idx) if idx > 0 else None combo.clear() for cid in data.components: if cid.hidden and cid is not data.pixel_component_ids[0]: continue combo.addItem(cid.label, userData=cid) ids.append(cid) try: combo.setCurrentIndex(ids.index(old)) except ValueError: combo.setCurrentIndex(0) combo.blockSignals(False) def add_data(self, data): """Add a new data set to the widget :returns: True if the addition was expected, False otherwise """ if data in self.client: return self._update_combos(data) self.client.add_layer(data) return True def add_subset(self, subset): """Add a subset to the widget :returns: True if the addition was accepted, False otherwise """ self.add_data(subset.data) if subset.data in self.client: self.client.add_layer(subset) return True def register_to_hub(self, hub): super(DendroWidget, self).register_to_hub(hub) self.client.register_to_hub(hub) hub.subscribe(self, core.message.ComponentsChangedMessage, nonpartial(self._update_combos())) def unregister(self, hub): super(DendroWidget, self).unregister(hub) hub.unsubscribe_all(self.client) hub.unsubscribe_all(self) def options_widget(self): return self.option_widget @defer_draw def restore_layers(self, rec, context): from glue.core.callback_property import delay_callback with delay_callback(self.client, 'height_attr', 'parent_attr', 'order_attr'): self.client.restore_layers(rec, context) self._update_combos()
{ "repo_name": "saimn/glue", "path": "glue/plugins/dendro_viewer/qt/viewer_widget.py", "copies": "1", "size": "4872", "license": "bsd-3-clause", "hash": 1916025047225315800, "line_mean": 32.1428571429, "line_max": 87, "alpha_frac": 0.6063218391, "autogenerated": false, "ratio": 4.076987447698745, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5183309286798744, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from qtpy import QtWidgets from glue import core from glue.utils import nonpartial from glue.utils.qt import load_ui __all__ = ['LinkEditor'] class LinkEditor(QtWidgets.QDialog): def __init__(self, collection, functions=None, parent=None): super(LinkEditor, self).__init__(parent=parent) self._collection = collection self._ui = load_ui('link_editor.ui', self, directory=os.path.dirname(__file__)) self._init_widgets() self._connect() if len(collection) > 1: self._ui.right_components.set_data_row(1) self._size = None def _init_widgets(self): self._ui.left_components.setup(self._collection) self._ui.right_components.setup(self._collection) self._ui.signature_editor.hide() for link in self._collection.links: self._add_link(link) def _connect(self): self._ui.add_link.clicked.connect(nonpartial(self._add_new_link)) self._ui.remove_link.clicked.connect(nonpartial(self._remove_link)) self._ui.toggle_editor.clicked.connect(nonpartial(self._toggle_advanced)) self._ui.signature_editor._ui.addButton.clicked.connect(nonpartial(self._add_new_link)) @property def advanced(self): return self._ui.signature_editor.isVisible() @advanced.setter def advanced(self, state): """Set whether the widget is in advanced state""" self._ui.signature_editor.setVisible(state) self._ui.toggle_editor.setText("Basic" if state else "Advanced") def _toggle_advanced(self): """Show or hide the signature editor widget""" self.advanced = not self.advanced def _selected_components(self): result = [] id1 = self._ui.left_components.component id2 = self._ui.right_components.component if id1: result.append(id1) if id2: result.append(id2) return result def _simple_links(self): """Return identity links which connect the highlighted items in each component selector. Returns: A list of :class:`~glue.core.ComponentLink` objects If items are not selected in the component selectors, an empty list is returned """ comps = self._selected_components() if len(comps) != 2: return [] assert isinstance(comps[0], core.data.ComponentID), comps[0] assert isinstance(comps[1], core.data.ComponentID), comps[1] link1 = core.component_link.ComponentLink([comps[0]], comps[1]) return [link1] def _add_link(self, link): current = self._ui.current_links item = QtWidgets.QListWidgetItem(str(link)) current.addItem(item) item.setHidden(link.hidden) current.set_data(item, link) def _add_new_link(self): if not self.advanced: links = self._simple_links() else: links = self._ui.signature_editor.links() self._ui.signature_editor.clear_inputs() for link in links: self._add_link(link) def links(self): current = self._ui.current_links return current.data.values() def _remove_link(self): current = self._ui.current_links item = current.currentItem() row = current.currentRow() if item is None: return current.drop_data(item) deleted = current.takeItem(row) assert deleted == item # sanity check @classmethod def update_links(cls, collection): widget = cls(collection) isok = widget._ui.exec_() if isok: links = widget.links() collection.set_links(links) def main(): import numpy as np from glue.utils.qt import get_qapp from glue.core import Data, DataCollection app = get_qapp() x = np.array([1, 2, 3]) d = Data(label='data', x=x, y=x * 2) dc = DataCollection(d) LinkEditor.update_links(dc) if __name__ == "__main__": main()
{ "repo_name": "saimn/glue", "path": "glue/dialogs/link_editor/qt/link_editor.py", "copies": "1", "size": "4149", "license": "bsd-3-clause", "hash": -2959285724988993500, "line_mean": 29.0652173913, "line_max": 95, "alpha_frac": 0.6080983369, "autogenerated": false, "ratio": 3.899436090225564, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000432237867064661, "num_lines": 138 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtWidgets from qtpy.QtCore import Qt from glue import core from glue.utils import nonpartial from glue.utils.qt import load_ui, HtmlItemDelegate __all__ = ['LinkEditor'] class LinkEditor(QtWidgets.QDialog): def __init__(self, collection, functions=None, parent=None): super(LinkEditor, self).__init__(parent=parent) self._collection = collection self._ui = load_ui('link_editor.ui', self, directory=os.path.dirname(__file__)) self._html_item_delegate = HtmlItemDelegate(self._ui.current_links) self._ui.current_links.setItemDelegate(self._html_item_delegate) self._ui.current_links.setWordWrap(False) self._init_widgets() self._connect() if len(collection) > 1: self._ui.right_components.set_data_row(1) self._size = None def _init_widgets(self): self._ui.left_components.setup(self._collection) self._ui.right_components.setup(self._collection) self._ui.signature_editor.hide() for link in self._collection.links: self._add_link(link) def _connect(self): self._ui.add_link.clicked.connect(nonpartial(self._add_new_link)) self._ui.remove_link.clicked.connect(nonpartial(self._remove_link)) self._ui.toggle_editor.clicked.connect(nonpartial(self._toggle_advanced)) @property def advanced(self): return self._ui.signature_editor.isVisible() @advanced.setter def advanced(self, state): """Set whether the widget is in advanced state""" self._ui.signature_editor.setVisible(state) self._ui.toggle_editor.setText("Basic linking" if state else "Advanced linking") def _toggle_advanced(self): """Show or hide the signature editor widget""" self.advanced = not self.advanced def _selected_components(self): result = [] id1 = self._ui.left_components.component id2 = self._ui.right_components.component if id1: result.append(id1) if id2: result.append(id2) return result def _simple_links(self): """Return identity links which connect the highlighted items in each component selector. Returns: A list of :class:`~glue.core.ComponentLink` objects If items are not selected in the component selectors, an empty list is returned """ comps = self._selected_components() if len(comps) != 2: return [] assert isinstance(comps[0], core.data.ComponentID), comps[0] assert isinstance(comps[1], core.data.ComponentID), comps[1] link1 = core.component_link.ComponentLink([comps[0]], comps[1]) return [link1] def _add_link(self, link): current = self._ui.current_links item = QtWidgets.QListWidgetItem(link.to_html()) item.setTextAlignment(Qt.AlignCenter) current.addItem(item) item.setHidden(link.hidden) current.set_data(item, link) def _add_new_link(self): if not self.advanced: links = self._simple_links() else: links = self._ui.signature_editor.links() self._ui.signature_editor.clear_inputs() for link in links: self._add_link(link) def links(self): current = self._ui.current_links return current.data.values() def _remove_link(self): current = self._ui.current_links item = current.currentItem() row = current.currentRow() if item is None: return current.drop_data(item) deleted = current.takeItem(row) assert deleted == item # sanity check @classmethod def update_links(cls, collection): widget = cls(collection) isok = widget._ui.exec_() if isok: links = widget.links() collection.set_links(links) def main(): import numpy as np from glue.utils.qt import get_qapp from glue.core import Data, DataCollection app = get_qapp() x = np.array([1, 2, 3]) d = Data(label='data', x=x, y=x * 2) dc = DataCollection(d) LinkEditor.update_links(dc) if __name__ == "__main__": main()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/dialogs/link_editor/qt/link_editor.py", "copies": "3", "size": "4366", "license": "bsd-3-clause", "hash": -8995892236241781000, "line_mean": 29.3194444444, "line_max": 88, "alpha_frac": 0.6142922584, "autogenerated": false, "ratio": 3.901697944593387, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0004199174586419189, "num_lines": 144 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtWidgets from glue.external.echo.qt import autoconnect_callbacks_to_qt from glue.utils.qt import load_ui, fix_tab_widget_fontsize from glue.viewers.image.qt.slice_widget import MultiSliceWidgetHelper __all__ = ['ImageOptionsWidget'] class ImageOptionsWidget(QtWidgets.QWidget): def __init__(self, viewer_state, session, parent=None): super(ImageOptionsWidget, self).__init__(parent=parent) self.ui = load_ui('options_widget.ui', self, directory=os.path.dirname(__file__)) fix_tab_widget_fontsize(self.ui.tab_widget) self.ui.combodata_aspect.addItem("Square Pixels", userData='equal') self.ui.combodata_aspect.addItem("Automatic", userData='auto') self.ui.combodata_aspect.setCurrentIndex(0) self.ui.combotext_color_mode.addItem("Colormaps") self.ui.combotext_color_mode.addItem("One color per layer") autoconnect_callbacks_to_qt(viewer_state, self.ui) self.viewer_state = viewer_state self.slice_helper = MultiSliceWidgetHelper(viewer_state=self.viewer_state, layout=self.ui.layout_slices)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/image/qt/options_widget.py", "copies": "1", "size": "1267", "license": "bsd-3-clause", "hash": 1050973563412401700, "line_mean": 33.2432432432, "line_max": 82, "alpha_frac": 0.6756116811, "autogenerated": false, "ratio": 3.7485207100591715, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49241323911591717, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from qtpy import QtWidgets from glue.utils import nonpartial from glue.utils.qt import load_ui from glue.external.echo.qt import autoconnect_callbacks_to_qt class ScatterLayerStyleWidget(QtWidgets.QWidget): def __init__(self, layer_artist): super(ScatterLayerStyleWidget, self).__init__() self.ui = load_ui('layer_style_widget.ui', self, directory=os.path.dirname(__file__)) self.state = layer_artist.state self.layer_artist = layer_artist self.layer = layer_artist.layer connect_kwargs = {'value_alpha': dict(value_range=(0., 1.)), 'value_size_scaling': dict(value_range=(0.1, 10), log=True)} autoconnect_callbacks_to_qt(self.state, self.ui, connect_kwargs) # Set initial values self._update_size_mode() self._update_color_mode() self.state.add_callback('color_mode', nonpartial(self._update_color_mode)) self.state.add_callback('size_mode', nonpartial(self._update_size_mode)) def _update_size_mode(self): if self.state.size_mode == "Fixed": self.ui.size_row_2.hide() self.ui.combosel_size_attribute.hide() self.ui.valuetext_size.show() else: self.ui.valuetext_size.hide() self.ui.combosel_size_attribute.show() self.ui.size_row_2.show() def _update_color_mode(self): if self.state.color_mode == "Fixed": self.ui.color_row_2.hide() self.ui.color_row_3.hide() self.ui.combosel_cmap_attribute.hide() self.ui.spacer_color_label.show() self.ui.color_color.show() else: self.ui.color_color.hide() self.ui.combosel_cmap_attribute.show() self.ui.spacer_color_label.hide() self.ui.color_row_2.show() self.ui.color_row_3.show()
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/scatter/layer_style_widget.py", "copies": "1", "size": "1997", "license": "bsd-2-clause", "hash": 7740161033935505000, "line_mean": 31.737704918, "line_max": 86, "alpha_frac": 0.6014021032, "autogenerated": false, "ratio": 3.515845070422535, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9614305524060487, "avg_score": 0.0005883299124097251, "num_lines": 61 }
from __future__ import absolute_import, division, print_function import os from qtpy import QtWidgets from glue.utils.qt import load_ui from glue.external.echo.qt import autoconnect_callbacks_to_qt from glue_vispy_viewers.utils import fix_tab_widget_fontsize class ScatterLayerStyleWidget(QtWidgets.QWidget): def __init__(self, layer_artist): super(ScatterLayerStyleWidget, self).__init__() self.ui = load_ui('layer_style_widget.ui', self, directory=os.path.dirname(__file__)) fix_tab_widget_fontsize(self.ui.tab_widget) self.state = layer_artist.state self.layer_artist = layer_artist self.layer = layer_artist.layer connect_kwargs = {'value_alpha': dict(value_range=(0., 1.)), 'value_size_scaling': dict(value_range=(0.1, 10), log=True)} self._connections = autoconnect_callbacks_to_qt(self.state, self.ui, connect_kwargs) # Set initial values self._update_size_mode() self._update_color_mode() self.state.add_callback('color_mode', self._update_color_mode) self.state.add_callback('size_mode', self._update_size_mode) def _update_size_mode(self, *args): if self.state.size_mode == "Fixed": self.ui.size_row_2.hide() self.ui.combosel_size_attribute.hide() self.ui.valuetext_size.show() else: self.ui.valuetext_size.hide() self.ui.combosel_size_attribute.show() self.ui.size_row_2.show() def _update_color_mode(self, *args): if self.state.color_mode == "Fixed": self.ui.color_row_2.hide() self.ui.color_row_3.hide() self.ui.combosel_cmap_attribute.hide() self.ui.spacer_color_label.show() self.ui.color_color.show() else: self.ui.color_color.hide() self.ui.combosel_cmap_attribute.show() self.ui.spacer_color_label.hide() self.ui.color_row_2.show() self.ui.color_row_3.show()
{ "repo_name": "astrofrog/glue-3d-viewer", "path": "glue_vispy_viewers/scatter/layer_style_widget.py", "copies": "2", "size": "2088", "license": "bsd-2-clause", "hash": 2725176566554368000, "line_mean": 31.625, "line_max": 92, "alpha_frac": 0.6039272031, "autogenerated": false, "ratio": 3.4742096505823628, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00034760845383759734, "num_lines": 64 }
from __future__ import absolute_import, division, print_function import os from qtpy.QtCore import Qt from qtpy import QtCore, QtWidgets from glue.core.application_base import ViewerBase from glue.core.qt.layer_artist_model import QtLayerArtistContainer, LayerArtistWidget from glue.utils.qt import get_qapp from glue.core.qt.mime import LAYERS_MIME_TYPE, LAYER_MIME_TYPE from glue.utils.qt import set_cursor from glue.config import settings from glue.external import six from glue.utils.noconflict import classmaker __all__ = ['DataViewer'] class ToolbarInitializer(object): """ This is a meta-class which ensures that initialize_toolbar is always called on DataViewer instances and sub-class instances after all the __init__ code has been executed. We need to do this, because often the toolbar can only be initialized after everything else (e.g. canvas, etc.) has been set up, so we can't do it in DataViewer.__init__. """ def __call__(cls, *args, **kwargs): obj = type.__call__(cls, *args, **kwargs) obj.initialize_toolbar() return obj # Note: we need to use classmaker here because otherwise we run into issues when # trying to use the meta-class with the Qt class. @six.add_metaclass(classmaker(left_metas=(ToolbarInitializer,))) class DataViewer(ViewerBase, QtWidgets.QMainWindow): """ Base class for all Qt DataViewer widgets. This defines a minimal interface, and implemlements the following:: * An automatic call to unregister on window close * Drag and drop support for adding data """ window_closed = QtCore.Signal() _layer_artist_container_cls = QtLayerArtistContainer _layer_style_widget_cls = None LABEL = 'Override this' _toolbar_cls = None tools = [] def __init__(self, session, parent=None): """ :type session: :class:`~glue.core.Session` """ QtWidgets.QMainWindow.__init__(self, parent) ViewerBase.__init__(self, session) self.setWindowIcon(get_qapp().windowIcon()) self._view = LayerArtistWidget(layer_style_widget_cls=self._layer_style_widget_cls, hub=session.hub) self._view.layer_list.setModel(self._layer_artist_container.model) self._tb_vis = {} # store whether toolbars are enabled self.setAttribute(Qt.WA_DeleteOnClose) self.setAcceptDrops(True) self.setAnimated(False) self._toolbars = [] self._warn_close = True self.setContentsMargins(2, 2, 2, 2) self._mdi_wrapper = None # GlueMdiSubWindow that self is embedded in self.statusBar().setStyleSheet("QStatusBar{font-size:10px}") # close window when last plot layer deleted self._layer_artist_container.on_empty(lambda: self.close(warn=False)) self._layer_artist_container.on_changed(self.update_window_title) @property def selected_layer(self): return self._view.layer_list.current_artist() def remove_layer(self, layer): self._layer_artist_container.pop(layer) def dragEnterEvent(self, event): """ Accept the event if it has data layers""" if event.mimeData().hasFormat(LAYER_MIME_TYPE): event.accept() elif event.mimeData().hasFormat(LAYERS_MIME_TYPE): event.accept() else: event.ignore() def dropEvent(self, event): """ Add layers to the viewer if contained in mime data """ if event.mimeData().hasFormat(LAYER_MIME_TYPE): self.request_add_layer(event.mimeData().data(LAYER_MIME_TYPE)) assert event.mimeData().hasFormat(LAYERS_MIME_TYPE) for layer in event.mimeData().data(LAYERS_MIME_TYPE): self.request_add_layer(layer) event.accept() def mousePressEvent(self, event): """ Consume mouse press events, and prevent them from propagating down to the MDI area """ event.accept() apply_roi = set_cursor(Qt.WaitCursor)(ViewerBase.apply_roi) def close(self, warn=True): self._warn_close = warn if getattr(self, '_mdi_wrapper', None) is not None: self._mdi_wrapper.close() self._mdi_wrapper = None else: QtWidgets.QMainWindow.close(self) ViewerBase.close(self) self._warn_close = True def mdi_wrap(self): """Wrap this object in a GlueMdiSubWindow""" from glue.app.qt.mdi_area import GlueMdiSubWindow sub = GlueMdiSubWindow() sub.setWidget(self) self.destroyed.connect(sub.close) sub.resize(self.size()) self._mdi_wrapper = sub return sub @property def position(self): target = self._mdi_wrapper or self pos = target.pos() return pos.x(), pos.y() @position.setter def position(self, xy): x, y = xy self.move(x, y) def move(self, x=None, y=None): """ Move the viewer to a new XY pixel location You can also set the position attribute to a new tuple directly. Parameters ---------- x : int (optional) New x position y : int (optional) New y position """ x0, y0 = self.position if x is None: x = x0 if y is None: y = y0 if self._mdi_wrapper is not None: self._mdi_wrapper.move(x, y) else: QtWidgets.QMainWindow.move(self, x, y) @property def viewer_size(self): if self._mdi_wrapper is not None: sz = self._mdi_wrapper.size() else: sz = self.size() return sz.width(), sz.height() @viewer_size.setter def viewer_size(self, value): width, height = value self.resize(width, height) if self._mdi_wrapper is not None: self._mdi_wrapper.resize(width, height) def closeEvent(self, event): """ Call unregister on window close """ if not self._confirm_close(): event.ignore() return if self._hub is not None: self.unregister(self._hub) self._layer_artist_container.clear_callbacks() self._layer_artist_container.clear() super(DataViewer, self).closeEvent(event) event.accept() self.window_closed.emit() def _confirm_close(self): """Ask for close confirmation :rtype: bool. True if user wishes to close. False otherwise """ if self._warn_close and (not os.environ.get('GLUE_TESTING')) and self.isVisible(): buttons = QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel dialog = QtWidgets.QMessageBox.warning(self, "Confirm Close", "Do you want to close this window?", buttons=buttons, defaultButton=QtWidgets.QMessageBox.Cancel) return dialog == QtWidgets.QMessageBox.Ok return True def _confirm_large_data(self, data): if not settings.SHOW_LARGE_DATA_WARNING: # Ignoring large data warning return True else: warn_msg = ("WARNING: Data set has %i points, and may render slowly." " Continue?" % data.size) title = "Add large data set?" ok = QtWidgets.QMessageBox.Ok cancel = QtWidgets.QMessageBox.Cancel buttons = ok | cancel result = QtWidgets.QMessageBox.question(self, title, warn_msg, buttons=buttons, defaultButton=cancel) return result == ok def layer_view(self): return self._view def options_widget(self): return QtWidgets.QWidget() def addToolBar(self, tb): super(DataViewer, self).addToolBar(tb) self._toolbars.append(tb) self._tb_vis[tb] = True def initialize_toolbar(self): from glue.config import viewer_tool self.toolbar = self._toolbar_cls(self) for tool_id in self.tools: mode_cls = viewer_tool.members[tool_id] mode = mode_cls(self) self.toolbar.add_tool(mode) self.addToolBar(self.toolbar) def show_toolbars(self): """Re-enable any toolbars that were hidden with `hide_toolbars()` Does not re-enable toolbars that were hidden by other means """ for tb in self._toolbars: if self._tb_vis.get(tb, False): tb.setEnabled(True) def hide_toolbars(self): """ Disable all the toolbars in the viewer. This action can be reversed by calling `show_toolbars()` """ for tb in self._toolbars: self._tb_vis[tb] = self._tb_vis.get(tb, False) or tb.isVisible() tb.setEnabled(False) def set_focus(self, state): if state: css = """ DataViewer { border: 2px solid; border-color: rgb(56, 117, 215); } """ self.setStyleSheet(css) self.show_toolbars() else: css = """ DataViewer { border: none; } """ self.setStyleSheet(css) self.hide_toolbars() def __str__(self): return self.LABEL def unregister(self, hub): """ Override to perform cleanup operations when disconnecting from hub """ pass @property def window_title(self): return str(self) def update_window_title(self): self.setWindowTitle(self.window_title) def set_status(self, message): sb = self.statusBar() sb.showMessage(message)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/common/qt/data_viewer.py", "copies": "1", "size": "9978", "license": "bsd-3-clause", "hash": -2858473583310382600, "line_mean": 30.2789968652, "line_max": 94, "alpha_frac": 0.5850871918, "autogenerated": false, "ratio": 4.129966887417218, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00025052425172357906, "num_lines": 319 }
from __future__ import absolute_import, division, print_function import os from qtpy.QtCore import Qt from qtpy import QtWidgets from glue import core from glue.viewers.scatter.client import ScatterClient from glue.viewers.common.qt.mpl_toolbar import MatplotlibViewerToolbar from glue.viewers.common.qt.mouse_mode import (RectangleMode, CircleMode, PolyMode, HRangeMode, VRangeMode) from glue.utils.qt import load_ui from glue.viewers.common.qt.data_viewer import DataViewer from glue.viewers.common.qt.mpl_widget import MplWidget, defer_draw from glue.viewers.scatter.qt.layer_style_widget import ScatterLayerStyleWidget from glue.viewers.scatter.layer_artist import ScatterLayerArtist from glue.utils import nonpartial, cache_axes from glue.utils.qt.widget_properties import (ButtonProperty, FloatLineProperty, CurrentComboProperty, connect_bool_button, connect_float_edit) __all__ = ['ScatterWidget'] WARN_SLOW = 1000000 # max number of points which render quickly class ScatterWidget(DataViewer): """ An interactive scatter plot. """ LABEL = "Scatter Plot" _property_set = DataViewer._property_set + \ 'xlog ylog xflip yflip hidden xatt yatt xmin xmax ymin ymax'.split() xlog = ButtonProperty('ui.xLogCheckBox', 'log scaling on x axis?') ylog = ButtonProperty('ui.yLogCheckBox', 'log scaling on y axis?') xflip = ButtonProperty('ui.xFlipCheckBox', 'invert the x axis?') yflip = ButtonProperty('ui.yFlipCheckBox', 'invert the y axis?') xmin = FloatLineProperty('ui.xmin', 'Lower x limit of plot') xmax = FloatLineProperty('ui.xmax', 'Upper x limit of plot') ymin = FloatLineProperty('ui.ymin', 'Lower y limit of plot') ymax = FloatLineProperty('ui.ymax', 'Upper y limit of plot') hidden = ButtonProperty('ui.hidden_attributes', 'Show hidden attributes') xatt = CurrentComboProperty('ui.xAxisComboBox', 'Attribute to plot on x axis') yatt = CurrentComboProperty('ui.yAxisComboBox', 'Attribute to plot on y axis') _layer_style_widget_cls = {ScatterLayerArtist: ScatterLayerStyleWidget} _toolbar_cls = MatplotlibViewerToolbar tools = ['select:rectangle', 'select:xrange', 'select:yrange', 'select:circle', 'select:polygon'] def __init__(self, session, parent=None): super(ScatterWidget, self).__init__(session, parent) self.central_widget = MplWidget() self.setCentralWidget(self.central_widget) self.option_widget = QtWidgets.QWidget() self.ui = load_ui('options_widget.ui', self.option_widget, directory=os.path.dirname(__file__)) self._tweak_geometry() self.client = ScatterClient(self._data, self.central_widget.canvas.fig, layer_artist_container=self._layer_artist_container) self._connect() self.unique_fields = set() self.statusBar().setSizeGripEnabled(False) self.setFocusPolicy(Qt.StrongFocus) def initialize_toolbar(self): super(ScatterWidget, self).initialize_toolbar() cache_axes(self.client.axes, self.toolbar) def _tweak_geometry(self): self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) def _connect(self): ui = self.ui cl = self.client connect_bool_button(cl, 'xlog', ui.xLogCheckBox) connect_bool_button(cl, 'ylog', ui.yLogCheckBox) connect_bool_button(cl, 'xflip', ui.xFlipCheckBox) connect_bool_button(cl, 'yflip', ui.yFlipCheckBox) ui.xAxisComboBox.currentIndexChanged.connect(self.update_xatt) ui.yAxisComboBox.currentIndexChanged.connect(self.update_yatt) ui.hidden_attributes.toggled.connect(lambda x: self._update_combos()) ui.swapAxes.clicked.connect(nonpartial(self.swap_axes)) ui.snapLimits.clicked.connect(cl.snap) connect_float_edit(cl, 'xmin', ui.xmin) connect_float_edit(cl, 'xmax', ui.xmax) connect_float_edit(cl, 'ymin', ui.ymin) connect_float_edit(cl, 'ymax', ui.ymax) @defer_draw def _update_combos(self): """ Update contents of combo boxes """ # have to be careful here, since client and/or widget # are potentially out of sync layer_ids = [] # show hidden attributes if needed if ((self.client.xatt and self.client.xatt.hidden) or (self.client.yatt and self.client.yatt.hidden)): self.hidden = True # determine which components to put in combos for l in self.client.data: if not self.client.is_layer_present(l): continue for lid in self.client.plottable_attributes( l, show_hidden=self.hidden): if lid not in layer_ids: layer_ids.append(lid) oldx = self.xatt oldy = self.yatt newx = self.client.xatt or oldx newy = self.client.yatt or oldy for combo, target in zip([self.ui.xAxisComboBox, self.ui.yAxisComboBox], [newx, newy]): combo.blockSignals(True) combo.clear() if not layer_ids: # empty component list continue # populate for lid in layer_ids: combo.addItem(lid.label, userData=lid) idx = layer_ids.index(target) if target in layer_ids else 0 combo.setCurrentIndex(idx) combo.blockSignals(False) # ensure client and widget synced self.client.xatt = self.xatt self.client.lyatt = self.yatt @defer_draw def add_data(self, data): """Add a new data set to the widget :returns: True if the addition was expected, False otherwise """ if self.client.is_layer_present(data): return if data.size > WARN_SLOW and not self._confirm_large_data(data): return False first_layer = self.client.layer_count == 0 self.client.add_data(data) self._update_combos() if first_layer: # forces both x and y axes to be rescaled self.update_xatt(None) self.update_yatt(None) self.ui.xAxisComboBox.setCurrentIndex(0) if len(data.visible_components) > 1: self.ui.yAxisComboBox.setCurrentIndex(1) else: self.ui.yAxisComboBox.setCurrentIndex(0) self.update_window_title() return True @defer_draw def add_subset(self, subset): """Add a subset to the widget :returns: True if the addition was accepted, False otherwise """ if self.client.is_layer_present(subset): return data = subset.data if data.size > WARN_SLOW and not self._confirm_large_data(data): return False first_layer = self.client.layer_count == 0 self.client.add_layer(subset) self._update_combos() if first_layer: # forces both x and y axes to be rescaled self.update_xatt(None) self.update_yatt(None) self.ui.xAxisComboBox.setCurrentIndex(0) if len(data.visible_components) > 1: self.ui.yAxisComboBox.setCurrentIndex(1) else: self.ui.yAxisComboBox.setCurrentIndex(0) self.update_window_title() return True def register_to_hub(self, hub): super(ScatterWidget, self).register_to_hub(hub) self.client.register_to_hub(hub) hub.subscribe(self, core.message.DataUpdateMessage, nonpartial(self._sync_labels)) hub.subscribe(self, core.message.ComponentsChangedMessage, nonpartial(self._update_combos)) hub.subscribe(self, core.message.ComponentReplacedMessage, self._on_component_replace) def _on_component_replace(self, msg): # let client update its state first self.client._on_component_replace(msg) self._update_combos() def unregister(self, hub): super(ScatterWidget, self).unregister(hub) hub.unsubscribe_all(self.client) hub.unsubscribe_all(self) @defer_draw def swap_axes(self): xid = self.ui.xAxisComboBox.currentIndex() yid = self.ui.yAxisComboBox.currentIndex() xlog = self.ui.xLogCheckBox.isChecked() ylog = self.ui.yLogCheckBox.isChecked() xflip = self.ui.xFlipCheckBox.isChecked() yflip = self.ui.yFlipCheckBox.isChecked() self.ui.xAxisComboBox.setCurrentIndex(yid) self.ui.yAxisComboBox.setCurrentIndex(xid) self.ui.xLogCheckBox.setChecked(ylog) self.ui.yLogCheckBox.setChecked(xlog) self.ui.xFlipCheckBox.setChecked(yflip) self.ui.yFlipCheckBox.setChecked(xflip) @defer_draw def update_xatt(self, index): component_id = self.xatt self.client.xatt = component_id @defer_draw def update_yatt(self, index): component_id = self.yatt self.client.yatt = component_id @property def window_title(self): data = self.client.data label = ', '.join([d.label for d in data if self.client.is_visible(d)]) return label def _sync_labels(self): self.update_window_title() def options_widget(self): return self.option_widget @defer_draw def restore_layers(self, rec, context): self.client.restore_layers(rec, context) self._update_combos() # manually force client attributes to sync self.update_xatt(None) self.update_yatt(None)
{ "repo_name": "saimn/glue", "path": "glue/viewers/scatter/qt/viewer_widget.py", "copies": "1", "size": "9914", "license": "bsd-3-clause", "hash": -574948424469269800, "line_mean": 34.28113879, "line_max": 101, "alpha_frac": 0.6210409522, "autogenerated": false, "ratio": 3.8817541111981204, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003157879229069068, "num_lines": 281 }
from __future__ import absolute_import, division, print_function import os from qtpy.QtCore import Qt from qtpy import QtWidgets from glue.utils.qt import set_cursor_cm __all__ = ['data_wizard', 'GlueDataDialog'] def data_wizard(): """ QT Dialog to load a file into a new data object Returns: A list of new data objects. Returns an empty list if selection is canceled. """ def report_error(error, factory, curfile): import traceback retry = QtWidgets.QMessageBox.Retry cancel = QtWidgets.QMessageBox.Cancel buttons = retry | cancel detail = traceback.format_exc() msg = "\n".join(["Could not load %s (wrong load method?)" % curfile, "File load method: %s" % factory.label]) detail = "\n\n".join(["Error message: %s" % error, detail]) mb = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Critical, "Data Load Error", msg) mb.setDetailedText(detail) mb.setDefaultButton(cancel) mb.setStandardButtons(buttons) ok = mb.exec_() return ok == retry while True: gdd = GlueDataDialog() try: result = gdd.load_data() break except Exception as e: decision = report_error(e, gdd.factory(), gdd._curfile) if not decision: return [] return result class GlueDataDialog(object): def __init__(self, parent=None): self._fd = QtWidgets.QFileDialog(parent, directory=os.curdir) from glue.config import data_factory self.filters = [(f, self._filter(f)) for f in data_factory.members if not f.deprecated] self.setNameFilter() self._fd.setFileMode(QtWidgets.QFileDialog.ExistingFiles) self._curfile = '' try: self._fd.setOption( QtWidgets.QFileDialog.Option.HideNameFilterDetails, True) except AttributeError: # HideNameFilterDetails not present pass def factory(self): fltr = self._fd.selectedNameFilter() for k, v in self.filters: if v.startswith(fltr): return k def setNameFilter(self): fltr = ";;".join([flt for fac, flt in self.filters]) self._fd.setNameFilter(fltr) def _filter(self, factory): return "%s (*)" % factory.label def paths(self): """ Return all selected paths, as a list of unicode strings """ return self._fd.selectedFiles() def _get_paths_and_factory(self): """Show dialog to get a file path and data factory :rtype: tuple of (list-of-strings, func) giving the path and data factory. returns ([], None) if user cancels dialog """ result = self._fd.exec_() if result == QtWidgets.QDialog.Rejected: return [], None # path = list(map(str, self.paths())) # cast out of unicode path = list(self.paths()) factory = self.factory() return path, factory def load_data(self): """Highest level method to interactively load a data set. :rtype: A list of constructed data objects """ from glue.core.data_factories import data_label, load_data paths, fac = self._get_paths_and_factory() result = [] # Check that the user didn't select a .glu file by mistake for path in paths: if path.endswith('.glu'): mb = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Critical, "Error loading data", "It looks like you have selected " "a .glu session file. You should open " "this using 'Open Session' under the " "'File' menu instead") mb.exec_() return [] with set_cursor_cm(Qt.WaitCursor): for path in paths: self._curfile = path d = load_data(path, factory=fac.function) if not isinstance(d, list): if not d.label: d.label = data_label(path) d = [d] result.extend(d) return result
{ "repo_name": "stscieisenhamer/glue", "path": "glue/dialogs/data_wizard/qt/data_wizard_dialog.py", "copies": "2", "size": "4394", "license": "bsd-3-clause", "hash": 1343342467754434800, "line_mean": 33.328125, "line_max": 90, "alpha_frac": 0.5464269458, "autogenerated": false, "ratio": 4.407221664994985, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5953648610794986, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os from setuptools import setup import versioneer rootpath = os.path.abspath(os.path.dirname(__file__)) def read(*parts): return open(os.path.join(rootpath, *parts), "r").read() long_description = "{}\n{}".format(read("README.rst"), read("CHANGES.txt")) LICENSE = read("LICENSE.txt") with open("requirements.txt") as f: require = f.readlines() install_requires = [r.strip() for r in require] setup( name="odvc", python_requires=">=3.6", version=versioneer.get_version(), license=LICENSE, long_description=long_description, classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Intended Audience :: Education", "License :: OSI Approved :: BSD", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Scientific/Engineering", "Topic :: Education", ], description="Ocean Dimensionless Vertical Coordinates", author="Filipe Fernandes", author_email="ocefpaf@gmail.com", maintainer="Filipe Fernandes", maintainer_email="ocefpaf@gmail.com", url="https://github.com/pyoceans/odvc", download_url="http://pypi.python.org/pypi/odvc", platforms="any", keywords=[ "CF-conventions", "dimensionless coordinate", "vertical coordinate", ], install_requires=install_requires, tests_require=["pytest"], packages=["odvc"], cmdclass=versioneer.get_cmdclass(), )
{ "repo_name": "ocefpaf/odvc", "path": "setup.py", "copies": "3", "size": "1658", "license": "bsd-3-clause", "hash": 286826740314771330, "line_mean": 27.1016949153, "line_max": 75, "alpha_frac": 0.646562123, "autogenerated": false, "ratio": 3.751131221719457, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5897693344719457, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os # gpi, future import gpi from bart.gpi.borg import IFilePath, OFilePath, Command # bart import bart base_path = bart.__path__[0] # library base for executables import bart.python.cfl as cfl class ExternalNode(gpi.NodeAPI): """Usage: cdf97 [-i] bitmask <input> <output> Perform a wavelet (cdf97) transform. -i inverse -h help """ def initUI(self): # Widgets self.addWidget('SpinBox', 'bitmask', val=3) self.addWidget('PushButton', 'compute', toggle=True) self.addWidget( 'PushButton', 'direction', button_title='FORWARD', toggle=True) # IO Ports self.addInPort('input', 'NPYarray') self.addOutPort('output', 'NPYarray') return 0 def validate(self): '''update the widget bounds based on the input data ''' if 'direction' in self.widgetEvents(): direction = self.getVal('direction') if direction: self.setAttr('direction', button_title="INVERSE") else: self.setAttr('direction', button_title="FORWARD") return 0 def compute(self): if self.getVal('compute'): direction = self.getVal('direction') bm = self.getVal('bitmask') kspace = self.getData('input') # load up arguments list args = [base_path+'/bart cdf97'] if direction != 0: args += ['-i'] args += [str(bm)] in1 = IFilePath(cfl.writecfl, kspace, asuffix=['.cfl', '.hdr']) args += [in1] # setup file for getting data from external command out = OFilePath(cfl.readcfl, asuffix=['.cfl','.hdr']) args += [out] # run commandline print(Command(*args)) self.setData('output', out.data()) out.close() return 0
{ "repo_name": "nckz/bart", "path": "gpi/cdf97_GPI.py", "copies": "1", "size": "1988", "license": "bsd-3-clause", "hash": -7054664795357644000, "line_mean": 24.164556962, "line_max": 75, "alpha_frac": 0.5533199195, "autogenerated": false, "ratio": 3.960159362549801, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5013479282049801, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import datashape from datashape import DataShape, Record, to_numpy, to_numpy_dtype, discover from datashape.predicates import isrecord from datashape.dispatch import dispatch import h5py import numpy as np from toolz import keyfilter from ..append import append from ..convert import convert, ooc_types from ..create import create from ..resource import resource from ..chunks import chunks h5py_attributes = ['chunks', 'compression', 'compression_opts', 'dtype', 'fillvalue', 'fletcher32', 'maxshape', 'shape'] try: unicode_dtype = h5py.special_dtype(vlen=unicode) except NameError: unicode_dtype = h5py.special_dtype(vlen=str) @discover.register((h5py.Group, h5py.File)) def discover_h5py_group_file(g): return DataShape(Record([[k, discover(v)] for k, v in g.items()])) def record_dshape_replace(dshape, old, new): """Recursively replace all instances of `old` with `new` in the record dshape `dshape`. Examples -------- >>> from datashape import Record, string, object_, dshape >>> ds = DataShape(Record([('a', 'int64'), ... ('b', 10 * Record([('c', 'object')])), ... ('d', 'int64')])) ... >>> Record(list(record_dshape_replace(ds, object_, string))) dshape("{a: int64, b: 10 * {c: object}, d: int64}") """ assert isrecord(dshape), 'input dshape must be a record' for name, subshape in dshape.measure.fields: if subshape == old: yield name, new else: if isrecord(subshape): yield record_dshape_replace(subshape, old, new) else: yield name, subshape @discover.register(h5py.Dataset) def discover_h5py_dataset(d): dshape = datashape.from_numpy(d.shape, d.dtype) shape, measure = dshape.shape, dshape.measure if not isrecord(measure): if dshape == datashape.object_: args = shape + (datashape.string,) return DataShape(*args) return dshape else: records = list(record_dshape_replace(measure, datashape.object_, datashape.string)) args = shape + (datashape.Record(records),) return DataShape(*args) def dtype_replace(dtype, old, new): """Replace the subdtype `old` in `subdtype` with `new`. Parameters ---------- dtype, old, new : dtype Examples -------- >>> dt = np.dtype([('a', 'int64'), ('b', 'object'), ... ('c', [('d', 'object'), ('e', 'float64')])]) ... >>> r = np.dtype(list(dtype_replace(dt, 'int64', 'float64'))) >>> r dtype([('a', '<f8'), ('b', 'O'), ('c', [('d', 'O'), ('e', '<f8')])]) """ names = dtype.names assert names is not None, 'dtype must be record-like' for name, subdtype in zip(names, map(dtype.__getitem__, names)): if subdtype == old: yield name, new else: if subdtype.names is not None: yield name, list(dtype_replace(subdtype, old, new)) else: yield name, subdtype def varlen_dtype(dt): """Inject variable length string element for object dtype Examples -------- >>> dt = np.dtype('object') >>> dt dtype('O') >>> r = varlen_dtype(dt) >>> r dtype('O') >>> r.metadata['vlen'] # doctest: +SKIP <type 'unicode'> >>> dt = np.dtype([('a', 'int64'), ('b', 'object'), ... ('c', [('d', 'object'), ('e', 'float64')])]) ... >>> dt['b'].metadata >>> r = varlen_dtype(dt) >>> r dtype([('a', '<i8'), ('b', 'O'), ('c', [('d', 'O'), ('e', '<f8')])]) >>> r['b'].metadata['vlen'] # doctest: +SKIP <type 'unicode'> """ if dt == np.object_: return unicode_dtype elif dt.names is None: # some kind of non record like dtype return dt else: return np.dtype(list(dtype_replace(dt, np.dtype('object'), unicode_dtype))) def dataset_from_dshape(file, datapath, ds, **kwargs): dtype = varlen_dtype(to_numpy_dtype(ds)) if datashape.var not in list(ds): shape = to_numpy(ds)[0] elif datashape.var not in list(ds)[1:]: shape = (0,) + to_numpy(ds.subshape[0])[0] else: raise ValueError("Don't know how to handle varlen nd shapes") if shape: kwargs['chunks'] = kwargs.get('chunks', True) kwargs['maxshape'] = kwargs.get('maxshape', (None,) + shape[1:]) kwargs2 = keyfilter(h5py_attributes.__contains__, kwargs) return file.require_dataset(datapath, shape=shape, dtype=dtype, **kwargs2) def create_from_datashape(group, ds, name=None, **kwargs): if not isrecord(ds): raise ValueError( "Trying to create an HDF5 file with non-record datashape failed\n" "Perhaps you forgot to specify a datapath?\n" "\tdshape: %s\n" "If you're using into consider the following change\n" "\tBefore: into('myfile.hdf5', data)\n" "\tAfter: into('myfile.hdf5::/datapath', data)" % ds) if isinstance(ds, DataShape) and len(ds) == 1: ds = ds[0] for name, sub_ds in ds.dict.items(): if isrecord(sub_ds): g = group.require_group(name) create_from_datashape(g, sub_ds, **kwargs) else: dataset_from_dshape(file=group.file, datapath='/'.join([group.name, name]), ds=sub_ds, **kwargs) @create.register(h5py.File) def create_h5py_file(cls, path=None, dshape=None, **kwargs): f = h5py.File(path) create_from_datashape(f, dshape, **kwargs) return f @append.register(h5py.Dataset, np.ndarray) def append_h5py(dset, x, **kwargs): if not sum(x.shape): return dset shape = list(dset.shape) shape[0] += len(x) dset.resize(shape) dset[-len(x):] = x return dset @append.register(h5py.Dataset, chunks(np.ndarray)) def append_h5py(dset, c, **kwargs): for chunk in c: append(dset, chunk) return dset @append.register(h5py.Dataset, object) def append_h5py(dset, x, **kwargs): return append(dset, convert(chunks(np.ndarray), x, **kwargs), **kwargs) @convert.register(np.ndarray, h5py.Dataset, cost=3.0) def h5py_to_numpy(dset, force=False, **kwargs): if dset.size > 1e9: raise MemoryError("File size is large: %0.2f GB.\n" "Convert with flag force=True to force loading" % d.size / 1e9) else: return dset[:] @convert.register(chunks(np.ndarray), h5py.Dataset, cost=3.0) def h5py_to_numpy_chunks(dset, chunksize=2 ** 20, **kwargs): def load(): for i in range(0, dset.shape[0], chunksize): yield dset[i: i + chunksize] return chunks(np.ndarray)(load) @resource.register('h5py://.+', priority=11) def resource_h5py(uri, datapath=None, dshape=None, **kwargs): f = h5py.File(uri) olddatapath = datapath if dshape is not None: ds = datashape.dshape(dshape) if datapath: while ds and datapath: datapath, name = datapath.rsplit('/', 1) ds = Record([[name, ds]]) ds = datashape.dshape(ds) f = create(h5py.File, path=uri, dshape=ds, **kwargs) if olddatapath: return f[olddatapath] else: return f @resource.register('.+\.(hdf5|h5)') def resource_hdf5(*args, **kwargs): return resource_h5py(*args, **kwargs) @dispatch((h5py.Group, h5py.Dataset)) def drop(h): del h.file[h.name] @dispatch(h5py.File) def drop(h): os.remove(h.filename) ooc_types.add(h5py.Dataset)
{ "repo_name": "mrocklin/into", "path": "into/backends/h5py.py", "copies": "1", "size": "7768", "license": "bsd-3-clause", "hash": -331208715482822600, "line_mean": 29.1085271318, "line_max": 89, "alpha_frac": 0.5742790937, "autogenerated": false, "ratio": 3.3642269380684278, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9437752371131046, "avg_score": 0.00015073212747631351, "num_lines": 258 }
from __future__ import absolute_import, division, print_function import os import datashape from .data_descriptor import DDesc from .. import py2help from dynd import nd from .dynd_data_descriptor import DyND_DDesc, Capabilities def json_descriptor_iter(array): for row in array: yield DyND_DDesc(row) class JSON_DDesc(DDesc): """ A Blaze data descriptor which exposes a JSON file. Parameters ---------- path : string A path string for the JSON file. schema : string or datashape A datashape (or its string representation) of the schema in the JSON file. """ def __init__(self, path, mode='r', **kwargs): if os.path.isfile(path) is not True: raise ValueError('JSON file "%s" does not exist' % path) self.path = path self.mode = mode schema = kwargs.get("schema", None) if type(schema) in py2help._strtypes: schema = datashape.dshape(schema) self.schema = str(schema) # Initially the array is not loaded (is this necessary?) self._cache_arr = None @property def dshape(self): return datashape.dshape(self.schema) @property def capabilities(self): """The capabilities for the json data descriptor.""" return Capabilities( # json datadescriptor cannot be updated immutable = False, # json datadescriptors are concrete deferred = False, # json datadescriptor is persistent persistent = True, # json datadescriptor can be appended efficiently appendable = True, remote = False, ) @property def _arr_cache(self): if self._cache_arr is not None: return self._cache_arr with open(self.path, mode=self.mode) as jsonfile: # This will read everything in-memory (but a memmap approach # is in the works) self._cache_arr = nd.parse_json( self.schema, jsonfile.read()) return self._cache_arr def dynd_arr(self): return self._arr_cache def __array__(self): return nd.as_numpy(self.dynd_arr()) def __len__(self): # Not clear to me what the length of a json object should be return None def __getitem__(self, key): return DyND_DDesc(self._arr_cache[key]) def __setitem__(self, key, value): # JSON files cannot be updated (at least, not efficiently) raise NotImplementedError def __iter__(self): return json_descriptor_iter(self._arr_cache) def remove(self): """Remove the persistent storage.""" os.unlink(self.path)
{ "repo_name": "sethkontny/blaze", "path": "blaze/datadescriptor/json_data_descriptor.py", "copies": "3", "size": "2737", "license": "bsd-3-clause", "hash": -2306633751572151000, "line_mean": 28.1170212766, "line_max": 72, "alpha_frac": 0.5999269273, "autogenerated": false, "ratio": 4.140695915279879, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6240622842579878, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import datashape from .data_descriptor import IDataDescriptor from .. import py2help from dynd import nd from .dynd_data_descriptor import DyNDDataDescriptor, Capabilities def json_descriptor_iter(array): for row in array: yield DyNDDataDescriptor(row) class JSONDataDescriptor(IDataDescriptor): """ A Blaze data descriptor which exposes a JSON file. Parameters ---------- filename : string A path string for the JSON file. schema : string or blaze.datashape A blaze datashape (or its string representation) of the schema in the JSON file. """ def __init__(self, filename, **kwargs): if os.path.isfile(filename) is not True: raise ValueError('JSON file "%s" does not exist' % filename) self.filename = filename schema = kwargs.get("schema", None) if type(schema) in py2help._strtypes: schema = datashape.dshape(schema) self.schema = str(schema) # Initially the array is not loaded (is this necessary?) self._cache_arr = None @property def dshape(self): return datashape.dshape(self.schema) @property def capabilities(self): """The capabilities for the json data descriptor.""" return Capabilities( # json datadescriptor cannot be updated immutable = False, # json datadescriptors are concrete deferred = False, # json datadescriptor is persistent persistent = True, # json datadescriptor can be appended efficiently appendable = True, remote = False, ) @property def _arr_cache(self): if self._cache_arr is not None: return self._cache_arr with open(self.filename) as jsonfile: # This will read everything in-memory (but a memmap approach # is in the works) self._cache_arr = nd.parse_json( self.schema, jsonfile.read()) return self._cache_arr def dynd_arr(self): return self._arr_cache def __array__(self): return nd.as_numpy(self.dynd_arr()) def __len__(self): # Not clear to me what the length of a json object should be return None def __getitem__(self, key): return DyNDDataDescriptor(self._arr_cache[key]) def __setitem__(self, key, value): # JSON files cannot be updated (at least, not efficiently) raise NotImplementedError def __iter__(self): return json_descriptor_iter(self._arr_cache)
{ "repo_name": "XinSong/blaze", "path": "blaze/datadescriptor/json_data_descriptor.py", "copies": "7", "size": "2681", "license": "bsd-3-clause", "hash": -5404987424908856000, "line_mean": 29.1235955056, "line_max": 72, "alpha_frac": 0.6161879896, "autogenerated": false, "ratio": 4.269108280254777, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0037263328673259807, "num_lines": 89 }
from __future__ import absolute_import, division, print_function import os import idaapi from idaskins import IDA_DIR, THEMES_DIR, VERSION from idaskins.idafontconfig import IdaFontConfig from idaskins.objectinspector import ObjectInspector from idaskins.settings import Settings from idaskins.thememanifest import ThemeManifest, ManifestError from idaskins.themeselector import ThemeSelector from idaskins.clrapplier import load_clr_file from PyQt5.Qt import qApp from PyQt5.QtCore import QObject, QDir from PyQt5.QtWidgets import QMessageBox class UiHooks(idaapi.UI_Hooks): """ UI hooks. Currently only used to display a warning when switching font settings in IDA. """ def __init__(self): super(UiHooks, self).__init__() self._last_event = None def preprocess_action(self, name): self._last_event = name return super(UiHooks, self).preprocess_action(name) def postprocess_action(self): if self._last_event == 'SetFont': QMessageBox.warning( qApp.activeWindow(), "IDASkins", "Please note that altering the font settings when IDASkins " "is loaded may cause strange effects on font rendering. It is " "recommended to restart IDA after making font-related changes " "in the settings to avoid instability." ) return super(UiHooks, self).postprocess_action() class IdaSkinsPlugin(QObject, idaapi.plugin_t): """Plugin entry point. Does most of the skinning magic.""" flags = idaapi.PLUGIN_FIX comment = "Advanced IDA skinning" help = "This is help" wanted_name = "IDASkins: Settings" wanted_hotkey = "Ctrl-Shift-S" def __init__(self, *args, **kwargs): print("[IDASkins] {} by athre0z (zyantific.com) loaded!".format( VERSION )) QObject.__init__(self, *args, **kwargs) idaapi.plugin_t.__init__(self) # First start dialog. self._settings = Settings() if self._settings.first_start: selection = QMessageBox.information( qApp.activeWindow(), "IDASkins: First start", "IDASkins has detected that this is the first time you've started IDA with " "the plugin installed. Select a theme now?", QMessageBox.Yes | QMessageBox.No, ) if selection == QMessageBox.Yes: self.open_theme_selector() self._settings.first_start = False else: # v2.0.0 used absolute pathes due to a bug. # Fix settings from this particular version here. theme_dir = self._settings.selected_theme_dir if theme_dir and os.path.isabs(theme_dir): print('[IDASkins] Updating buggy v2.0.0 theme path') self._settings.selected_theme_dir = os.path.split(theme_dir)[-1] self._theme_selector = None self.apply_stylesheet_from_settings() # Subscribe UI notifications. self._ui_hooks = UiHooks() self._ui_hooks.hook() def preprocess_stylesheet(self, qss, abs_theme_dir): qss = qss.replace('<IDADIR>', QDir.fromNativeSeparators(IDA_DIR)) qss = qss.replace('<SKINDIR>', QDir.fromNativeSeparators(abs_theme_dir)) def replace_keyword(x, keyword, kind): cfg = IdaFontConfig(kind) prefix = '<{}_FONT_'.format(keyword) x = x.replace(prefix + 'FAMILY>', cfg.family) x = x.replace(prefix + 'STYLE>', ' italic' if cfg.italic else '') x = x.replace(prefix + 'WEIGHT>', ' bold' if cfg.bold else '') x = x.replace(prefix + 'SIZE>', '{} pt'.format(cfg.size)) return x qss = replace_keyword(qss, 'DISASSEMBLY', 'disas') qss = replace_keyword(qss, 'HEXVIEW', 'hexview') qss = replace_keyword(qss, 'DEBUG_REGISTERS', 'debug_regs') qss = replace_keyword(qss, 'TEXT_INPUT', 'text_input') qss = replace_keyword(qss, 'OUTPUT_WINDOW', 'output_wnd') return qss def apply_stylesheet(self, abs_theme_dir, manifest): try: with open(os.path.join(abs_theme_dir, manifest.qss_file)) as f: qss = f.read() except IOError as exc: print('[IDASkins] Unable to load stylesheet.') return qss = self.preprocess_stylesheet(qss, abs_theme_dir) qApp.setStyleSheet(qss) #idaapi.request_refresh(idaapi.IWID_ALL) def apply_clr_file(self, abs_theme_dir, manifest): try: load_clr_file(os.path.join(abs_theme_dir, manifest.clr_file)) except IOError as exc: print('[IDASkins] Unable to load clr file.') return def apply_stylesheet_from_settings(self): theme_dir = self._settings.selected_theme_dir if theme_dir: abs_theme_dir = os.path.join(THEMES_DIR, theme_dir) try: manifest = ThemeManifest(open(os.path.join( abs_theme_dir, 'manifest.json' ))) except ManifestError as exc: print('[IDASkins]', str(exc)) return self.apply_stylesheet(abs_theme_dir, manifest) self.apply_clr_file(abs_theme_dir, manifest) print('[IDASkins] Skin file successfully applied!') def open_theme_selector(self): self._theme_selector = ThemeSelector(qApp.activeWindow()) self._theme_selector.accepted.connect(self.on_theme_selection_accepted) self._theme_selector.show() def on_theme_selection_accepted(self): theme_dir = self.sender().selected_theme_dir if theme_dir: self._settings.selected_theme_dir = theme_dir self.apply_stylesheet_from_settings() def init(self): return idaapi.PLUGIN_KEEP def run(self, arg): self.open_theme_selector() def term(self): print("term() called!")
{ "repo_name": "zyantific/IDASkins", "path": "plugins/idaskins/plugin.py", "copies": "1", "size": "6051", "license": "mit", "hash": -7239864608497623000, "line_mean": 35.0178571429, "line_max": 92, "alpha_frac": 0.604858701, "autogenerated": false, "ratio": 3.8104534005037785, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9913649833365027, "avg_score": 0.00033245362775024103, "num_lines": 168 }
from __future__ import absolute_import, division, print_function import os import invoke import fabric.api import fabric.contrib.files from .utils import cd, ssh_host SALT_MASTER = "192.168.5.1" @invoke.task(name="sync-changes") def sync_changes(): # Push our changes to GitHub # TODO: Determine what origin to use? invoke.run("git push origin master", echo=True) if os.path.isdir("pillar/prod/secrets"): with cd("pillar/prod/secrets"): # Push our changes into the secret repository invoke.run("git push origin master", echo=True) # SSH into the salt master and pull our changes with ssh_host("salt.iad1.psf.io"): with fabric.api.cd("/srv/salt"): fabric.api.sudo("git pull --ff-only origin master") with fabric.api.cd("/srv/pillar/prod/secrets"): fabric.api.sudo("git pull --ff-only origin master") @invoke.task def bootstrap(host, codename="trusty", pre=[sync_changes]): # If the host does not contain '.', we'll assume it's of the form # [host].iad1.psf.io. if "." not in host: host += ".iad1.psf.io" # SSH into the root user of this server and bootstrap the server. with ssh_host("root@" + host): # Make sure this host hasn't already been bootstrapped. if fabric.contrib.files.exists("/etc/salt/minion.d/local.conf"): raise RuntimeError("{} is already bootstrapped.".format(host)) fabric.api.run("wget -O - https://repo.saltstack.com/apt/ubuntu/14.04/amd64/2018.3/SALTSTACK-GPG-KEY.pub | apt-key add -") if codename == "trusty": fabric.api.run("echo 'deb http://repo.saltstack.com/apt/ubuntu/14.04/amd64/2018.3 trusty main' > /etc/apt/sources.list.d/saltstack.list") elif codename == "xenial": fabric.api.run("echo 'deb http://repo.saltstack.com/apt/ubuntu/16.04/amd64/2018.3 xenial main' > /etc/apt/sources.list.d/saltstack.list") else: raise RuntimeError("{} is not supported!".format(codename)) # Then we need to update our local apt fabric.api.run("apt-get update -qy") # Then, upgrade all of the packages that are currently on this # machine. fabric.api.run("apt-get upgrade -qy") fabric.api.run("apt-get dist-upgrade -qy") # We don't want the nova-agent installed. # This doesn't appear to be installed on Xenial anymore? if codename != "xenial": fabric.api.run("apt-get purge nova-agent -qy") # Install salt-minion and python-apt so we can manage things with # salt. fabric.api.run("apt-get install -qy salt-minion") # Drop the /etc/salt/minion.d/local.conf onto the server so that it # can connect with our salt master. fabric.contrib.files.upload_template( "conf/minion.conf", "/etc/salt/minion.d/local.conf", context={ "master": SALT_MASTER, }, use_jinja=True, mode=0o0644, ) # Run salt-call state.highstate, this will fail the first time because # the Master hasn't accepted our key yet. fabric.api.run("salt-call state.highstate", warn_only=True) # Get the minion ID of this server minion_id = fabric.api.run("cat /etc/salt/minion_id") # SSH into our salt master and accept the key for this server. with ssh_host("salt.iad1.psf.io"): fabric.api.sudo("salt-key -ya {}".format(minion_id)) # Finally SSH into our server one more time to run salt-call # state.highstate for real this time. with ssh_host("root@" + host): fabric.api.run("salt-call state.highstate") # Reboot the server to make sure any upgrades have been loaded. fabric.api.reboot() @invoke.task(default=True, pre=[sync_changes]) def highstate(hosts, dc="iad1"): # Until invoke supports *args we need to hack around the lack of support # for now. hosts = [h.strip() for h in hosts.split(",") if h.strip()] # Ensure we have some hosts if not hosts: raise ValueError("Must specify hosts for highstate") # Loop over all the hosts and if they do not have a ., then we'll add # .psf.io to them. hosts = [h if "." in h else h + "." + dc + ".psf.io" for h in hosts] # Loop over all the hosts and call salt-call state.highstate on them. for host in hosts: with ssh_host(host): fabric.api.sudo("salt-call state.highstate")
{ "repo_name": "python/psf-salt", "path": "tasks/salt.py", "copies": "1", "size": "4528", "license": "mit", "hash": -6890022229323660000, "line_mean": 36.1147540984, "line_max": 149, "alpha_frac": 0.6274293286, "autogenerated": false, "ratio": 3.559748427672956, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9686318456227071, "avg_score": 0.0001718600091769908, "num_lines": 122 }
from __future__ import absolute_import, division, print_function import os import numpy as np from matplotlib.colors import ColorConverter from qtpy import QtWidgets from glue.core.message import SettingsChangeMessage from glue.utils import nonpartial from glue.utils.qt import load_ui, ColorProperty from glue.utils.qt.widget_properties import (CurrentComboTextProperty, ValueProperty, ButtonProperty) from glue._settings_helpers import save_settings __all__ = ["PreferencesDialog"] rgb = ColorConverter().to_rgb class PreferencesDialog(QtWidgets.QDialog): theme = CurrentComboTextProperty('ui.combo_theme') background = ColorProperty('ui.color_background') foreground = ColorProperty('ui.color_foreground') data_color = ColorProperty('ui.color_default_data') data_alpha = ValueProperty('ui.slider_alpha', value_range=(0, 1)) data_apply = ButtonProperty('ui.checkbox_apply') show_large_data_warning = ButtonProperty('ui.checkbox_show_large_data_warning') save_to_disk = ButtonProperty('ui.checkbox_save') def __init__(self, application, parent=None): super(PreferencesDialog, self).__init__(parent=parent) self.app = application self.ui = load_ui('preferences.ui', self, directory=os.path.dirname(__file__)) self.ui.cancel.clicked.connect(self.reject) self.ui.ok.clicked.connect(self.accept) self.ui.combo_theme.currentIndexChanged.connect(nonpartial(self._update_colors_from_theme)) from glue.config import settings self.background = settings.BACKGROUND_COLOR self.foreground = settings.FOREGROUND_COLOR self.data_color = settings.DATA_COLOR self.data_alpha = settings.DATA_ALPHA self.show_large_data_warning = settings.SHOW_LARGE_DATA_WARNING self._update_theme_from_colors() self.panes = [] from glue.config import preference_panes for label, widget_cls in sorted(preference_panes): pane = widget_cls() self.ui.tab_widget.addTab(pane, label) self.panes.append(pane) def _update_theme_from_colors(self): if (rgb(self.background) == (1, 1, 1) and rgb(self.foreground) == (0, 0, 0) and rgb(self.data_color) == (0.35, 0.35, 0.35) and np.allclose(self.data_alpha, 0.8)): self.theme = 'Black on White' elif (rgb(self.background) == (0, 0, 0) and rgb(self.foreground) == (1, 1, 1) and rgb(self.data_color) == (0.75, 0.75, 0.75) and np.allclose(self.data_alpha, 0.8)): self.theme = 'White on Black' else: self.theme = 'Custom' def _update_colors_from_theme(self): if self.theme == 'Black on White': self.foreground = 'black' self.background = 'white' self.data_color = '0.35' self.data_alpha = 0.8 elif self.theme == 'White on Black': self.foreground = 'white' self.background = 'black' self.data_color = '0.75' self.data_alpha = 0.8 elif self.theme != 'Custom': raise ValueError("Unknown theme: {0}".format(self.theme)) def accept(self): # Update default settings from glue.config import settings settings.FOREGROUND_COLOR = self.foreground settings.BACKGROUND_COLOR = self.background settings.DATA_COLOR = self.data_color settings.DATA_ALPHA = self.data_alpha settings.SHOW_LARGE_DATA_WARNING = self.show_large_data_warning for pane in self.panes: pane.finalize() # Save to disk if requested if self.save_to_disk: save_settings() # Trigger viewers to update defaults self.app._hub.broadcast(SettingsChangeMessage(self, ('FOREGROUND_COLOR', 'BACKGROUND_COLOR'))) # If requested, trigger data to update color if self.data_apply: self.app.set_data_color(settings.DATA_COLOR, settings.DATA_ALPHA) super(PreferencesDialog, self).accept() if __name__ == "__main__": from glue.utils.qt import get_qapp app = get_qapp() widget = PreferencesDialog() widget.show() widget.raise_() app.exec_()
{ "repo_name": "saimn/glue", "path": "glue/app/qt/preferences.py", "copies": "2", "size": "4299", "license": "bsd-3-clause", "hash": -3868479306875037000, "line_mean": 33.6693548387, "line_max": 102, "alpha_frac": 0.6327052803, "autogenerated": false, "ratio": 3.797703180212014, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0006028701339793003, "num_lines": 124 }
from __future__ import absolute_import, division, print_function import os import numpy as np import pandas as pd import xarray as xr from . import randint, randn, requires_dask try: import dask import dask.multiprocessing except ImportError: pass os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE' class IOSingleNetCDF: """ A few examples that benchmark reading/writing a single netCDF file with xarray """ timeout = 300. repeat = 1 number = 5 def make_ds(self): # single Dataset self.ds = xr.Dataset() self.nt = 1000 self.nx = 90 self.ny = 45 self.block_chunks = {'time': self.nt / 4, 'lon': self.nx / 3, 'lat': self.ny / 3} self.time_chunks = {'time': int(self.nt / 36)} times = pd.date_range('1970-01-01', periods=self.nt, freq='D') lons = xr.DataArray(np.linspace(0, 360, self.nx), dims=('lon', ), attrs={'units': 'degrees east', 'long_name': 'longitude'}) lats = xr.DataArray(np.linspace(-90, 90, self.ny), dims=('lat', ), attrs={'units': 'degrees north', 'long_name': 'latitude'}) self.ds['foo'] = xr.DataArray(randn((self.nt, self.nx, self.ny), frac_nan=0.2), coords={'lon': lons, 'lat': lats, 'time': times}, dims=('time', 'lon', 'lat'), name='foo', encoding=None, attrs={'units': 'foo units', 'description': 'a description'}) self.ds['bar'] = xr.DataArray(randn((self.nt, self.nx, self.ny), frac_nan=0.2), coords={'lon': lons, 'lat': lats, 'time': times}, dims=('time', 'lon', 'lat'), name='bar', encoding=None, attrs={'units': 'bar units', 'description': 'a description'}) self.ds['baz'] = xr.DataArray(randn((self.nx, self.ny), frac_nan=0.2).astype(np.float32), coords={'lon': lons, 'lat': lats}, dims=('lon', 'lat'), name='baz', encoding=None, attrs={'units': 'baz units', 'description': 'a description'}) self.ds.attrs = {'history': 'created for xarray benchmarking'} self.oinds = {'time': randint(0, self.nt, 120), 'lon': randint(0, self.nx, 20), 'lat': randint(0, self.ny, 10)} self.vinds = {'time': xr.DataArray(randint(0, self.nt, 120), dims='x'), 'lon': xr.DataArray(randint(0, self.nx, 120), dims='x'), 'lat': slice(3, 20)} class IOWriteSingleNetCDF3(IOSingleNetCDF): def setup(self): self.format = 'NETCDF3_64BIT' self.make_ds() def time_write_dataset_netcdf4(self): self.ds.to_netcdf('test_netcdf4_write.nc', engine='netcdf4', format=self.format) def time_write_dataset_scipy(self): self.ds.to_netcdf('test_scipy_write.nc', engine='scipy', format=self.format) class IOReadSingleNetCDF4(IOSingleNetCDF): def setup(self): self.make_ds() self.filepath = 'test_single_file.nc4.nc' self.format = 'NETCDF4' self.ds.to_netcdf(self.filepath, format=self.format) def time_load_dataset_netcdf4(self): xr.open_dataset(self.filepath, engine='netcdf4').load() def time_orthogonal_indexing(self): ds = xr.open_dataset(self.filepath, engine='netcdf4') ds = ds.isel(**self.oinds).load() def time_vectorized_indexing(self): ds = xr.open_dataset(self.filepath, engine='netcdf4') ds = ds.isel(**self.vinds).load() class IOReadSingleNetCDF3(IOReadSingleNetCDF4): def setup(self): self.make_ds() self.filepath = 'test_single_file.nc3.nc' self.format = 'NETCDF3_64BIT' self.ds.to_netcdf(self.filepath, format=self.format) def time_load_dataset_scipy(self): xr.open_dataset(self.filepath, engine='scipy').load() def time_orthogonal_indexing(self): ds = xr.open_dataset(self.filepath, engine='scipy') ds = ds.isel(**self.oinds).load() def time_vectorized_indexing(self): ds = xr.open_dataset(self.filepath, engine='scipy') ds = ds.isel(**self.vinds).load() class IOReadSingleNetCDF4Dask(IOSingleNetCDF): def setup(self): requires_dask() self.make_ds() self.filepath = 'test_single_file.nc4.nc' self.format = 'NETCDF4' self.ds.to_netcdf(self.filepath, format=self.format) def time_load_dataset_netcdf4_with_block_chunks(self): xr.open_dataset(self.filepath, engine='netcdf4', chunks=self.block_chunks).load() def time_load_dataset_netcdf4_with_block_chunks_oindexing(self): ds = xr.open_dataset(self.filepath, engine='netcdf4', chunks=self.block_chunks) ds = ds.isel(**self.oinds).load() def time_load_dataset_netcdf4_with_block_chunks_vindexing(self): ds = xr.open_dataset(self.filepath, engine='netcdf4', chunks=self.block_chunks) ds = ds.isel(**self.vinds).load() def time_load_dataset_netcdf4_with_block_chunks_multiprocessing(self): with dask.config.set(scheduler="multiprocessing"): xr.open_dataset(self.filepath, engine='netcdf4', chunks=self.block_chunks).load() def time_load_dataset_netcdf4_with_time_chunks(self): xr.open_dataset(self.filepath, engine='netcdf4', chunks=self.time_chunks).load() def time_load_dataset_netcdf4_with_time_chunks_multiprocessing(self): with dask.config.set(scheduler="multiprocessing"): xr.open_dataset(self.filepath, engine='netcdf4', chunks=self.time_chunks).load() class IOReadSingleNetCDF3Dask(IOReadSingleNetCDF4Dask): def setup(self): requires_dask() self.make_ds() self.filepath = 'test_single_file.nc3.nc' self.format = 'NETCDF3_64BIT' self.ds.to_netcdf(self.filepath, format=self.format) def time_load_dataset_scipy_with_block_chunks(self): with dask.config.set(scheduler="multiprocessing"): xr.open_dataset(self.filepath, engine='scipy', chunks=self.block_chunks).load() def time_load_dataset_scipy_with_block_chunks_oindexing(self): ds = xr.open_dataset(self.filepath, engine='scipy', chunks=self.block_chunks) ds = ds.isel(**self.oinds).load() def time_load_dataset_scipy_with_block_chunks_vindexing(self): ds = xr.open_dataset(self.filepath, engine='scipy', chunks=self.block_chunks) ds = ds.isel(**self.vinds).load() def time_load_dataset_scipy_with_time_chunks(self): with dask.config.set(scheduler="multiprocessing"): xr.open_dataset(self.filepath, engine='scipy', chunks=self.time_chunks).load() class IOMultipleNetCDF: """ A few examples that benchmark reading/writing multiple netCDF files with xarray """ timeout = 300. repeat = 1 number = 5 def make_ds(self, nfiles=10): # multiple Dataset self.ds = xr.Dataset() self.nt = 1000 self.nx = 90 self.ny = 45 self.nfiles = nfiles self.block_chunks = {'time': self.nt / 4, 'lon': self.nx / 3, 'lat': self.ny / 3} self.time_chunks = {'time': int(self.nt / 36)} self.time_vars = np.split( pd.date_range('1970-01-01', periods=self.nt, freq='D'), self.nfiles) self.ds_list = [] self.filenames_list = [] for i, times in enumerate(self.time_vars): ds = xr.Dataset() nt = len(times) lons = xr.DataArray(np.linspace(0, 360, self.nx), dims=('lon', ), attrs={'units': 'degrees east', 'long_name': 'longitude'}) lats = xr.DataArray(np.linspace(-90, 90, self.ny), dims=('lat', ), attrs={'units': 'degrees north', 'long_name': 'latitude'}) ds['foo'] = xr.DataArray(randn((nt, self.nx, self.ny), frac_nan=0.2), coords={'lon': lons, 'lat': lats, 'time': times}, dims=('time', 'lon', 'lat'), name='foo', encoding=None, attrs={'units': 'foo units', 'description': 'a description'}) ds['bar'] = xr.DataArray(randn((nt, self.nx, self.ny), frac_nan=0.2), coords={'lon': lons, 'lat': lats, 'time': times}, dims=('time', 'lon', 'lat'), name='bar', encoding=None, attrs={'units': 'bar units', 'description': 'a description'}) ds['baz'] = xr.DataArray(randn((self.nx, self.ny), frac_nan=0.2).astype(np.float32), coords={'lon': lons, 'lat': lats}, dims=('lon', 'lat'), name='baz', encoding=None, attrs={'units': 'baz units', 'description': 'a description'}) ds.attrs = {'history': 'created for xarray benchmarking'} self.ds_list.append(ds) self.filenames_list.append('test_netcdf_%i.nc' % i) class IOWriteMultipleNetCDF3(IOMultipleNetCDF): def setup(self): self.make_ds() self.format = 'NETCDF3_64BIT' def time_write_dataset_netcdf4(self): xr.save_mfdataset(self.ds_list, self.filenames_list, engine='netcdf4', format=self.format) def time_write_dataset_scipy(self): xr.save_mfdataset(self.ds_list, self.filenames_list, engine='scipy', format=self.format) class IOReadMultipleNetCDF4(IOMultipleNetCDF): def setup(self): requires_dask() self.make_ds() self.format = 'NETCDF4' xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format) def time_load_dataset_netcdf4(self): xr.open_mfdataset(self.filenames_list, engine='netcdf4').load() def time_open_dataset_netcdf4(self): xr.open_mfdataset(self.filenames_list, engine='netcdf4') class IOReadMultipleNetCDF3(IOReadMultipleNetCDF4): def setup(self): requires_dask() self.make_ds() self.format = 'NETCDF3_64BIT' xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format) def time_load_dataset_scipy(self): xr.open_mfdataset(self.filenames_list, engine='scipy').load() def time_open_dataset_scipy(self): xr.open_mfdataset(self.filenames_list, engine='scipy') class IOReadMultipleNetCDF4Dask(IOMultipleNetCDF): def setup(self): requires_dask() self.make_ds() self.format = 'NETCDF4' xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format) def time_load_dataset_netcdf4_with_block_chunks(self): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.block_chunks).load() def time_load_dataset_netcdf4_with_block_chunks_multiprocessing(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.block_chunks).load() def time_load_dataset_netcdf4_with_time_chunks(self): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.time_chunks).load() def time_load_dataset_netcdf4_with_time_chunks_multiprocessing(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.time_chunks).load() def time_open_dataset_netcdf4_with_block_chunks(self): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.block_chunks) def time_open_dataset_netcdf4_with_block_chunks_multiprocessing(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.block_chunks) def time_open_dataset_netcdf4_with_time_chunks(self): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.time_chunks) def time_open_dataset_netcdf4_with_time_chunks_multiprocessing(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='netcdf4', chunks=self.time_chunks) class IOReadMultipleNetCDF3Dask(IOReadMultipleNetCDF4Dask): def setup(self): requires_dask() self.make_ds() self.format = 'NETCDF3_64BIT' xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format) def time_load_dataset_scipy_with_block_chunks(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='scipy', chunks=self.block_chunks).load() def time_load_dataset_scipy_with_time_chunks(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='scipy', chunks=self.time_chunks).load() def time_open_dataset_scipy_with_block_chunks(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='scipy', chunks=self.block_chunks) def time_open_dataset_scipy_with_time_chunks(self): with dask.config.set(scheduler="multiprocessing"): xr.open_mfdataset(self.filenames_list, engine='scipy', chunks=self.time_chunks) def create_delayed_write(): import dask.array as da vals = da.random.random(300, chunks=(1,)) ds = xr.Dataset({'vals': (['a'], vals)}) return ds.to_netcdf('file.nc', engine='netcdf4', compute=False) class IOWriteNetCDFDask: timeout = 60 repeat = 1 number = 5 def setup(self): requires_dask() self.write = create_delayed_write() def time_write(self): self.write.compute() class IOWriteNetCDFDaskDistributed: def setup(self): try: import distributed except ImportError: raise NotImplementedError self.client = distributed.Client() self.write = create_delayed_write() def cleanup(self): self.client.shutdown() def time_write(self): self.write.compute()
{ "repo_name": "shoyer/xray", "path": "asv_bench/benchmarks/dataset_io.py", "copies": "1", "size": "16435", "license": "apache-2.0", "hash": 7250270921864721000, "line_mean": 35.6852678571, "line_max": 78, "alpha_frac": 0.526194098, "autogenerated": false, "ratio": 3.927120669056153, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9953314767056154, "avg_score": 0, "num_lines": 448 }
from __future__ import absolute_import, division, print_function import os import numpy as np import seaborn as sns import tensorflow as tf from matplotlib import pyplot as plt from scipy import stats from sklearn.mixture import GaussianMixture from tensorflow.python.keras import Sequential from odin import visual as vis from odin.networks import MixtureDensityNetwork os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(8) np.random.seed(8) n = 1200 n_components = 12 x = [] for i in range(n_components): x.append( stats.norm.rvs(size=(n, 1), loc=i * 12, scale=np.random.randint(1, 6)).astype('float32')) x = np.concatenate(x, axis=0) # ====== gmm ====== # gmm = GaussianMixture(n_components=n_components, covariance_type='spherical', random_state=8) gmm.fit(x) gmm_llk = gmm.score(x) gmm_mean = gmm.means_.ravel().astype('float32') # ====== mdn ====== # def fn_loss(y_true, y_pred): # negative log-likelihood nllk = tf.reduce_mean(-y_pred.log_prob(y_true)) return nllk mdn = MixtureDensityNetwork(1, n_components=n_components, covariance_type='none') model = Sequential([mdn]) model.compile(optimizer='adam', loss=fn_loss) model.fit(x=x, y=x, epochs=48, batch_size=64, verbose=True) y = model(x) mdn_llk = tf.reduce_mean(y.log_prob(x)).numpy() mdn_mean = tf.reduce_mean(y.components_distribution.mean(), axis=(0, -1)).numpy() # ====== visualizing ====== # fig = plt.figure() sns.distplot(x, bins=80) plt.title('Data') fig = plt.figure() sns.distplot(gmm.sample(n * n_components)[0], bins=80) plt.title('GMM - llk: %.2f' % gmm_llk) fig = plt.figure() sns.distplot(y.sample().numpy(), bins=80) plt.title('MDN - llk: %.2f' % mdn_llk) vis.plot_save()
{ "repo_name": "imito/odin", "path": "tests/test_mixture_density_network.py", "copies": "1", "size": "1885", "license": "mit", "hash": 4191435767940286500, "line_mean": 25.1805555556, "line_max": 70, "alpha_frac": 0.6376657825, "autogenerated": false, "ratio": 2.8517397881996973, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3989405570699697, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import numpy as np import tensorflow as tf from tensorflow_probability.python.distributions import (Bernoulli, Independent, NegativeBinomial, Normal, VectorDeterministic) from odin.bay.distributions import (NegativeBinomialDisp, ZeroInflated, concat_distribution) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(8) np.random.seed(8) def assert_consistent_statistics(d1, d2): d = concat_distribution((d1, d2)) m1 = d1.mean() m2 = d2.mean() m = d.mean() assert np.all(np.isclose(m.numpy(), tf.concat((m1, m2), axis=0).numpy())) v1 = d1.variance() v2 = d2.variance() v = d.variance() assert np.all(np.isclose(v.numpy(), tf.concat((v1, v2), axis=0).numpy())) # This is because # tf.random.set_seed(8) # print(tf.random.uniform((3,), seed=1)) # print(tf.random.uniform((2,), seed=1)) # # is different from # tf.random.set_seed(8) # print(tf.random.uniform((5,), seed=1)) tf.random.set_seed(8) s1 = d1.sample() s2 = d2.sample() tf.random.set_seed(8) s = d.sample() assert s.shape == tf.concat((s1, s2), axis=0).shape assert np.all(np.isclose(s[:s1.shape[0]].numpy(), s1.numpy())) try: for name in d1.__class__._params_event_ndims().keys(): p1 = getattr(d1, name) p2 = getattr(d2, name) p = getattr(d, name) assert np.all(np.isclose(p.numpy(), tf.concat((p1, p2), axis=0).numpy())) except NotImplementedError: pass shape = (8, 2) count = np.random.randint(0, 20, size=shape).astype('float32') probs = np.random.rand(*shape).astype('float32') logits = np.random.rand(*shape).astype('float32') assert_consistent_statistics(Bernoulli(probs=probs), Bernoulli(logits=logits)) assert_consistent_statistics(Bernoulli(logits=logits), Bernoulli(logits=logits)) assert_consistent_statistics( Independent(Bernoulli(probs=probs), reinterpreted_batch_ndims=1), Independent(Bernoulli(logits=logits), reinterpreted_batch_ndims=1)) assert_consistent_statistics(NegativeBinomial(total_count=count, logits=logits), NegativeBinomial(total_count=count, probs=probs)) assert_consistent_statistics( Independent(NegativeBinomial(total_count=count, logits=logits), reinterpreted_batch_ndims=1), Independent(NegativeBinomial(total_count=count, probs=probs), reinterpreted_batch_ndims=1)) assert_consistent_statistics( ZeroInflated(NegativeBinomial(total_count=count, logits=logits), logits=logits), ZeroInflated(NegativeBinomial(total_count=count, probs=probs), probs=probs)) assert_consistent_statistics( Independent(ZeroInflated(NegativeBinomial(total_count=count, logits=logits), logits=logits), reinterpreted_batch_ndims=1), Independent(ZeroInflated(NegativeBinomial(total_count=count, probs=probs), probs=probs), reinterpreted_batch_ndims=1)) assert_consistent_statistics( ZeroInflated(Independent(NegativeBinomial(total_count=count, logits=logits), reinterpreted_batch_ndims=1), logits=logits), ZeroInflated(Independent(NegativeBinomial(total_count=count, probs=probs), reinterpreted_batch_ndims=1), probs=probs)) assert_consistent_statistics(NegativeBinomialDisp(loc=count, disp=count), NegativeBinomialDisp(loc=count, disp=count)) assert_consistent_statistics( ZeroInflated(NegativeBinomialDisp(loc=count, disp=count), probs=probs), ZeroInflated(NegativeBinomialDisp(loc=count, disp=count), probs=probs)) inflated_dist1 = Bernoulli(logits=logits) inflated_dist2 = Bernoulli(probs=probs) assert_consistent_statistics( ZeroInflated(NegativeBinomialDisp(loc=count, disp=count), inflated_distribution=inflated_dist1), ZeroInflated(NegativeBinomialDisp(loc=count, disp=count), inflated_distribution=inflated_dist2))
{ "repo_name": "imito/odin", "path": "tests/test_stack_distributions.py", "copies": "1", "size": "4308", "license": "mit", "hash": 7284793420709947000, "line_mean": 38.5229357798, "line_max": 80, "alpha_frac": 0.6511142061, "autogenerated": false, "ratio": 3.545679012345679, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9638319621589566, "avg_score": 0.011694719371222623, "num_lines": 109 }
from __future__ import absolute_import, division, print_function import os import numpy as np import tensorflow as tf import torch from tensorflow.python.keras.layers import Dense from odin import networks_torch as nt from odin.networks import (TimeDelay, TimeDelayConv, TimeDelayConvTied, TimeDelayDense) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(8) np.random.seed(8) torch.manual_seed(8) x = np.random.rand(12, 80, 23).astype('float32') for _ in range(20): ctx = sorted(set(int(i) for i in np.random.randint(-5, 5, size=4))) print('\n', ctx) # ====== tensorflow ====== # tdd = TimeDelay( fn_layer_creator=lambda: Dense(units=128), delay_context=ctx, # ) y = tdd(x) print(y.shape) tdd = TimeDelayDense(units=128) y = tdd(x) print(y.shape) tdc = TimeDelayConv(units=128) y = tdc(x) print(y.shape) tdct = TimeDelayConvTied(units=128) y = tdct(x) print(y.shape) # ====== pytorch ====== # # add `nt.` to everything and the same code will work for pytorch tdd = nt.TimeDelay( fn_layer_creator=lambda: nt.Dense(128), delay_context=ctx, # ) y = tdd(x) print(y.shape) tdd = nt.TimeDelayDense(units=128) y = tdd(x) print(y.shape) tdc = nt.TimeDelayConv(units=128) y = tdc(x) print(y.shape) tdct = nt.TimeDelayConvTied(units=128) y = tdct(x) print(y.shape)
{ "repo_name": "imito/odin", "path": "tests/test_time_delay_networks.py", "copies": "1", "size": "1445", "license": "mit", "hash": 6688619488873689000, "line_mean": 20.8939393939, "line_max": 71, "alpha_frac": 0.644982699, "autogenerated": false, "ratio": 2.768199233716475, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.880046290823936, "avg_score": 0.02254380489542296, "num_lines": 66 }
from __future__ import absolute_import, division, print_function import os import numpy as np import tensorflow as tf import torch from odin.bay.distributions import NegativeBinomialDisp, ZeroInflated from odin.stats import describe from scvi.models.log_likelihood import log_nb_positive, log_zinb_positive os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(8) np.random.seed(8) torch.manual_seed(8) def torch_nb(mean, disp): px_rate = torch.Tensor(mean) px_r = torch.Tensor(disp) p = px_rate / (px_rate + px_r) r = px_r l_train = torch.distributions.Gamma(concentration=r, rate=(1 - p) / p).sample() l_train = torch.clamp(l_train, max=1e18) X = torch.distributions.Poisson(l_train).sample() return X shape = (12000, 800) x = np.random.randint(1, 20, size=shape).astype('float32') mean = np.random.randint(1, 20, size=shape).astype('float32') disp = np.random.randint(1, 20, size=shape).astype('float32') disp_col = np.random.randint(1, 20, size=shape[1]).astype('float32') disp_row = np.random.randint(1, 20, size=shape[0]).astype('float32') pi = np.random.rand(*shape).astype('float32') # constant dispersion (only for tensorflow) nb = NegativeBinomialDisp(loc=mean, disp=2) llk1 = tf.reduce_sum(nb.log_prob(x), axis=1).numpy() print(llk1) # broadcast disp in column nb = NegativeBinomialDisp(loc=mean, disp=disp_col) llk1 = tf.reduce_sum(nb.log_prob(x), axis=1).numpy() llk2 = log_nb_positive(x=torch.Tensor(x), mu=torch.Tensor(mean), theta=torch.Tensor(disp_col)).numpy() print(np.all(np.isclose(llk1, llk2))) # broadcast disp in row try: nb = NegativeBinomialDisp(loc=mean, disp=disp_row) llk1 = tf.reduce_sum(nb.log_prob(x), axis=1).numpy() llk2 = log_nb_positive(x=torch.Tensor(x), mu=torch.Tensor(mean), theta=torch.Tensor(disp_row)).numpy() print(np.all(np.isclose(llk1, llk2))) except: print("NOT POSSIBLE TO BROADCAST the first dimension") # all disp available nb = NegativeBinomialDisp(loc=mean, disp=disp) llk1 = tf.reduce_sum(nb.log_prob(x), axis=1).numpy() llk2 = log_nb_positive(x=torch.Tensor(x), mu=torch.Tensor(mean), theta=torch.Tensor(disp)).numpy() print(np.all(np.isclose(llk1, llk2))) s1 = nb.sample().numpy() s2 = torch_nb(mean, disp).numpy() print(describe(s1)) print(describe(s2)) zinb = ZeroInflated(nb, probs=pi) llk1 = tf.reduce_sum(zinb.log_prob(x), axis=1).numpy() llk2 = log_zinb_positive(x=torch.Tensor(x), mu=torch.Tensor(mean), theta=torch.Tensor(disp), pi=torch.Tensor(pi)).numpy() print(llk1) print(llk2)
{ "repo_name": "imito/odin", "path": "tests/test_negative_binomial_disp.py", "copies": "1", "size": "2797", "license": "mit", "hash": -1093659561195446000, "line_mean": 31.9058823529, "line_max": 73, "alpha_frac": 0.6503396496, "autogenerated": false, "ratio": 2.86577868852459, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.401611833812459, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import numpy as np import tensorflow as tf import torch from odin import backend as K from odin import networks as net # tensorflow networks from odin import networks_torch as nt # pytorch networks tf.random.set_seed(8) torch.manual_seed(8) np.random.seed(8) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' x = torch.Tensor(np.random.rand(12, 8)) x1 = torch.Tensor(np.random.rand(12, 25, 8)) # =========================================================================== # RNN # =========================================================================== f = nt.LSTM(units=32, go_backwards=True, unit_forget_bias=True, return_sequences=True, return_state=True, bidirectional=True) y = f(x1) print(x1.shape, [i.shape for i in y]) f = nt.SimpleRNN(units=32, go_backwards=True) y = f(x1) print(x1.shape, y.shape) f = nt.GRU(units=32, go_backwards=False, return_state=True) y = f(x1) print(x1.shape, [i.shape for i in y]) # ====== tensorflow ====== # print() f = net.LSTM(units=32, go_backwards=True, unit_forget_bias=True, return_sequences=True, return_state=True, bidirectional=True) y = f(x1.numpy()) print(x1.shape, [i.shape for i in y]) f = net.SimpleRNN(units=32, go_backwards=True) y = f(x1.numpy()) print(x1.shape, y.shape) f = net.GRU(units=32, go_backwards=False, return_state=True) y = f(x1.numpy()) print(x1.shape, [i.shape for i in y]) print() # =========================================================================== # Basics # =========================================================================== f = nt.Dense(units=512) y = f(x) print(x.shape, y.shape) # =========================================================================== # CNN # =========================================================================== x = torch.Tensor(np.random.rand(12, 25, 8)) f = nt.Conv1D(filters=128, kernel_size=3) y = f(x) print(x.shape, y.shape) x = torch.Tensor(np.random.rand(12, 25, 8)) f = nt.ConvCausal(filters=128, kernel_size=3) y = f(x) print(x.shape, y.shape) x = torch.Tensor(np.random.rand(12, 25, 8)) f = nt.Conv1D(filters=128, kernel_size=3, data_format='channels_first') y = f(x) print(x.shape, y.shape) x = torch.Tensor(np.random.rand(12, 32, 32, 3)) f = nt.Conv2D(filters=128, kernel_size=3, padding='same') y = f(x) print(x.shape, y.shape) x = torch.Tensor(np.random.rand(12, 32, 32, 32, 3)) f = nt.Conv3D(filters=128, kernel_size=3) y = f(x) print(x.shape, y.shape)
{ "repo_name": "imito/odin", "path": "tests/test_keras_torch.py", "copies": "1", "size": "2654", "license": "mit", "hash": -7446849769077663000, "line_mean": 26.9368421053, "line_max": 77, "alpha_frac": 0.5346646571, "autogenerated": false, "ratio": 2.9820224719101125, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40166871290101125, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import numpy as np import torch from six import string_types from torch import nn from odin.backend import concatenate, expand_dims, parse_reduction, squeeze from odin.networks_torch.keras_torch import Conv1D, Dense, Layer from odin.utils import as_tuple class TimeDelay(Layer): """ A generalized implementation of time-delayed neural network by applying Parameters ---------- fn_layer_creator : `callable` a function that returns a `keras.Layer` delay_context : list of `int` list of time delay taken into account pooling : {'none', 'sum', 'min', 'max', 'avg', 'stat'} (default='sum') pooling in time dimension after convolution operator for 'stat' pooling, mean and standard deviation is calculated along time-dimension, then output the concatenation of the two. if None, no pooling is performed, the output is returned in shape `[n_samples, n_reduced_timestep, n_new_features]` Input shape ----------- 3D tensor with shape: `(batch_size, timesteps, input_dim)` Output shape ------------ 3D tensor with shape: `(batch_size, new_timesteps, units)` """ def __init__(self, fn_layer_creator, delay_context=(-2, -1, 0, 1, 2), pooling='sum', **kwargs): super(TimeDelay, self).__init__(**kwargs) assert callable(fn_layer_creator), \ "fn_layer_creator must be callable and return a torch.nn.Module" self.fn_layer_creator = fn_layer_creator # no duplicated frame index self.delay_context = np.array(sorted(set(int(i) for i in delay_context))) self.context_length = self.delay_context[-1] - self.delay_context[0] + 1 self.delays = self.delay_context + max(0, -self.delay_context[0]) self.min_delay = max(0, min(self.delays)) # pooling function for aggrevate the time outputs self.pooling = 'none' if pooling is None else pooling self.fn_pooling = parse_reduction(pooling) all_layers = nn.ModuleList() for time_id in range(len(self.delay_context)): layer = fn_layer_creator() assert isinstance(layer, torch.nn.Module), \ "fn_layer_creator must return torch.nn.Module instance, " + \ "but return type is %s" % \ str(type(layer)) # we need to setattr so the Model will manage the Layer all_layers.append(layer) self.all_layers = all_layers def call(self, inputs, training=None): # anyway, if the smallest value is negative, # start from 0 (i.e. relative position) shape = inputs.shape timestep = shape[1] y = [] for delay, layer in zip(self.delays, self.all_layers): start = delay end = timestep - self.context_length + delay + 1 - self.min_delay y.append(expand_dims(layer(inputs[:, start:end]), axis=0)) y = concatenate(y, axis=0) y = self.fn_pooling(y, axis=0) if isinstance(self.pooling, string_types) and \ 'none' in self.pooling.lower() and \ self.context_length == 1: y = squeeze(y, axis=0) return y class TimeDelayDense(TimeDelay): """ The implementaiton of time delay neural network Input shape ----------- 3D tensor with shape: `(batch_size, timesteps, input_dim)` Output shape ------------ 3D tensor with shape: `(batch_size, new_timesteps, units)` """ def __init__(self, units, delay_context=(-2, -1, 0, 1, 2), pooling='sum', activation='linear', use_bias=False, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(TimeDelayDense, self).__init__(fn_layer_creator=lambda: Dense( units=units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, ), delay_context=delay_context, pooling=pooling, **kwargs) class TimeDelayConv(TimeDelay): """ This implementaiton create multiple convolutional neural network for each time delay. Parameters ---------- Input shape ----------- 3D tensor with shape: `(batch_size, timesteps, input_dim)` Output shape ------------ 3D tensor with shape: `(batch_size, new_timesteps, units)` `steps` value might have changed due to padding or strides. """ def __init__(self, units, kernel_size=3, delay_context=(-2, -1, 0, 1, 2), pooling='sum', activation='linear', use_bias=False, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(TimeDelayConv, self).__init__(fn_layer_creator=lambda: Conv1D( filters=units, kernel_size=kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, ), delay_context=delay_context, pooling=pooling, **kwargs) class TimeDelayConvTied(TimeDelay): """ Time-delayed dense implementation but using a 1D-convolutional neural network, only support consecutive delay context (given a number of `delay_strides`). From the paper, it is suggested to create multiple `TimeDelayedConv` with variate number of feature map and length of context windows, then concatenate the outputs for `Dense` layers For example: - feature_maps = [50, 100, 150, 200, 200, 200, 200] - kernels = [1, 2, 3, 4, 5, 6, 7] Parameters ---------- units : `int` number of new features delay_length : `int` (default=5) length of time delayed context delay_strides : `int` (default=1) specifying the strides of time window """ def __init__(self, units, delay_length=5, delay_strides=1, activation='linear', use_bias=False, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(TimeDelayConvTied, self).__init__(fn_layer_creator=lambda: Conv1D( filters=units, kernel_size=delay_length, strides=delay_strides, padding='valid', data_format='channels_last', dilation_rate=1, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, ), delay_context=(0,), pooling='none', **kwargs)
{ "repo_name": "imito/odin", "path": "odin/networks_torch/time_delay.py", "copies": "1", "size": "7043", "license": "mit", "hash": 7988926047575369000, "line_mean": 30.8687782805, "line_max": 77, "alpha_frac": 0.5861138719, "autogenerated": false, "ratio": 4.101921956901572, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5188035828801572, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import numpy as np from qtpy import QtCore, QtWidgets from glue.utils.qt import load_ui from glue.utils import nonpartial from glue.icons.qt import get_icon from glue.core.state_objects import State, CallbackProperty from glue.external.echo.qt import autoconnect_callbacks_to_qt class SliceState(State): label = CallbackProperty() slider_label = CallbackProperty() slider_unit = CallbackProperty() slice_center = CallbackProperty() use_world = CallbackProperty() class SliceWidget(QtWidgets.QWidget): slice_changed = QtCore.Signal(int) def __init__(self, label='', world=None, lo=0, hi=10, parent=None, world_unit=None, world_warning=False): super(SliceWidget, self).__init__(parent) self.state = SliceState() self.state.label = label self.state.slice_center = (lo + hi) // 2 self._world = np.asarray(world) self._world_warning = world_warning self._world_unit = world_unit self.ui = load_ui('data_slice_widget.ui', self, directory=os.path.dirname(__file__)) autoconnect_callbacks_to_qt(self.state, self.ui) font = self.text_warning.font() font.setPointSize(font.pointSize() * 0.75) self.text_warning.setFont(font) self.button_first.setStyleSheet('border: 0px') self.button_first.setIcon(get_icon('playback_first')) self.button_prev.setStyleSheet('border: 0px') self.button_prev.setIcon(get_icon('playback_prev')) self.button_back.setStyleSheet('border: 0px') self.button_back.setIcon(get_icon('playback_back')) self.button_stop.setStyleSheet('border: 0px') self.button_stop.setIcon(get_icon('playback_stop')) self.button_forw.setStyleSheet('border: 0px') self.button_forw.setIcon(get_icon('playback_forw')) self.button_next.setStyleSheet('border: 0px') self.button_next.setIcon(get_icon('playback_next')) self.button_last.setStyleSheet('border: 0px') self.button_last.setIcon(get_icon('playback_last')) self.value_slice_center.setMinimum(lo) self.value_slice_center.setMaximum(hi) self.value_slice_center.valueChanged.connect(nonpartial(self.set_label_from_slider)) self.text_slider_label.setMinimumWidth(80) self.state.slider_label = str(self.value_slice_center.value()) self.text_slider_label.editingFinished.connect(nonpartial(self.set_slider_from_label)) self._play_timer = QtCore.QTimer() self._play_timer.setInterval(500) self._play_timer.timeout.connect(nonpartial(self._play_slice)) self.button_first.clicked.connect(nonpartial(self._browse_slice, 'first')) self.button_prev.clicked.connect(nonpartial(self._browse_slice, 'prev')) self.button_back.clicked.connect(nonpartial(self._adjust_play, 'back')) self.button_stop.clicked.connect(nonpartial(self._adjust_play, 'stop')) self.button_forw.clicked.connect(nonpartial(self._adjust_play, 'forw')) self.button_next.clicked.connect(nonpartial(self._browse_slice, 'next')) self.button_last.clicked.connect(nonpartial(self._browse_slice, 'last')) self.bool_use_world.toggled.connect(nonpartial(self.set_label_from_slider)) if world is None: self.state.use_world = False self.bool_use_world.hide() else: self.state.use_world = not world_warning if world_unit: self.state.slider_unit = world_unit else: self.state.slider_unit = '' self._play_speed = 0 self.set_label_from_slider() def set_label_from_slider(self): value = self.state.slice_center if self.state.use_world: value = self._world[value] if self._world_warning: self.text_warning.show() else: self.text_warning.hide() self.state.slider_unit = self._world_unit else: self.text_warning.hide() self.state.slider_unit = '' self.state.slider_label = str(value) def set_slider_from_label(self): # Ignore recursive calls - we do this rather than ignore_callback # below when setting slider_label, otherwise we might be stopping other # subscribers to that event from being correctly updated if getattr(self, '_in_set_slider_from_label', False): return else: self._in_set_slider_from_label = True text = self.text_slider_label.text() if self.state.use_world: # Don't want to assume world is sorted, pick closest value value = np.argmin(np.abs(self._world - float(text))) self.state.slider_label = str(self._world[value]) else: value = int(text) self.value_slice_center.setValue(value) self._in_set_slider_from_label = False def _adjust_play(self, action): if action == 'stop': self._play_speed = 0 elif action == 'back': if self._play_speed > 0: self._play_speed = -1 else: self._play_speed -= 1 elif action == 'forw': if self._play_speed < 0: self._play_speed = +1 else: self._play_speed += 1 if self._play_speed == 0: self._play_timer.stop() else: self._play_timer.start() self._play_timer.setInterval(500 / abs(self._play_speed)) def _play_slice(self): if self._play_speed > 0: self._browse_slice('next', play=True) elif self._play_speed < 0: self._browse_slice('prev', play=True) def _browse_slice(self, action, play=False): imin = self.value_slice_center.minimum() imax = self.value_slice_center.maximum() value = self.value_slice_center.value() # If this was not called from _play_slice, we should stop the # animation. if not play: self._adjust_play('stop') if action == 'first': value = imin elif action == 'last': value = imax elif action == 'prev': value = value - 1 if value < imin: value = imax elif action == 'next': value = value + 1 if value > imax: value = imin else: raise ValueError("Action should be one of first/prev/next/last") self.value_slice_center.setValue(value) if __name__ == "__main__": from glue.utils.qt import get_qapp app = get_qapp() widget = SliceWidget(label='BANANA') widget.show() widget = SliceWidget(world=[1, 2, 3, 4, 5, 6, 7], lo=1, hi=7) widget.show() app.exec_()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/common/qt/data_slice_widget.py", "copies": "2", "size": "6972", "license": "bsd-3-clause", "hash": 8313825844746829000, "line_mean": 33.1764705882, "line_max": 94, "alpha_frac": 0.599827883, "autogenerated": false, "ratio": 3.752421959095802, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5352249842095802, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import numpy as np from toolz import first from .dispatch import dispatch import datashape import shutil from blaze.utils import tmpfile from odo import resource try: import tables as tb from tables import Table except ImportError: Table = type(None) __all__ = ['PyTables'] def dtype_to_pytables(dtype): """ Convert NumPy dtype to PyTable descriptor Examples -------- >>> from tables import Int32Col, StringCol, Time64Col >>> dt = np.dtype([('name', 'S7'), ('amount', 'i4'), ('time', 'M8[us]')]) >>> dtype_to_pytables(dt) # doctest: +SKIP {'amount': Int32Col(shape=(), dflt=0, pos=1), 'name': StringCol(itemsize=7, shape=(), dflt='', pos=0), 'time': Time64Col(shape=(), dflt=0.0, pos=2)} """ d = {} for pos, name in enumerate(dtype.names): dt, _ = dtype.fields[name] if issubclass(dt.type, np.datetime64): tdtype = tb.Description({name: tb.Time64Col(pos=pos)}), else: tdtype = tb.descr_from_dtype(np.dtype([(name, dt)])) el = first(tdtype) getattr(el, name)._v_pos = pos d.update(el._v_colobjects) return d def PyTables(path, datapath, dshape=None, **kwargs): """Create or open a ``tables.Table`` object. Parameters ---------- path : str Path to a PyTables HDF5 file. datapath : str The name of the node in the ``tables.File``. dshape : str or datashape.DataShape DataShape to use to create the ``Table``. Returns ------- t : tables.Table Examples -------- >>> from blaze.utils import tmpfile >>> # create from scratch >>> with tmpfile('.h5') as f: ... t = PyTables(filename, '/bar', ... dshape='var * {volume: float64, planet: string[10, "A"]}') ... data = [(100.3, 'mars'), (100.42, 'jupyter')] ... t.append(data) ... t[:] # doctest: +SKIP ... array([(100.3, b'mars'), (100.42, b'jupyter')], dtype=[('volume', '<f8'), ('planet', 'S10')]) """ def possibly_create_table(filename, dtype): f = tb.open_file(filename, mode='a') try: if datapath not in f: if dtype is None: raise ValueError('dshape cannot be None and datapath not' ' in file') else: f.create_table('/', datapath.lstrip('/'), description=dtype) finally: f.close() if dshape: if isinstance(dshape, str): dshape = datashape.dshape(dshape) if dshape[0] == datashape.var: dshape = dshape.subshape[0] dtype = dtype_to_pytables(datashape.to_numpy_dtype(dshape)) else: dtype = None if os.path.exists(path): possibly_create_table(path, dtype) else: with tmpfile('.h5') as filename: possibly_create_table(filename, dtype) shutil.copyfile(filename, path) return tb.open_file(path, mode='a').get_node(datapath) @dispatch(Table) def chunks(b, chunksize=2**15): start = 0 n = len(b) while start < n: yield b[start:start + chunksize] start += chunksize @dispatch(Table, int) def get_chunk(b, i, chunksize=2**15): start = chunksize * i stop = chunksize * (i + 1) return b[start:stop] @resource.register('.+\.h5') def resource_pytables(path, datapath=None, **kwargs): if not datapath: return tb.open_file(path) else: return PyTables(path, datapath, **kwargs)
{ "repo_name": "mrocklin/blaze", "path": "blaze/pytables.py", "copies": "1", "size": "3639", "license": "bsd-3-clause", "hash": -7819087954397837000, "line_mean": 26.7786259542, "line_max": 83, "alpha_frac": 0.5622423743, "autogenerated": false, "ratio": 3.5502439024390244, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4612486276739024, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import pytest import numpy as np from numpy.testing import assert_array_equal from glue.tests.helpers import make_file from glue.core.data_factories.helpers import find_factory from glue.core import data_factories as df from glue.tests.helpers import requires_astrodendro DATA = os.path.join(os.path.dirname(__file__), 'data') @requires_astrodendro @pytest.mark.parametrize('filename', ['dendro.fits', 'dendro_old.fits', 'dendro.hdf5']) def test_is_dendro(filename): from ..data_factory import is_dendro assert is_dendro(os.path.join(DATA, filename)) @requires_astrodendro @pytest.mark.parametrize('filename', ['dendro.fits', 'dendro_old.fits', 'dendro.hdf5']) def test_find_factory(filename): from ..data_factory import load_dendro assert find_factory(os.path.join(DATA, filename)) is load_dendro @requires_astrodendro def test_identifier_heuristics(tmpdir): filename = tmpdir.join('test.fits').strpath from ..data_factory import is_dendro from astropy.io import fits hdulist = fits.HDUList() hdulist.append(fits.PrimaryHDU()) hdulist.append(fits.ImageHDU()) hdulist.append(fits.ImageHDU()) hdulist.writeto(filename) assert not is_dendro(filename) hdulist.append(fits.ImageHDU()) hdulist.writeto(filename, overwrite=True) assert not is_dendro(filename) hdulist[1].name = 'random' hdulist.writeto(filename, overwrite=True) assert not is_dendro(filename) hdulist[1].name = '' hdulist[0].data = np.array([1, 2, 3]) hdulist.writeto(filename, overwrite=True) assert not is_dendro(filename) hdulist[0].data = None hdulist[1].data = np.ones((3, 4)) hdulist[2].data = np.ones((2, 4)) hdulist[3].data = np.ones((3, 5)) hdulist.writeto(filename, overwrite=True) assert not is_dendro(filename) hdulist[2].data = np.ones((3, 4)) hdulist.writeto(filename, overwrite=True) assert not is_dendro(filename) hdulist[3].data = np.ones(3) hdulist.writeto(filename, overwrite=True) assert is_dendro(filename) @requires_astrodendro def test_dendrogram_load(): from ..data_factory import load_dendro data = b"""x\xda\xed\xda]K\xc2`\x18\xc6\xf1^\xbe\xc8}fA\xe4[X\x14\x1eX\x99<\x90S\xd8\x02O\x9f\xf2Q<\xd8&\xcf&\xe4\xb7\xcft\x82\xc9\xe6\x1be\x91\xff\xdf\xc9\xc5\xd8v\xc1vt\xeff\xaej\xb6\x9f\xeb"UI\xe1I^\xde\xc2\xa0\x17Z?\x928\x94\'\xe5\xb9\x12\xc5:\xe8j\xdb\x95T\xf7\xcak\xabNF\xdf\xcd\xa4O[\xab\xc7\xd2\xd5\xb1\x96x<4\xb2\x86S\xeb(W2\xfa\n\x93\xbe`\xe4\xbf\x1a+ao\xde<\xf0M\x10\r\xc2 J\xed\xabw\xbc\xba\xf3\x98\xf9\xbc[\x9b\x96\x01\x00\x00\xe0`|\x8e\x93\xaej9U\xc9\xa9f\xad1\x99\xa4%\xb7p:/\xca\xd7}#\xe6=\x9eM\xa5\xeb\xfaV\xcd\xcf\x95\xabo\x9e\x9f\x8b\xdb\xcf\xcf\xd3\xbebF_e\xfb\xf7\xd7~h\xbd8\xdeF\xf3\xfdP[\xed\x9b\xd8\xd8hE_cU\xdf\xd7\xe7\xed\xdbp4\x8c\x98\xef\x01\x00\x00\xf6\xeah\xe68\xc9\x93$O3\x8e\xe7\xd7\x01\x00\x00\x00\x07i\x9f\xfb\xe7r\x89\xfd3\xfbg\x00\x00\x80\x7f\xb1\x7fN\xdbA\x03\x00\x00\x00\xf8\xc5\xfd\xf3_\xff\xff\xb9t\xcd\xfe\x19\x00\x00\x00\x1b\xed\x9f\xcf\x96\xb2\x98\xe4m\x92\xe5$/\x93,d\xe4E\x92\xa5\x1d\xef?_:\xde\xf5\xfe;\xbe\x8c\x00\x00\x00\xf0\x13>\x00\x8e\xbe x""" with make_file(data, 'fits', decompress=True) as fname: dg, im = df.load_data(fname, factory=load_dendro) assert_array_equal(im['intensity'], [1, 2, 3, 2, 3, 1]) assert_array_equal(im['structure'], [0, 0, 1, 0, 2, 0]) assert_array_equal(dg['parent'], [-1, 0, 0]) assert_array_equal(dg['height'], [3, 3, 3]) assert_array_equal(dg['peak'], [3, 3, 3])
{ "repo_name": "stscieisenhamer/glue", "path": "glue/plugins/dendro_viewer/tests/test_data_factory.py", "copies": "2", "size": "3608", "license": "bsd-3-clause", "hash": 7593548819647206000, "line_mean": 36.9789473684, "line_max": 998, "alpha_frac": 0.699556541, "autogenerated": false, "ratio": 2.320257234726688, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4019813775726688, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os import pytest @pytest.mark.filterwarnings("default") def test_yield_tests_deprecation(testdir): testdir.makepyfile( """ def func1(arg, arg2): assert arg == arg2 def test_gen(): yield "m1", func1, 15, 3*5 yield "m2", func1, 42, 6*7 def test_gen2(): for k in range(10): yield func1, 1, 1 """ ) result = testdir.runpytest() result.stdout.fnmatch_lines( [ "*test_yield_tests_deprecation.py:3:*yield tests are deprecated*", "*test_yield_tests_deprecation.py:6:*yield tests are deprecated*", "*2 passed*", ] ) assert result.stdout.str().count("yield tests are deprecated") == 2 @pytest.mark.filterwarnings("default") def test_funcarg_prefix_deprecation(testdir): testdir.makepyfile( """ def pytest_funcarg__value(): return 10 def test_funcarg_prefix(value): assert value == 10 """ ) result = testdir.runpytest("-ra") result.stdout.fnmatch_lines( [ ( "*test_funcarg_prefix_deprecation.py:1: *pytest_funcarg__value: " 'declaring fixtures using "pytest_funcarg__" prefix is deprecated*' ), "*1 passed*", ] ) @pytest.mark.filterwarnings("default") def test_pytest_setup_cfg_deprecated(testdir): testdir.makefile( ".cfg", setup=""" [pytest] addopts = --verbose """, ) result = testdir.runpytest() result.stdout.fnmatch_lines( ["*pytest*section in setup.cfg files is deprecated*use*tool:pytest*instead*"] ) @pytest.mark.filterwarnings("default") def test_pytest_custom_cfg_deprecated(testdir): testdir.makefile( ".cfg", custom=""" [pytest] addopts = --verbose """, ) result = testdir.runpytest("-c", "custom.cfg") result.stdout.fnmatch_lines( ["*pytest*section in custom.cfg files is deprecated*use*tool:pytest*instead*"] ) def test_str_args_deprecated(tmpdir): """Deprecate passing strings to pytest.main(). Scheduled for removal in pytest-4.0.""" from _pytest.main import EXIT_NOTESTSCOLLECTED warnings = [] class Collect(object): def pytest_warning_captured(self, warning_message): warnings.append(str(warning_message.message)) ret = pytest.main("%s -x" % tmpdir, plugins=[Collect()]) msg = ( "passing a string to pytest.main() is deprecated, " "pass a list of arguments instead." ) assert msg in warnings assert ret == EXIT_NOTESTSCOLLECTED def test_getfuncargvalue_is_deprecated(request): pytest.deprecated_call(request.getfuncargvalue, "tmpdir") @pytest.mark.filterwarnings("default") def test_resultlog_is_deprecated(testdir): result = testdir.runpytest("--help") result.stdout.fnmatch_lines(["*DEPRECATED path for machine-readable result log*"]) testdir.makepyfile( """ def test(): pass """ ) result = testdir.runpytest("--result-log=%s" % testdir.tmpdir.join("result.log")) result.stdout.fnmatch_lines( [ "*--result-log is deprecated and scheduled for removal in pytest 4.0*", "*See https://docs.pytest.org/en/latest/usage.html#creating-resultlog-format-files for more information*", ] ) @pytest.mark.filterwarnings("always:Metafunc.addcall is deprecated") def test_metafunc_addcall_deprecated(testdir): testdir.makepyfile( """ def pytest_generate_tests(metafunc): metafunc.addcall({'i': 1}) metafunc.addcall({'i': 2}) def test_func(i): pass """ ) res = testdir.runpytest("-s") assert res.ret == 0 res.stdout.fnmatch_lines( ["*Metafunc.addcall is deprecated*", "*2 passed, 2 warnings*"] ) def test_terminal_reporter_writer_attr(pytestconfig): """Check that TerminalReporter._tw is also available as 'writer' (#2984) This attribute is planned to be deprecated in 3.4. """ try: import xdist # noqa pytest.skip("xdist workers disable the terminal reporter plugin") except ImportError: pass terminal_reporter = pytestconfig.pluginmanager.get_plugin("terminalreporter") assert terminal_reporter.writer is terminal_reporter._tw @pytest.mark.parametrize("plugin", ["catchlog", "capturelog"]) def test_pytest_catchlog_deprecated(testdir, plugin): testdir.makepyfile( """ def test_func(pytestconfig): pytestconfig.pluginmanager.register(None, 'pytest_{}') """.format( plugin ) ) res = testdir.runpytest() assert res.ret == 0 res.stdout.fnmatch_lines( ["*pytest-*log plugin has been merged into the core*", "*1 passed, 1 warnings*"] ) def test_pytest_plugins_in_non_top_level_conftest_deprecated(testdir): from _pytest.deprecated import PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST testdir.makepyfile( **{ "subdirectory/conftest.py": """ pytest_plugins=['capture'] """ } ) testdir.makepyfile( """ def test_func(): pass """ ) res = testdir.runpytest() assert res.ret == 0 msg = str(PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST).splitlines()[0] res.stdout.fnmatch_lines( "*subdirectory{sep}conftest.py:0: RemovedInPytest4Warning: {msg}*".format( sep=os.sep, msg=msg ) ) @pytest.mark.parametrize("use_pyargs", [True, False]) def test_pytest_plugins_in_non_top_level_conftest_deprecated_pyargs( testdir, use_pyargs ): """When using --pyargs, do not emit the warning about non-top-level conftest warnings (#4039, #4044)""" from _pytest.deprecated import PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST files = { "src/pkg/__init__.py": "", "src/pkg/conftest.py": "", "src/pkg/test_root.py": "def test(): pass", "src/pkg/sub/__init__.py": "", "src/pkg/sub/conftest.py": "pytest_plugins=['capture']", "src/pkg/sub/test_bar.py": "def test(): pass", } testdir.makepyfile(**files) testdir.syspathinsert(testdir.tmpdir.join("src")) args = ("--pyargs", "pkg") if use_pyargs else () res = testdir.runpytest(*args) assert res.ret == 0 msg = str(PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST).splitlines()[0] if use_pyargs: assert msg not in res.stdout.str() else: res.stdout.fnmatch_lines("*{msg}*".format(msg=msg)) def test_pytest_plugins_in_non_top_level_conftest_deprecated_no_top_level_conftest( testdir ): from _pytest.deprecated import PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST subdirectory = testdir.tmpdir.join("subdirectory") subdirectory.mkdir() testdir.makeconftest( """ import warnings warnings.filterwarnings('always', category=DeprecationWarning) pytest_plugins=['capture'] """ ) testdir.tmpdir.join("conftest.py").move(subdirectory.join("conftest.py")) testdir.makepyfile( """ def test_func(): pass """ ) res = testdir.runpytest_subprocess() assert res.ret == 0 msg = str(PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST).splitlines()[0] res.stdout.fnmatch_lines( "*subdirectory{sep}conftest.py:0: RemovedInPytest4Warning: {msg}*".format( sep=os.sep, msg=msg ) ) def test_pytest_plugins_in_non_top_level_conftest_deprecated_no_false_positives( testdir ): from _pytest.deprecated import PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST subdirectory = testdir.tmpdir.join("subdirectory") subdirectory.mkdir() testdir.makeconftest( """ pass """ ) testdir.tmpdir.join("conftest.py").move(subdirectory.join("conftest.py")) testdir.makeconftest( """ import warnings warnings.filterwarnings('always', category=DeprecationWarning) pytest_plugins=['capture'] """ ) testdir.makepyfile( """ def test_func(): pass """ ) res = testdir.runpytest_subprocess() assert res.ret == 0 msg = str(PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST).splitlines()[0] assert msg not in res.stdout.str() def test_call_fixture_function_deprecated(): """Check if a warning is raised if a fixture function is called directly (#3661)""" @pytest.fixture def fix(): return 1 with pytest.deprecated_call(): assert fix() == 1 def test_pycollector_makeitem_is_deprecated(): from _pytest.python import PyCollector from _pytest.warning_types import RemovedInPytest4Warning class PyCollectorMock(PyCollector): """evil hack""" def __init__(self): self.called = False def _makeitem(self, *k): """hack to disable the actual behaviour""" self.called = True collector = PyCollectorMock() with pytest.warns(RemovedInPytest4Warning): collector.makeitem("foo", "bar") assert collector.called
{ "repo_name": "davidszotten/pytest", "path": "testing/deprecated_test.py", "copies": "1", "size": "9280", "license": "mit", "hash": 4941749283685641000, "line_mean": 27.4662576687, "line_max": 118, "alpha_frac": 0.6139008621, "autogenerated": false, "ratio": 3.857024106400665, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9967948862106731, "avg_score": 0.0005952212787867427, "num_lines": 326 }
from __future__ import absolute_import, division, print_function import os import stripe from flask import Flask, request, redirect stripe.api_key = os.environ.get("STRIPE_SECRET_KEY") stripe.client_id = os.environ.get("STRIPE_CLIENT_ID") app = Flask(__name__) @app.route("/") def index(): return '<a href="/authorize">Connect with Stripe</a>' @app.route("/authorize") def authorize(): url = stripe.OAuth.authorize_url(scope="read_only") return redirect(url) @app.route("/oauth/callback") def callback(): code = request.args.get("code") try: resp = stripe.OAuth.token(grant_type="authorization_code", code=code) except stripe.oauth_error.OAuthError as e: return "Error: " + str(e) return """ <p>Success! Account <code>{stripe_user_id}</code> is connected.</p> <p>Click <a href="/deauthorize?stripe_user_id={stripe_user_id}">here</a> to disconnect the account.</p> """.format( stripe_user_id=resp["stripe_user_id"] ) @app.route("/deauthorize") def deauthorize(): stripe_user_id = request.args.get("stripe_user_id") try: stripe.OAuth.deauthorize(stripe_user_id=stripe_user_id) except stripe.oauth_error.OAuthError as e: return "Error: " + str(e) return """ <p>Success! Account <code>{stripe_user_id}</code> is disconnected.</p> <p>Click <a href="/">here</a> to restart the OAuth flow.</p> """.format( stripe_user_id=stripe_user_id ) if __name__ == "__main__": app.run(port=int(os.environ.get("PORT", 5000)))
{ "repo_name": "stripe/stripe-python", "path": "examples/oauth.py", "copies": "1", "size": "1527", "license": "mit", "hash": 9106938337279194000, "line_mean": 24.45, "line_max": 77, "alpha_frac": 0.6516044532, "autogenerated": false, "ratio": 3.1290983606557377, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4280702813855738, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os # Stripe Python bindings # API docs at http://stripe.com/docs/api # Authors: # Patrick Collison <patrick@stripe.com> # Greg Brockman <gdb@stripe.com> # Andrew Metcalf <andrew@stripe.com> # Configuration variables api_key = None client_id = None api_base = "https://api.stripe.com" connect_api_base = "https://connect.stripe.com" upload_api_base = "https://files.stripe.com" api_version = None verify_ssl_certs = True proxy = None default_http_client = None app_info = None enable_telemetry = True max_network_retries = 0 ca_bundle_path = os.path.join( os.path.dirname(__file__), "data", "ca-certificates.crt" ) # Set to either 'debug' or 'info', controls console logging log = None # API resources from stripe.api_resources import * # noqa # OAuth from stripe.oauth import OAuth # noqa # Webhooks from stripe.webhook import Webhook, WebhookSignature # noqa # Sets some basic information about the running application that's sent along # with API requests. Useful for plugin authors to identify their plugin when # communicating with Stripe. # # Takes a name and optional version and plugin URL. def set_app_info(name, partner_id=None, url=None, version=None): global app_info app_info = { "name": name, "partner_id": partner_id, "url": url, "version": version, }
{ "repo_name": "stripe/stripe-python", "path": "stripe/__init__.py", "copies": "1", "size": "1399", "license": "mit", "hash": -7784308622320020000, "line_mean": 24.4363636364, "line_max": 77, "alpha_frac": 0.7105075054, "autogenerated": false, "ratio": 3.2995283018867925, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45100358072867924, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os try: from inspect import getfullargspec except ImportError: # Python 2.7 from inspect import getargspec as getfullargspec from qtpy import QtWidgets from qtpy import PYSIDE from glue import core from glue.config import link_function, link_helper from glue.utils import nonpartial from glue.utils.qt import load_ui, messagebox_on_error, update_combobox from glue.utils.qt.widget_properties import CurrentComboTextProperty, CurrentComboDataProperty __all__ = ['LinkEquation'] def get_function_name(item): if hasattr(item, 'display') and item.display is not None: return item.display else: return item.__name__ def function_label(function): """ Provide a label for a function :param function: A member from the glue.config.link_function registry """ args = getfullargspec(function.function)[0] args = ', '.join(args) output = function.output_labels output = ', '.join(output) label = "Link from %s to %s" % (args, output) return label def helper_label(helper): """ Provide a label for a link helper :param helper: A member from the glue.config.link_helper registry """ return helper.info class ArgumentWidget(QtWidgets.QWidget): def __init__(self, argument, parent=None): super(ArgumentWidget, self).__init__(parent) self.layout = QtWidgets.QHBoxLayout() self.layout.setContentsMargins(1, 0, 1, 1) self.setLayout(self.layout) label = QtWidgets.QLabel(argument) self._label = label self._component_id = None self.layout.addWidget(label) self.editor = QtWidgets.QLineEdit() self.editor.setReadOnly(True) try: self.editor.setPlaceholderText("Drag a component from above") except AttributeError: # feature added in Qt 4.7 pass self.layout.addWidget(self.editor) self.setAcceptDrops(True) @property def component_id(self): return self._component_id @component_id.setter def component_id(self, cid): self._component_id = cid self.editor.setText(str(cid)) @property def label(self): return self._label.text() @label.setter def label(self, label): self._label.setText(label) @property def editor_text(self): return self.editor.text() def clear(self): self.component_id = None self.editor.clear() def dragEnterEvent(self, event): if event.mimeData().hasFormat('application/py_instance'): event.accept() else: event.ignore() def dropEvent(self, event): obj = event.mimeData().data('application/py_instance') if isinstance(obj, list): obj = obj[0] if not isinstance(obj, core.data.ComponentID): event.ignore() return self.component_id = obj event.accept() class LinkEquation(QtWidgets.QWidget): """ Interactively define ComponentLinks from existing functions This widget inspects the calling signatures of helper functions, and presents the user with an interface for assigning componentIDs to the input and output arguments. It also generates ComponentLinks from this information. ComponentIDs are assigned to arguments via drag and drop. This widget is used within the LinkEditor dialog Usage:: widget = LinkEquation() """ category = CurrentComboTextProperty('_ui.category') function = CurrentComboDataProperty('_ui.function') def __init__(self, parent=None): super(LinkEquation, self).__init__(parent) # Set up mapping of function/helper name -> function/helper tuple. For the helpers, we use the 'display' name if available. self._argument_widgets = [] self.spacer = None self._output_widget = ArgumentWidget("") # pyqt4 can't take self as second argument here # for some reason. Manually embed self._ui = load_ui('link_equation.ui', None, directory=os.path.dirname(__file__)) l = QtWidgets.QHBoxLayout() l.addWidget(self._ui) self.setLayout(l) self._init_widgets() self._populate_category_combo() self.category = 'General' self._populate_function_combo() self._connect() self._setup_editor() def set_result_visible(self, state): self._ui.output_canvas.setVisible(state) self._ui.output_label.setVisible(state) def is_helper(self): return self.function is not None and \ type(self.function).__name__ == 'LinkHelper' def is_function(self): return self.function is not None and \ type(self.function).__name__ == 'LinkFunction' def _init_widgets(self): layout = QtWidgets.QVBoxLayout() layout.setSpacing(1) self._ui.input_canvas.setLayout(layout) layout = QtWidgets.QVBoxLayout() layout.setContentsMargins(1, 0, 1, 1) self._ui.output_canvas.setLayout(layout) layout.addWidget(self._output_widget) spacer = QtWidgets.QSpacerItem(5, 5, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) layout.addItem(spacer) font = self._ui.info.font() font.setPointSize(font.pointSize() * 1.4) self._ui.info.setFont(font) @property def signature(self): """ Returns the ComponentIDs assigned to the input and output arguments :rtype: tuple of (input, output). Input is a list of ComponentIDs. output is a ComponentID """ inp = [a.component_id for a in self._argument_widgets] out = self._output_widget.component_id return inp, out @signature.setter def signature(self, inout): inp, out = inout for i, a in zip(inp, self._argument_widgets): a.component_id = i self._output_widget.component_id = out @messagebox_on_error("Failed to create links") def links(self): """ Create ComponentLinks from the state of the widget :rtype: list of ComponentLinks that can be created. If no links can be created (e.g. because of missing input), the empty list is returned """ inp, out = self.signature if self.is_function(): using = self.function.function if not all(inp) or not out: return [] link = core.component_link.ComponentLink(inp, out, using) return [link] if self.is_helper(): helper = self.function.helper if not all(inp): return [] return helper(*inp) def _update_add_enabled(self): state = True for a in self._argument_widgets: state = state and a.component_id is not None if self.is_function(): state = state and self._output_widget.component_id is not None def _connect(self): signal = self._ui.function.currentIndexChanged signal.connect(nonpartial(self._setup_editor)) signal.connect(nonpartial(self._update_add_enabled)) self._output_widget.editor.textChanged.connect(nonpartial(self._update_add_enabled)) self._ui.category.currentIndexChanged.connect(self._populate_function_combo) def clear_inputs(self): for w in self._argument_widgets: w.clear() self._output_widget.clear() def _setup_editor(self): if self.is_function(): self._setup_editor_function() else: self._setup_editor_helper() def _setup_editor_function(self): """ Prepare the widget for the active function.""" assert self.is_function() self.set_result_visible(True) func = self.function.function args = getfullargspec(func)[0] label = function_label(self.function) self._ui.info.setText(label) self._output_widget.label = self.function.output_labels[0] self._clear_input_canvas() for a in args: self._add_argument_widget(a) self.spacer = QtWidgets.QSpacerItem(5, 5, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self._ui.input_canvas.layout().addItem(self.spacer) def _setup_editor_helper(self): """Setup the editor for the selected link helper""" assert self.is_helper() self.set_result_visible(False) label = helper_label(self.function) args = self.function.input_labels self._ui.info.setText(label) self._clear_input_canvas() for a in args: self._add_argument_widget(a) self.spacer = QtWidgets.QSpacerItem(5, 5, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self._ui.input_canvas.layout().addItem(self.spacer) def _add_argument_widget(self, argument): """ Create and add a single argument widget to the input canvas :param arguement: The argument name (string) """ widget = ArgumentWidget(argument) widget.editor.textChanged.connect(nonpartial(self._update_add_enabled)) self._ui.input_canvas.layout().addWidget(widget) self._argument_widgets.append(widget) def _clear_input_canvas(self): """ Remove all widgets from the input canvas """ layout = self._ui.input_canvas.layout() for a in self._argument_widgets: layout.removeWidget(a) a.close() if not PYSIDE: # PySide crashing here layout.removeItem(self.spacer) self._argument_widgets = [] def _populate_category_combo(self): f = [f for f in link_function.members if len(f.output_labels) == 1] categories = sorted(set(l.category for l in f + link_helper.members)) update_combobox(self._ui.category, list(zip(categories, categories))) def _populate_function_combo(self): """ Add name of functions to function combo box """ f = [f for f in link_function.members if len(f.output_labels) == 1] functions = ((get_function_name(l[0]), l) for l in f + link_helper.members if l.category == self.category) update_combobox(self._ui.function, functions)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/dialogs/link_editor/qt/link_equation.py", "copies": "1", "size": "10524", "license": "bsd-3-clause", "hash": 5079556409656396000, "line_mean": 32.4095238095, "line_max": 131, "alpha_frac": 0.6222919042, "autogenerated": false, "ratio": 4.117370892018779, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5239662796218779, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os try: import sphinx_rtd_theme except ImportError: sphinx_rtd_theme = None base_dir = os.path.join(os.path.dirname(__file__), os.pardir) about = {} with open(os.path.join(base_dir, "virtualenv", "__about__.py")) as f: exec(f.read(), about) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = about["__title__"] copyright = about["__copyright__"] # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # version = release = about["__version__"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. if sphinx_rtd_theme: html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] else: html_theme = "default" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Output file base name for HTML help builder. htmlhelp_basename = "virtualenvdoc" # -- Options for manual page output ------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "virtualenv", "virtualenv Documentation", about["__author__"], 1, ), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "https://docs.python.org/": None, } epub_theme = "epub"
{ "repo_name": "ionelmc/virtualenv", "path": "docs/conf.py", "copies": "1", "size": "2665", "license": "mit", "hash": -7539529149794524000, "line_mean": 26.7604166667, "line_max": 79, "alpha_frac": 0.6600375235, "autogenerated": false, "ratio": 3.9191176470588234, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5079155170558823, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os.path as op import keras from .due import due, Doi # noqa # Use duecredit (duecredit.org) to provide a citation to relevant work to # be cited. This does nothing, unless the user has duecredit installed, # And calls this with duecredit (as in `python -m duecredit script.py`): # due.cite(Doi("XXX"), # description="", # tags=["", ""], # path='XXX') class LossHistory(keras.callbacks.Callback): def __init__(self, log_path, loss_name, valid_name, pid): keras.callbacks.Callback.__init__(self) self.log_path = log_path self.loss_name = loss_name self.valid_name = valid_name self.pid def on_train_begin(self, logs={}): self.losses = [] self.valid = [] self.lastiter = 0 def on_epoch_end(self, batch, logs={}): self.losses.append(logs.get(self.loss_name)) self.lastiter = len(self.losses) - 1 self.valid.append([self.lastiter, logs.get(self.valid_name)]) with open(op.join(self.log_path, "/%d/history.txt" % self.pid), "w") as fo: strings = ["train\t%d\t%.4f" % (i, x) for i, x in enumerate(self.losses)] fo.write("\n".join(strings) + "\n") strings = ["valid\t%d\t%.4f" % (i, x) for i, x in self.valid] fo.write("\n".join(strings) + "\n") def on_batch_end(self, batch, logs={}): self.losses.append(logs.get(self.loss_name)) self.lastiter = len(self.losses) - 1 with open(op.join(self.log_path, "/%d/history.txt" % self.pid), "w") as fo: strings = ["train\t%d\t%.4f" % (i, x) for i, x in enumerate(self.losses)] fo.write("\n".join(strings) + "\n") strings = ["valid\t%d\t%.4f" % (i, x) for i, x in self.valid] fo.write("\n".join(strings) + "\n")
{ "repo_name": "uw-biomedical-ml/keratin", "path": "keratin/keratin.py", "copies": "1", "size": "1984", "license": "mit", "hash": 5516094152929797000, "line_mean": 37.1538461538, "line_max": 77, "alpha_frac": 0.5483870968, "autogenerated": false, "ratio": 3.273927392739274, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4322314489539274, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os.path from glob import glob from io import BytesIO from numbers import Number import numpy as np from .. import Dataset, backends, conventions from ..core import indexing from ..core.combine import auto_combine from ..core.pycompat import basestring, path_type from ..core.utils import close_on_error, is_remote_uri from .common import ( HDF5_LOCK, ArrayWriter, CombinedLock, get_scheduler, get_scheduler_lock) DATAARRAY_NAME = '__xarray_dataarray_name__' DATAARRAY_VARIABLE = '__xarray_dataarray_variable__' def _get_default_engine(path, allow_remote=False): if allow_remote and is_remote_uri(path): # pragma: no cover try: import netCDF4 engine = 'netcdf4' except ImportError: try: import pydap # flake8: noqa engine = 'pydap' except ImportError: raise ValueError('netCDF4 or pydap is required for accessing ' 'remote datasets via OPeNDAP') else: try: import netCDF4 # flake8: noqa engine = 'netcdf4' except ImportError: # pragma: no cover try: import scipy.io.netcdf # flake8: noqa engine = 'scipy' except ImportError: raise ValueError('cannot read or write netCDF files without ' 'netCDF4-python or scipy installed') return engine def _normalize_path(path): if is_remote_uri(path): return path else: return os.path.abspath(os.path.expanduser(path)) def _default_lock(filename, engine): if filename.endswith('.gz'): lock = False else: if engine is None: engine = _get_default_engine(filename, allow_remote=True) if engine == 'netcdf4': if is_remote_uri(filename): lock = False else: # TODO: identify netcdf3 files and don't use the global lock # for them lock = HDF5_LOCK elif engine in {'h5netcdf', 'pynio'}: lock = HDF5_LOCK else: lock = False return lock def _validate_dataset_names(dataset): """DataArray.name and Dataset keys must be a string or None""" def check_name(name): if isinstance(name, basestring): if not name: raise ValueError('Invalid name for DataArray or Dataset key: ' 'string must be length 1 or greater for ' 'serialization to netCDF files') elif name is not None: raise TypeError('DataArray.name or Dataset key must be either a ' 'string or None for serialization to netCDF files') for k in dataset.variables: check_name(k) def _validate_attrs(dataset): """`attrs` must have a string key and a value which is either: a number a string, an ndarray or a list/tuple of numbers/strings. """ def check_attr(name, value): if isinstance(name, basestring): if not name: raise ValueError('Invalid name for attr: string must be ' 'length 1 or greater for serialization to ' 'netCDF files') else: raise TypeError("Invalid name for attr: {} must be a string for " "serialization to netCDF files".format(name)) if not isinstance(value, (basestring, Number, np.ndarray, np.number, list, tuple)): raise TypeError('Invalid value for attr: {} must be a number ' 'string, ndarray or a list/tuple of ' 'numbers/strings for serialization to netCDF ' 'files'.format(value)) # Check attrs on the dataset itself for k, v in dataset.attrs.items(): check_attr(k, v) # Check attrs on each variable within the dataset for variable in dataset.variables.values(): for k, v in variable.attrs.items(): check_attr(k, v) def _protect_dataset_variables_inplace(dataset, cache): for name, variable in dataset.variables.items(): if name not in variable.dims: # no need to protect IndexVariable objects data = indexing.CopyOnWriteArray(variable._data) if cache: data = indexing.MemoryCachedArray(data) variable.data = data def _get_lock(engine, scheduler, format, path_or_file): """ Get the lock(s) that apply to a particular scheduler/engine/format""" locks = [] if format in ['NETCDF4', None] and engine in ['h5netcdf', 'netcdf4']: locks.append(HDF5_LOCK) locks.append(get_scheduler_lock(scheduler, path_or_file)) # When we have more than one lock, use the CombinedLock wrapper class lock = CombinedLock(locks) if len(locks) > 1 else locks[0] return lock def _finalize_store(write, store): """ Finalize this store by explicitly syncing and closing""" del write # ensure writing is done first store.sync() store.close() def open_dataset(filename_or_obj, group=None, decode_cf=True, mask_and_scale=True, decode_times=True, autoclose=False, concat_characters=True, decode_coords=True, engine=None, chunks=None, lock=None, cache=None, drop_variables=None): """Load and decode a dataset from a file or file-like object. Parameters ---------- filename_or_obj : str, Path, file or xarray.backends.*DataStore Strings and Path objects are interpreted as a path to a netCDF file or an OpenDAP URL and opened with python-netCDF4, unless the filename ends with .gz, in which case the file is gunzipped and opened with scipy.io.netcdf (only netCDF3 supported). File-like objects are opened with scipy.io.netcdf (only netCDF3 supported). group : str, optional Path to the netCDF4 group in the given file to open (only works for netCDF4 files). decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. autoclose : bool, optional If True, automatically close files to avoid OS Error of too many files being open. However, this option doesn't work with streams, e.g., BytesIO. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. engine : {'netcdf4', 'scipy', 'pydap', 'h5netcdf', 'pynio'}, optional Engine to use when reading files. If not provided, the default engine is chosen based on available dependencies, with a preference for 'netcdf4'. chunks : int or dict, optional If chunks is provided, it used to load the new dataset into dask arrays. ``chunks={}`` loads the dataset with dask using a single chunk for all arrays. lock : False, True or threading.Lock, optional If chunks is provided, this argument is passed on to :py:func:`dask.array.from_array`. By default, a global lock is used when reading data from netCDF files with the netcdf4 and h5netcdf engines to avoid issues with concurrent access when using dask's multithreaded backend. cache : bool, optional If True, cache data loaded from the underlying datastore in memory as NumPy arrays when accessed to avoid reading from the underlying data- store multiple times. Defaults to True unless you specify the `chunks` argument to use dask, in which case it defaults to False. Does not change the behavior of coordinates corresponding to dimensions, which always load their data from disk into a ``pandas.Index``. drop_variables: string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. Returns ------- dataset : Dataset The newly created dataset. See Also -------- open_mfdataset """ if not decode_cf: mask_and_scale = False decode_times = False concat_characters = False decode_coords = False if cache is None: cache = chunks is None def maybe_decode_store(store, lock=False): ds = conventions.decode_cf( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables) _protect_dataset_variables_inplace(ds, cache) if chunks is not None: from dask.base import tokenize # if passed an actual file path, augment the token with # the file modification time if (isinstance(filename_or_obj, basestring) and not is_remote_uri(filename_or_obj)): mtime = os.path.getmtime(filename_or_obj) else: mtime = None token = tokenize(filename_or_obj, mtime, group, decode_cf, mask_and_scale, decode_times, concat_characters, decode_coords, engine, chunks, drop_variables) name_prefix = 'open_dataset-%s' % token ds2 = ds.chunk(chunks, name_prefix=name_prefix, token=token, lock=lock) ds2._file_obj = ds._file_obj else: ds2 = ds # protect so that dataset store isn't necessarily closed, e.g., # streams like BytesIO can't be reopened # datastore backend is responsible for determining this capability if store._autoclose: store.close() return ds2 if isinstance(filename_or_obj, path_type): filename_or_obj = str(filename_or_obj) if isinstance(filename_or_obj, backends.AbstractDataStore): store = filename_or_obj elif isinstance(filename_or_obj, basestring): if (isinstance(filename_or_obj, bytes) and filename_or_obj.startswith(b'\x89HDF')): raise ValueError('cannot read netCDF4/HDF5 file images') elif (isinstance(filename_or_obj, bytes) and filename_or_obj.startswith(b'CDF')): # netCDF3 file images are handled by scipy pass elif isinstance(filename_or_obj, basestring): filename_or_obj = _normalize_path(filename_or_obj) if filename_or_obj.endswith('.gz'): if engine is not None and engine != 'scipy': raise ValueError('can only read gzipped netCDF files with ' "default engine or engine='scipy'") else: engine = 'scipy' if engine is None: engine = _get_default_engine(filename_or_obj, allow_remote=True) if engine == 'netcdf4': store = backends.NetCDF4DataStore.open(filename_or_obj, group=group, autoclose=autoclose) elif engine == 'scipy': store = backends.ScipyDataStore(filename_or_obj, autoclose=autoclose) elif engine == 'pydap': store = backends.PydapDataStore.open(filename_or_obj) elif engine == 'h5netcdf': store = backends.H5NetCDFStore(filename_or_obj, group=group, autoclose=autoclose) elif engine == 'pynio': store = backends.NioDataStore(filename_or_obj, autoclose=autoclose) else: raise ValueError('unrecognized engine for open_dataset: %r' % engine) if lock is None: lock = _default_lock(filename_or_obj, engine) with close_on_error(store): return maybe_decode_store(store, lock) else: if engine is not None and engine != 'scipy': raise ValueError('can only read file-like objects with ' "default engine or engine='scipy'") # assume filename_or_obj is a file-like object store = backends.ScipyDataStore(filename_or_obj) return maybe_decode_store(store) def open_dataarray(filename_or_obj, group=None, decode_cf=True, mask_and_scale=True, decode_times=True, autoclose=False, concat_characters=True, decode_coords=True, engine=None, chunks=None, lock=None, cache=None, drop_variables=None): """Open an DataArray from a netCDF file containing a single data variable. This is designed to read netCDF files with only one data variable. If multiple variables are present then a ValueError is raised. Parameters ---------- filename_or_obj : str, Path, file or xarray.backends.*DataStore Strings and Paths are interpreted as a path to a netCDF file or an OpenDAP URL and opened with python-netCDF4, unless the filename ends with .gz, in which case the file is gunzipped and opened with scipy.io.netcdf (only netCDF3 supported). File-like objects are opened with scipy.io.netcdf (only netCDF3 supported). group : str, optional Path to the netCDF4 group in the given file to open (only works for netCDF4 files). decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. autoclose : bool, optional If True, automatically close files to avoid OS Error of too many files being open. However, this option doesn't work with streams, e.g., BytesIO. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. engine : {'netcdf4', 'scipy', 'pydap', 'h5netcdf', 'pynio'}, optional Engine to use when reading files. If not provided, the default engine is chosen based on available dependencies, with a preference for 'netcdf4'. chunks : int or dict, optional If chunks is provided, it used to load the new dataset into dask arrays. lock : False, True or threading.Lock, optional If chunks is provided, this argument is passed on to :py:func:`dask.array.from_array`. By default, a global lock is used when reading data from netCDF files with the netcdf4 and h5netcdf engines to avoid issues with concurrent access when using dask's multithreaded backend. cache : bool, optional If True, cache data loaded from the underlying datastore in memory as NumPy arrays when accessed to avoid reading from the underlying data- store multiple times. Defaults to True unless you specify the `chunks` argument to use dask, in which case it defaults to False. Does not change the behavior of coordinates corresponding to dimensions, which always load their data from disk into a ``pandas.Index``. drop_variables: string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. Notes ----- This is designed to be fully compatible with `DataArray.to_netcdf`. Saving using `DataArray.to_netcdf` and then loading with this function will produce an identical result. All parameters are passed directly to `xarray.open_dataset`. See that documentation for further details. See also -------- open_dataset """ dataset = open_dataset(filename_or_obj, group=group, decode_cf=decode_cf, mask_and_scale=mask_and_scale, decode_times=decode_times, autoclose=autoclose, concat_characters=concat_characters, decode_coords=decode_coords, engine=engine, chunks=chunks, lock=lock, cache=cache, drop_variables=drop_variables) if len(dataset.data_vars) != 1: raise ValueError('Given file dataset contains more than one data ' 'variable. Please read with xarray.open_dataset and ' 'then select the variable you want.') else: data_array, = dataset.data_vars.values() data_array._file_obj = dataset._file_obj # Reset names if they were changed during saving # to ensure that we can 'roundtrip' perfectly if DATAARRAY_NAME in dataset.attrs: data_array.name = dataset.attrs[DATAARRAY_NAME] del dataset.attrs[DATAARRAY_NAME] if data_array.name == DATAARRAY_VARIABLE: data_array.name = None return data_array class _MultiFileCloser(object): def __init__(self, file_objs): self.file_objs = file_objs def close(self): for f in self.file_objs: f.close() _CONCAT_DIM_DEFAULT = '__infer_concat_dim__' def open_mfdataset(paths, chunks=None, concat_dim=_CONCAT_DIM_DEFAULT, compat='no_conflicts', preprocess=None, engine=None, lock=None, data_vars='all', coords='different', autoclose=False, parallel=False, **kwargs): """Open multiple files as a single dataset. Requires dask to be installed. See documentation for details on dask [1]. Attributes from the first dataset file are used for the combined dataset. Parameters ---------- paths : str or sequence Either a string glob in the form "path/to/my/files/*.nc" or an explicit list of files to open. Paths can be given as strings or as pathlib Paths. chunks : int or dict, optional Dictionary with keys given by dimension names and values given by chunk sizes. In general, these should divide the dimensions of each dataset. If int, chunk each dimension by ``chunks``. By default, chunks will be chosen to load entire input files into memory at once. This has a major impact on performance: please see the full documentation for more details [2]. concat_dim : None, str, DataArray or Index, optional Dimension to concatenate files along. This argument is passed on to :py:func:`xarray.auto_combine` along with the dataset objects. You only need to provide this argument if the dimension along which you want to concatenate is not a dimension in the original datasets, e.g., if you want to stack a collection of 2D arrays along a third dimension. By default, xarray attempts to infer this argument by examining component files. Set ``concat_dim=None`` explicitly to disable concatenation. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts'}, optional String indicating how to compare variables of the same name for potential conflicts when merging: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. preprocess : callable, optional If provided, call this function on each dataset prior to concatenation. engine : {'netcdf4', 'scipy', 'pydap', 'h5netcdf', 'pynio'}, optional Engine to use when reading files. If not provided, the default engine is chosen based on available dependencies, with a preference for 'netcdf4'. autoclose : bool, optional If True, automatically close files to avoid OS Error of too many files being open. However, this option doesn't work with streams, e.g., BytesIO. lock : False, True or threading.Lock, optional This argument is passed on to :py:func:`dask.array.from_array`. By default, a per-variable lock is used when reading data from netCDF files with the netcdf4 and h5netcdf engines to avoid issues with concurrent access when using dask's multithreaded backend. data_vars : {'minimal', 'different', 'all' or list of str}, optional These data variables will be concatenated together: * 'minimal': Only data variables in which the dimension already appears are included. * 'different': Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * 'all': All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the 'minimal' data variables. coords : {'minimal', 'different', 'all' o list of str}, optional These coordinate variables will be concatenated together: * 'minimal': Only coordinates in which the dimension already appears are included. * 'different': Coordinates which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of coordinate variables into memory if they are not already loaded. * 'all': All coordinate variables will be concatenated, except those corresponding to other dimensions. * list of str: The listed coordinate variables will be concatenated, in addition the 'minimal' coordinates. parallel : bool, optional If True, the open and preprocess steps of this function will be performed in parallel using ``dask.delayed``. Default is False. **kwargs : optional Additional arguments passed on to :py:func:`xarray.open_dataset`. Returns ------- xarray.Dataset See Also -------- auto_combine open_dataset References ---------- .. [1] http://xarray.pydata.org/en/stable/dask.html .. [2] http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance """ if isinstance(paths, basestring): if is_remote_uri(paths): raise ValueError( 'cannot do wild-card matching for paths that are remote URLs: ' '{!r}. Instead, supply paths as an explicit list of strings.' .format(paths)) paths = sorted(glob(paths)) else: paths = [str(p) if isinstance(p, path_type) else p for p in paths] if not paths: raise IOError('no files to open') if lock is None: lock = _default_lock(paths[0], engine) open_kwargs = dict(engine=engine, chunks=chunks or {}, lock=lock, autoclose=autoclose, **kwargs) if parallel: import dask # wrap the open_dataset, getattr, and preprocess with delayed open_ = dask.delayed(open_dataset) getattr_ = dask.delayed(getattr) if preprocess is not None: preprocess = dask.delayed(preprocess) else: open_ = open_dataset getattr_ = getattr datasets = [open_(p, **open_kwargs) for p in paths] file_objs = [getattr_(ds, '_file_obj') for ds in datasets] if preprocess is not None: datasets = [preprocess(ds) for ds in datasets] if parallel: # calling compute here will return the datasets/file_objs lists, # the underlying datasets will still be stored as dask arrays datasets, file_objs = dask.compute(datasets, file_objs) # close datasets in case of a ValueError try: if concat_dim is _CONCAT_DIM_DEFAULT: combined = auto_combine(datasets, compat=compat, data_vars=data_vars, coords=coords) else: combined = auto_combine(datasets, concat_dim=concat_dim, compat=compat, data_vars=data_vars, coords=coords) except ValueError: for ds in datasets: ds.close() raise combined._file_obj = _MultiFileCloser(file_objs) combined.attrs = datasets[0].attrs return combined WRITEABLE_STORES = {'netcdf4': backends.NetCDF4DataStore.open, 'scipy': backends.ScipyDataStore, 'h5netcdf': backends.H5NetCDFStore} def to_netcdf(dataset, path_or_file=None, mode='w', format=None, group=None, engine=None, writer=None, encoding=None, unlimited_dims=None, compute=True): """This function creates an appropriate datastore for writing a dataset to disk as a netCDF file See `Dataset.to_netcdf` for full API docs. The ``writer`` argument is only for the private use of save_mfdataset. """ if isinstance(path_or_file, path_type): path_or_file = str(path_or_file) if encoding is None: encoding = {} if path_or_file is None: if engine is None: engine = 'scipy' elif engine != 'scipy': raise ValueError('invalid engine for creating bytes with ' 'to_netcdf: %r. Only the default engine ' "or engine='scipy' is supported" % engine) elif isinstance(path_or_file, basestring): if engine is None: engine = _get_default_engine(path_or_file) path_or_file = _normalize_path(path_or_file) else: # file-like object engine = 'scipy' # validate Dataset keys, DataArray names, and attr keys/values _validate_dataset_names(dataset) _validate_attrs(dataset) try: store_open = WRITEABLE_STORES[engine] except KeyError: raise ValueError('unrecognized engine for to_netcdf: %r' % engine) if format is not None: format = format.upper() # if a writer is provided, store asynchronously sync = writer is None # handle scheduler specific logic scheduler = get_scheduler() if (dataset.chunks and scheduler in ['distributed', 'multiprocessing'] and engine != 'netcdf4'): raise NotImplementedError("Writing netCDF files with the %s backend " "is not currently supported with dask's %s " "scheduler" % (engine, scheduler)) lock = _get_lock(engine, scheduler, format, path_or_file) autoclose = (dataset.chunks and scheduler in ['distributed', 'multiprocessing']) target = path_or_file if path_or_file is not None else BytesIO() store = store_open(target, mode, format, group, writer, autoclose=autoclose, lock=lock) if unlimited_dims is None: unlimited_dims = dataset.encoding.get('unlimited_dims', None) if isinstance(unlimited_dims, basestring): unlimited_dims = [unlimited_dims] try: dataset.dump_to_store(store, sync=sync, encoding=encoding, unlimited_dims=unlimited_dims, compute=compute) if path_or_file is None: return target.getvalue() finally: if sync and isinstance(path_or_file, basestring): store.close() if not compute: import dask return dask.delayed(_finalize_store)(store.delayed_store, store) if not sync: return store def save_mfdataset(datasets, paths, mode='w', format=None, groups=None, engine=None, compute=True): """Write multiple datasets to disk as netCDF files simultaneously. This function is intended for use with datasets consisting of dask.array objects, in which case it can write the multiple datasets to disk simultaneously using a shared thread pool. When not using dask, it is no different than calling ``to_netcdf`` repeatedly. Parameters ---------- datasets : list of xarray.Dataset List of datasets to save. paths : list of str or list of Paths List of paths to which to save each corresponding dataset. mode : {'w', 'a'}, optional Write ('w') or append ('a') mode. If mode='w', any existing file at these locations will be overwritten. format : {'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT', 'NETCDF3_CLASSIC'}, optional File format for the resulting netCDF file: * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features. * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features. * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later. * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well. All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats. The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4). groups : list of str, optional Paths to the netCDF4 group in each corresponding file to which to save datasets (only works for format='NETCDF4'). The groups will be created if necessary. engine : {'netcdf4', 'scipy', 'h5netcdf'}, optional Engine to use when writing netCDF files. If not provided, the default engine is chosen based on available dependencies, with a preference for 'netcdf4' if writing to a file on disk. See `Dataset.to_netcdf` for additional information. compute: boolean If true compute immediately, otherwise return a ``dask.delayed.Delayed`` object that can be computed later. Examples -------- Save a dataset into one netCDF per year of data: >>> years, datasets = zip(*ds.groupby('time.year')) >>> paths = ['%s.nc' % y for y in years] >>> xr.save_mfdataset(datasets, paths) """ if mode == 'w' and len(set(paths)) < len(paths): raise ValueError("cannot use mode='w' when writing multiple " 'datasets to the same path') for obj in datasets: if not isinstance(obj, Dataset): raise TypeError('save_mfdataset only supports writing Dataset ' 'objects, recieved type %s' % type(obj)) if groups is None: groups = [None] * len(datasets) if len(set([len(datasets), len(paths), len(groups)])) > 1: raise ValueError('must supply lists of the same length for the ' 'datasets, paths and groups arguments to ' 'save_mfdataset') writer = ArrayWriter() if compute else None stores = [to_netcdf(ds, path, mode, format, group, engine, writer, compute=compute) for ds, path, group in zip(datasets, paths, groups)] if not compute: import dask return dask.delayed(stores) try: delayed = writer.sync(compute=compute) for store in stores: store.sync() finally: for store in stores: store.close() def to_zarr(dataset, store=None, mode='w-', synchronizer=None, group=None, encoding=None, compute=True): """This function creates an appropriate datastore for writing a dataset to a zarr ztore See `Dataset.to_zarr` for full API docs. """ if isinstance(store, path_type): store = str(store) if encoding is None: encoding = {} # validate Dataset keys, DataArray names, and attr keys/values _validate_dataset_names(dataset) _validate_attrs(dataset) store = backends.ZarrStore.open_group(store=store, mode=mode, synchronizer=synchronizer, group=group, writer=None) # I think zarr stores should always be sync'd immediately # TODO: figure out how to properly handle unlimited_dims dataset.dump_to_store(store, sync=True, encoding=encoding, compute=compute) if not compute: import dask return dask.delayed(_finalize_store)(store.delayed_store, store) return store
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/api.py", "copies": "1", "size": "35346", "license": "apache-2.0", "hash": 8544805690203871000, "line_mean": 41.381294964, "line_max": 80, "alpha_frac": 0.6264923895, "autogenerated": false, "ratio": 4.4555653598890705, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.558205774938907, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os.path import datetime from warnings import warn import copy import csv import sqlite3 import numpy as np from astropy.io import fits import pandas from sunpy.time import parse_time from sunpy import config from sunpy.util.net import check_download_file from sunpy import lightcurve from sunpy.extern.six.moves import urllib LYTAF_REMOTE_PATH = "http://proba2.oma.be/lyra/data/lytaf/" LYTAF_PATH = config.get("downloads", "download_dir") def remove_lytaf_events_from_lightcurve(lc, artifacts=None, return_artifacts=False, lytaf_path=None, force_use_local_lytaf=False): """ Removes periods of LYRA artifacts defined in LYTAF from a LYRALightCurve. Parameters ---------- lc : `sunpy.lightcurve.LightCurve` artifacts : list of strings Contain the artifact types to be removed. For list of artifact types see reference [1]. For example, if user wants to remove only large angle rotations, listed at reference [1] as LAR, let artifacts=["LAR"]. Default=[], i.e. no artifacts will be removed. return_artifacts : `bool` Set to True to return a `numpy.recarray` containing the start time, end time and type of all artifacts removed. Default=False lytaf_path : `str` directory path where the LYRA annotation files are stored. force_use_local_lytaf : `bool` Ensures current local version of lytaf files are not replaced by up-to-date online versions even if current local lytaf files do not cover entire input time range etc. Default=False Returns ------- lc_new : `sunpy.lightcurve.LightCurve` copy of input LYRALightCurve with periods corresponding to artifacts removed. artifact_status : `dict` List of 4 variables containing information on what artifacts were found, removed, etc. from the time series. artifact_status["lytaf"] = artifacts found : `numpy.recarray` The full LYRA annotation file for the time series time range output by get_lytaf_events(). artifact_status["removed"] = artifacts removed : `numpy.recarray` Artifacts which were found and removed from from time series. artifact_status["not_removed"] = artifacts found but not removed : `numpy.recarray` Artifacts which were found but not removed as they were not included when user defined artifacts kwarg. artifact_status["not_found"] = artifacts not found : `list` of strings Artifacts listed to be removed by user when defining artifacts kwarg which were not found in time series time range. References ---------- [1] http://proba2.oma.be/data/TARDIS Examples -------- Remove LARs (Large Angle Rotations) from LYRALightCurve for 4-Dec-2014: >>> import sunpy.lightcurve as lc >>> lc = lc.LYRALightCurve.create("2014-12-02") >>> lc_nolars = lc.remove_artifacts_from_lyralightcurve(lc, artifacts=["LAR"]) To also retrieve information on the artifacts during that day: >>> lc_nolars, artifact_status = lc.remove_artifacts_from_lyralightcurve( lc, artifacts=["LAR"], return_artifacts=True) """ # Check that input argument is of correct type if not lytaf_path: lytaf_path = LYTAF_PATH if not isinstance(lc, lightcurve.LightCurve): raise TypeError("lc must be a LightCurve object.") # Remove artifacts from time series data_columns = lc.data.columns time, channels, artifact_status = _remove_lytaf_events( lc.data.index, channels=[np.asanyarray(lc.data[col]) for col in data_columns], artifacts=artifacts, return_artifacts=True, lytaf_path=lytaf_path, force_use_local_lytaf=force_use_local_lytaf) # Create new copy copy of lightcurve and replace data with # artifact-free time series. lc_new = copy.deepcopy(lc) lc_new.data = pandas.DataFrame( index=time, data=dict((col, channels[i]) for i, col in enumerate(data_columns))) if return_artifacts: return lc_new, artifact_status else: return lc_new def _remove_lytaf_events(time, channels=None, artifacts=None, return_artifacts=False, fitsfile=None, csvfile=None, filecolumns=None, lytaf_path=None, force_use_local_lytaf=False): """ Removes periods of LYRA artifacts from a time series. This functions removes periods corresponding to certain artifacts recorded in the LYRA annotation file from an array of times given by the time input. If a list of arrays of other properties is supplied through the channels kwarg, then the relevant values from these arrays are also removed. This is done by assuming that each element in each array supplied corresponds to the time in the same index in time array. The artifacts to be removed are given via the artifacts kwarg. The default is "all", meaning that all artifacts will be removed. However, a subset of artifacts can be removed by supplying a list of strings of the desired artifact types. Parameters ---------- time : `numpy.ndarray` of `datetime.datetime` Gives the times of the timeseries. channels : `list` of `numpy.array` convertible to float64. Contains arrays of the irradiances taken at the times in the time variable. Each element in the list must have the same number of elements as time. artifacts : `list` of strings Contain the artifact types to be removed. For list of artifact types see reference [1]. For example, if user wants to remove only large angle rotations, listed at reference [1] as LAR, let artifacts=["LAR"]. Default=[], i.e. no artifacts will be removed. return_artifacts : `bool` Set to True to return a numpy recarray containing the start time, end time and type of all artifacts removed. Default=False fitsfile : `str` file name (including file path and suffix, .fits) of output fits file which is generated if this kwarg is not None. Default=None, i.e. no fits file is output. csvfile : `str` file name (including file path and suffix, .csv) of output csv file which is generated if this kwarg is not None. Default=None, i.e. no csv file is output. filecolumns : `list` of strings Gives names of columns of any output files produced. Although initially set to None above, the default is in fact ["time", "channel0", "channel1",..."channelN"] where N is the number of irradiance arrays in the channels input (assuming 0-indexed counting). lytaf_path : `str` directory path where the LYRA annotation files are stored. force_use_local_lytaf : `bool` Ensures current local version of lytaf files are not replaced by up-to-date online versions even if current local lytaf files do not cover entire input time range etc. Default=False Returns ------- clean_time : `numpy.ndarray` of `datetime.datetime` time array with artifact periods removed. clean_channels : `list` ndarrays/array-likes convertible to float64 list of irradiance arrays with artifact periods removed. artifact_status : `dict` List of 4 variables containing information on what artifacts were found, removed, etc. from the time series. artifact_status["lytaf"] = artifacts found : `numpy.recarray` The full LYRA annotation file for the time series time range output by get_lytaf_events(). artifact_status["removed"] = artifacts removed : `numpy.recarray` Artifacts which were found and removed from from time series. artifact_status["not_removed"] = artifacts found but not removed : `numpy.recarray` Artifacts which were found but not removed as they were not included when user defined artifacts kwarg. artifact_status["not_found"] = artifacts not found : `list` of strings Artifacts listed to be removed by user when defining artifacts kwarg which were not found in time series time range. References ---------- [1] http://proba2.oma.be/data/TARDIS Example ------- Sample data for example >>> time = np.array([datetime(2013, 2, 1)+timedelta(minutes=i) for i in range(120)]) >>> channel_1 = np.zeros(len(TIME))+0.4 >>> channel_2 = np.zeros(len(TIME))+0.1 Remove LARs (Large Angle Rotations) from time series. >>> time_clean, channels_clean = remove_lyra_artifacts( time, channels=[channel_1, channel2], artifacts=['LAR']) """ # Check inputs if not lytaf_path: lytaf_path = LYTAF_PATH if channels and type(channels) is not list: raise TypeError("channels must be None or a list of numpy arrays " "of dtype 'float64'.") if not artifacts: raise ValueError("User has supplied no artifacts to remove.") if type(artifacts) is str: artifacts = [artifacts] if not all(isinstance(artifact_type, str) for artifact_type in artifacts): raise TypeError("All elements in artifacts must in strings.") all_lytaf_event_types = get_lytaf_event_types(lytaf_path=lytaf_path, print_event_types=False) for artifact in artifacts: if artifact not in all_lytaf_event_types: print(all_lytaf_event_types) raise ValueError("{0} is not a valid artifact type. See above.".format(artifact)) # Define outputs clean_time = np.array([parse_time(t) for t in time]) clean_channels = copy.deepcopy(channels) artifacts_not_found = [] # Get LYTAF file for given time range lytaf = get_lytaf_events(time[0], time[-1], lytaf_path=lytaf_path, force_use_local_lytaf=force_use_local_lytaf) # Find events in lytaf which are to be removed from time series. artifact_indices = np.empty(0, dtype="int64") for artifact_type in artifacts: indices = np.where(lytaf["event_type"] == artifact_type)[0] # If none of a given type of artifact is found, record this # type in artifact_not_found list. if len(indices) == 0: artifacts_not_found.append(artifact_type) else: # Else, record the indices of the artifacts of this type artifact_indices = np.concatenate((artifact_indices, indices)) artifact_indices.sort() # Remove relevant artifacts from timeseries. If none of the # artifacts the user wanted removed were found, raise a warning and # continue with code. if not len(artifact_indices): warn("None of user supplied artifacts were found.") artifacts_not_found = artifacts else: # Remove periods corresponding to artifacts from flux and time # arrays. bad_indices = np.empty(0, dtype="int64") all_indices = np.arange(len(time)) for index in artifact_indices: bad_period = np.logical_and(time >= lytaf["begin_time"][index], time <= lytaf["end_time"][index]) bad_indices = np.append(bad_indices, all_indices[bad_period]) clean_time = np.delete(clean_time, bad_indices) if channels: for i, f in enumerate(clean_channels): clean_channels[i] = np.delete(f, bad_indices) # If return_artifacts kwarg is True, return a list containing # information on what artifacts found, removed, etc. See docstring. if return_artifacts: artifact_status = {"lytaf": lytaf, "removed": lytaf[artifact_indices], "not_removed": np.delete(lytaf, artifact_indices), "not_found": artifacts_not_found} # Output FITS file if fits kwarg is set if fitsfile: # Create time array of time strings rather than datetime objects # and verify filecolumns have been correctly input. If None, # generate generic filecolumns (see docstring of function called # below. string_time, filecolumns = _prep_columns(time, channels, filecolumns) # Prepare column objects. cols = [fits.Column(name=filecolumns[0], format="26A", array=string_time)] if channels: for i, f in enumerate(channels): cols.append(fits.Column(name=filecolumns[i+1], format="D", array=f)) coldefs = fits.ColDefs(cols) tbhdu = fits.new_table(coldefs) hdu = fits.PrimaryHDU() tbhdulist = fits.HDUList([hdu, tbhdu]) # Write data to fits file. tbhdulist.writeto(fitsfile) # Output csv file if csv kwarg is set. if csvfile: # Create time array of time strings rather than datetime objects # and verify filecolumns have been correctly input. If None, # generate generic filecolumns (see docstring of function called # below. string_time, filecolumns = _prep_columns(time, channels, filecolumns) # Open and write data to csv file. with open(csvfile, 'w') as openfile: csvwriter = csv.writer(openfile, delimiter=';') # Write header. csvwriter.writerow(filecolumns) # Write data. if not channels: for i in range(len(time)): csvwriter.writerow(string_time[i]) else: for i in range(len(time)): row = [string_time[i]] for f in channels: row.append(f[i]) csvwriter.writerow(row) # Return values. if return_artifacts: if not channels: return clean_time, artifact_status else: return clean_time, clean_channels, artifact_status else: if not channels: return clean_time else: return clean_time, clean_channels def get_lytaf_events(start_time, end_time, lytaf_path=None, combine_files=("lyra", "manual", "ppt", "science"), csvfile=None, force_use_local_lytaf=False): """ Extracts combined lytaf file for given time range. Given a time range defined by start_time and end_time, this function extracts the segments of each LYRA annotation file and combines them. Parameters ---------- start_time : `datetime.datetime` or `str` Start time of period for which annotation file is required. end_time : `datetime.datetime` or `str` End time of period for which annotation file is required. lytaf_path : `str` directory path where the LYRA annotation files are stored. combine_files : `tuple` of strings States which LYRA annotation files are to be combined. Default is all four, i.e. lyra, manual, ppt, science. See Notes section for an explanation of each. force_use_local_lytaf : `bool` Ensures current local version of lytaf files are not replaced by up-to-date online versions even if current local lytaf files do not cover entire input time range etc. Default=False Returns ------- lytaf : `numpy.recarray` Containing the various parameters stored in the LYTAF files. Notes ----- There are four LYRA annotation files which mark different types of events or artifacts in the data. They are named annotation_suffix.db where suffix is a variable equalling either lyra, manual, ppt, or science. annotation_lyra.db : contains entries regarding possible effects to the data due to normal operation of LYRA instrument. annotation_manual.db : contains entries regarding possible effects to the data due to unusual or manually logged events. annotation_ppt.db : contains entries regarding possible effects to the data due to pointing or positioning of PROBA2. annotation_science.db : contains events in the data scientifically interesting, e.g. GOES flares. References ---------- Further documentation: http://proba2.oma.be/data/TARDIS Examples -------- Get all events in the LYTAF files for January 2014 >>> from sunpy.instr.lyra import get_lytaf_events >>> lytaf = get_lytaf_events('2014-01-01', '2014-02-01') """ # Check inputs # Check lytaf path if not lytaf_path: lytaf_path = LYTAF_PATH # Check start_time and end_time is a date string or datetime object start_time = parse_time(start_time) end_time = parse_time(end_time) # Check combine_files contains correct inputs if not all(suffix in ["lyra", "manual", "ppt", "science"] for suffix in combine_files): raise ValueError("Elements in combine_files must be strings equalling " "'lyra', 'manual', 'ppt', or 'science'.") # Remove any duplicates from combine_files input combine_files = list(set(combine_files)) combine_files.sort() # Convert input times to UNIX timestamp format since this is the # time format in the annotation files start_time_uts = (start_time - datetime.datetime(1970, 1, 1)).total_seconds() end_time_uts = (end_time - datetime.datetime(1970, 1, 1)).total_seconds() # Define numpy record array which will hold the information from # the annotation file. lytaf = np.empty((0,), dtype=[("insertion_time", object), ("begin_time", object), ("reference_time", object), ("end_time", object), ("event_type", object), ("event_definition", object)]) # Access annotation files for suffix in combine_files: # Check database files are present dbname = "annotation_{0}.db".format(suffix) check_download_file(dbname, LYTAF_REMOTE_PATH, lytaf_path) # Open SQLITE3 annotation files connection = sqlite3.connect(os.path.join(lytaf_path, dbname)) # Create cursor to manipulate data in annotation file cursor = connection.cursor() # Check if lytaf file spans the start and end times defined by # user. If not, download newest version. # First get start time of first event and end time of last # event in lytaf. cursor.execute("select begin_time from event order by begin_time asc " "limit 1;") db_first_begin_time = cursor.fetchone()[0] db_first_begin_time = datetime.datetime.fromtimestamp(db_first_begin_time) cursor.execute("select end_time from event order by end_time desc " "limit 1;") db_last_end_time = cursor.fetchone()[0] db_last_end_time = datetime.datetime.fromtimestamp(db_last_end_time) # If lytaf does not include entire input time range... if not force_use_local_lytaf: if end_time > db_last_end_time or start_time < db_first_begin_time: # ...close lytaf file... cursor.close() connection.close() # ...Download latest lytaf file... check_download_file(dbname, LYTAF_REMOTE_PATH, lytaf_path, replace=True) # ...and open new version of lytaf database. connection = sqlite3.connect(os.path.join(lytaf_path, dbname)) cursor = connection.cursor() # Select and extract the data from event table within file within # given time range cursor.execute("select insertion_time, begin_time, reference_time, " "end_time, eventType_id from event where end_time >= " "{0} and begin_time <= " "{1}".format(start_time_uts, end_time_uts)) event_rows = cursor.fetchall() # Select and extract the event types from eventType table cursor.row_factory = sqlite3.Row cursor.execute("select * from eventType") eventType_rows = cursor.fetchall() eventType_id = [] eventType_type = [] eventType_definition = [] for eventType_row in eventType_rows: eventType_id.append(eventType_row["id"]) eventType_type.append(eventType_row["type"]) eventType_definition.append(eventType_row["definition"]) # Enter desired information into the lytaf numpy record array for event_row in event_rows: id_index = eventType_id.index(event_row[4]) lytaf = np.append(lytaf, np.array((datetime.datetime.utcfromtimestamp(event_row[0]), datetime.datetime.utcfromtimestamp(event_row[1]), datetime.datetime.utcfromtimestamp(event_row[2]), datetime.datetime.utcfromtimestamp(event_row[3]), eventType_type[id_index], eventType_definition[id_index]), dtype=lytaf.dtype)) # Close file cursor.close() connection.close() # Sort lytaf in ascending order of begin time np.recarray.sort(lytaf, order="begin_time") # If csvfile kwarg is set, write out lytaf to csv file if csvfile: # Open and write data to csv file. with open(csvfile, 'w') as openfile: csvwriter = csv.writer(openfile, delimiter=';') # Write header. csvwriter.writerow(lytaf.dtype.names) # Write data. for row in lytaf: new_row = [] new_row.append(row[0].strftime("%Y-%m-%dT%H:%M:%S")) new_row.append(row[1].strftime("%Y-%m-%dT%H:%M:%S")) new_row.append(row[2].strftime("%Y-%m-%dT%H:%M:%S")) new_row.append(row[3].strftime("%Y-%m-%dT%H:%M:%S")) new_row.append(row[4]) new_row.append(row[5]) csvwriter.writerow(new_row) return lytaf def get_lytaf_event_types(lytaf_path=None, print_event_types=True): """Prints the different event types in the each of the LYTAF databases. Parameters ---------- lytaf_path : `str` Path location where LYTAF files are stored. Default = LYTAF_PATH defined above. print_event_types : `bool` If True, prints the artifacts in each lytaf database to screen. Returns ------- all_event_types : `list` List of all events types in all lytaf databases. """ # Set lytaf_path is not done by user if not lytaf_path: lytaf_path = LYTAF_PATH suffixes = ["lyra", "manual", "ppt", "science"] all_event_types = [] # For each database file extract the event types and print them. if print_event_types: print("\nLYTAF Event Types\n-----------------\n") for suffix in suffixes: dbname = "annotation_{0}.db".format(suffix) # Check database file exists, else download it. check_download_file(dbname, LYTAF_REMOTE_PATH, lytaf_path) # Open SQLITE3 LYTAF files connection = sqlite3.connect(os.path.join(lytaf_path, dbname)) # Create cursor to manipulate data in annotation file cursor = connection.cursor() cursor.execute("select type from eventType;") event_types = cursor.fetchall() all_event_types.append(event_types) if print_event_types: print("----------------\n{0} database\n----------------" .format(suffix)) for event_type in event_types: print(str(event_type[0])) print(" ") # Unpack event types in all_event_types into single list all_event_types = [event_type[0] for event_types in all_event_types for event_type in event_types] return all_event_types def download_lytaf_database(lytaf_dir=''): """download latest Proba2 pointing database from Proba2 Science Center""" url = 'http://proba2.oma.be/lyra/data/lytaf/annotation_ppt.db' destination = os.path.join(lytaf_dir, 'annotation_ppt.db') urllib.request.urlretrieve(url, destination) return def split_series_using_lytaf(timearray, data, lytaf): """ Proba-2 analysis code for splitting up LYRA timeseries around locations where LARs (and other data events) are observed. Parameters ---------- timearray : `numpy.ndarray` of times understood by `sunpy.time.parse_time` function. data : `numpy.array` corresponding to the given time array lytaf : `numpy.recarray` Events obtained from querying LYTAF database using lyra.get_lytaf_events(). Output ------ output : `list` of dictionaries Each dictionary contains a sub-series corresponding to an interval of 'good data'. """ n = len(timearray) mask = np.ones(n) el = len(lytaf) # make the input time array a list of datetime objects datetime_array = [] for tim in timearray: datetime_array.append(parse_time(tim)) # scan through each entry retrieved from the LYTAF database for j in range(0, el): # want to mark all times with events as bad in the mask, i.e. = 0 start_dt = lytaf['begin_time'][j] end_dt = lytaf['end_time'][j] # find the start and end indices for each event start_ind = np.searchsorted(datetime_array, start_dt) end_ind = np.searchsorted(datetime_array, end_dt) # append the mask to mark event as 'bad' mask[start_ind:end_ind] = 0 diffmask = np.diff(mask) tmp_discontinuity = np.where(diffmask != 0.) # disc contains the indices of mask where there are discontinuities disc = tmp_discontinuity[0] if len(disc) == 0: print('No events found within time series interval. ' 'Returning original series.') return [{'subtimes': datetime_array, 'subdata': data}] # -1 in diffmask means went from good data to bad # +1 means went from bad data to good # want to get the data between a +1 and the next -1 # if the first discontinuity is a -1 then the start of the series was good. if diffmask[disc[0]] == -1.0: # make sure we can always start from disc[0] below disc = np.insert(disc, 0, 0) split_series = [] limit = len(disc) # now extract the good data regions and ignore the bad ones for h in range(0, limit, 2): if h == limit-1: # can't index h+1 here. Go to end of series subtimes = datetime_array[disc[h]:-1] subdata = data[disc[h]:-1] subseries = {'subtimes':subtimes, 'subdata':subdata} split_series.append(subseries) else: subtimes = datetime_array[disc[h]:disc[h+1]] subdata = data[disc[h]:disc[h+1]] subseries = {'subtimes':subtimes, 'subdata':subdata} split_series.append(subseries) return split_series def _lytaf_event2string(integers): if type(integers) == int: integers = [integers] #else: # n=len(integers) out = [] for i in integers: if i == 1: out.append('LAR') if i == 2: out.append('N/A') if i == 3: out.append('UV occult.') if i == 4: out.append('Vis. occult.') if i == 5: out.append('Offpoint') if i == 6: out.append('SAA') if i == 7: out.append('Auroral zone') if i == 8: out.append('Moon in LYRA') if i == 9: out.append('Moon in SWAP') if i == 10: out.append('Venus in LYRA') if i == 11: out.append('Venus in SWAP') return out def _prep_columns(time, channels=None, filecolumns=None): """ Checks and prepares data to be written out to a file. Firstly, this function converts the elements of time, whose entries are assumed to be datetime objects, to time strings. Secondly, it checks whether the number of elements in an input list of column names, filecolumns, is equal to the number of arrays in the list, channels. If not, a ValueError is raised. If however filecolumns equals None, a filenames list is generated equal to ["time", "channel0", "channel1",..., "channelN"] where N is the number of arrays in the list, channels (assuming 0-indexed counting). """ # Convert time which contains datetime objects to time strings. string_time = np.array([t.strftime("%Y-%m-%dT%H:%M:%S.%f") for t in time]) # If filenames is given... if filecolumns: # ...check all the elements are strings... if all(isinstance(column, str) for column in filecolumns) is False: raise TypeError("All elements in filecolumns must by strings.") # ...and that there are the same number of elements as there # are arrays in channels, plus 1 for a time array. Otherwise # raise a ValueError. if channels: ncol = 1 + len(channels) else: ncol = 1 if len(filecolumns) != ncol: raise ValueError("Number of elements in filecolumns must be " "equal to the number of input data arrays, " "i.e. time + elements in channels.") # If filenames not given, create a list of columns names of the # form: ["time", "channel0", "channel1",...,"channelN"] where N # is the number of arrays in channels (assuming 0-indexed counting). else: if channels: filecolumns = ["channel{0}".format(fluxnum) for fluxnum in range(len(channels))] filecolumns.insert(0, "time") else: filecolumns = ["time"] return string_time, filecolumns
{ "repo_name": "Alex-Ian-Hamilton/sunpy", "path": "sunpy/instr/lyra.py", "copies": "1", "size": "30619", "license": "bsd-2-clause", "hash": 8336615997560095000, "line_mean": 40.4891598916, "line_max": 93, "alpha_frac": 0.6130833796, "autogenerated": false, "ratio": 4.093449197860963, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0004645845460382737, "num_lines": 738 }
from __future__ import absolute_import, division, print_function import os.path import sys from Cython.Build import cythonize from Cython.Distutils import extension from echomesh.base import Path from echomesh.base import Platform _DEBUG_FLAG = '--debug' DEBUG = _DEBUG_FLAG in sys.argv if DEBUG: sys.argv.remove(_DEBUG_FLAG) VERBOSE = True class Config(object): def __init__(self): self.debug = DEBUG self.verbose = VERBOSE self.module_name = 'cechomesh' self.library_name = '%s.so' % self.module_name pyx_files = ['cechomesh.pyx'] libraries = ['echomesh', 'pthread', 'glog'] extra_compile_args = ( '-I. -fmessage-length=0 -std=c++11 ' ' -IJuceLibraryCode -Ibuild/include -Wno-unused-function ') if DEBUG: extra_args = {'cython_gdb': True, 'pyrex_gdb': True} extra_compile_args += '-O0 -g -D_DEBUG=1 -DDEBUG=1 ' extra_link_args = '-g ' else: extra_args = {} extra_compile_args += '-O2 ' extra_link_args = '-flto ' if Platform.PLATFORM == Platform.MAC: extra_link_args += ( '-framework Cocoa -framework WebKit -framework CoreMidi ') extra_compile_args += '-stdlib=libc++ -x c++ -arch x86_64 ' if DEBUG: echomesh_lib = 'Builds/MacOSX/build/Debug' else: echomesh_lib = 'Builds/MacOSX/build/Release' elif Platform.PLATFORM == Platform.UBUNTU: extra_link_args += ( '-lc++ -L/usr/X11R6/lib/ -lX11 -lXext -lXinerama -lasound ' '-ldl -lfreetype -lrt -lechomesh') extra_compile_args += '-stdlib=libc++ -arch x86_64 -x c++ ' if DEBUG: echomesh_lib = 'Builds/Linux/build/Debug' else: echomesh_lib = 'Builds/Linux/build' elif Platform.PLATFORM == Platform.RASPBERRY_PI: extra_link_args += ( '-L/usr/X11R6/lib/ -lX11 -lXext -lXinerama -lasound ' '-ldl -lfreetype -lrt -lechomesh') echomesh_lib = 'Builds/Linux/build' else: raise Exception("Don't understand platform %s" % Platform.PLATFORM) extra_compile_args = extra_compile_args.split() extra_link_args = extra_link_args.split() self.bin_dir = Path.LIBRARY_PATH lib_dirs = ['build/lib', echomesh_lib] ext = extension.Extension( self.module_name, pyx_files, library_dirs=lib_dirs, libraries=libraries, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, **extra_args) self.modules = cythonize([ext], **extra_args) self.c_library = os.path.join(echomesh_lib, 'libechomesh.a') CONFIG = Config()
{ "repo_name": "rec/echomesh", "path": "code/python/echomesh/build/BuildConfig.py", "copies": "1", "size": "2875", "license": "mit", "hash": 1014947364197734700, "line_mean": 29.585106383, "line_max": 79, "alpha_frac": 0.5648695652, "autogenerated": false, "ratio": 3.4307875894988067, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44956571546988067, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os.path import sys import yaml __all__ = ['ManifestChart'] MANIFEST_FILES = ["Chart.yaml", "Chart.yml"] class ManifestChart(dict): def __init__(self, package=None, values=None): def __init__(self): super(ManifestChart, self).__init__() self.values = values if package is None: self._load_from_path() else: self._load_yaml(package.manifest) def _load_yaml(self, yamlstr): try: self.update(yaml.load(yamlstr)) except yaml.YAMLError as exc: print("Error in configuration file:", sys.stderr) if hasattr(exc, 'problem_mark'): mark = exc.problem_mark # pylint: disable=no-member print("Error position: (%s:%s)" % (mark.line + 1, mark.column + 1), sys.stderr) raise exc def _load_from_path(self): mfile = None for f in MANIFEST_FILES: if os.path.exists(f): mfile = f break if mfile is not None: with open(mfile) as f: self._load_yaml(f.read()) else: raise IOError("Error: Chart not found.") @property def keywords(self): return self.get("keywords", []) @property def engine(self): return self.get("engine", "gotpl") @property def home(self): return self.get("home", "") @property def description(self): return self.get("description", "") @property def version(self): return self.get("version", "") @property def maintainers(self): return self.get("maintainers", []) @property def sources(self): return self.get("sources", []) @property def name(self): return self.get("name", []) def metadata(self): return {"maintainers": self.maintainers, "source": self.sources}
{ "repo_name": "app-registry/appr", "path": "appr/formats/helm/manifest_chart.py", "copies": "2", "size": "1983", "license": "apache-2.0", "hash": -3774338324030189600, "line_mean": 23.4814814815, "line_max": 95, "alpha_frac": 0.5511850731, "autogenerated": false, "ratio": 4.006060606060606, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5557245679160606, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os.path import yaml from appr.formats.appr.manifest import ManifestBase from appr.pack import all_files from appr.render_jsonnet import RenderJsonnet, yaml_to_jsonnet __all__ = ['ManifestJsonnet'] MANIFEST_FILES = ['manifest.jsonnet', 'manifest.yaml', 'manifest.yml', 'kpm-manifest.jsonnet'] class ManifestJsonnet(ManifestBase): def __init__(self, package=None, tla_codes=None): self.tla_codes = tla_codes if package is not None: self._load_from_package(package) else: self._load_from_path() super(ManifestJsonnet, self).__init__() def _isjsonnet(self, package): if "manifest.yaml" in package.files: return False elif "manifest.jsonnet" in package.files or "appr.jsonnet": return True else: raise RuntimeError("Unknown manifest format") def _load_from_package(self, package): if self._isjsonnet(package): self._load_jsonnet(package.manifest, package.files) else: self._load_yaml(package.manifest, package.files) def _load_from_path(self): for filepath in MANIFEST_FILES: if os.path.exists(filepath): mfile = filepath break _, ext = os.path.splitext(mfile) with open(mfile) as f: auth_files = all_files() files = dict(zip(auth_files, [None] * len(auth_files))) if ext == '.jsonnet': self._load_jsonnet(f.read(), files) else: self._load_yaml(f.read(), files) def _load_jsonnet(self, jsonnetstr, files): k = RenderJsonnet(files) r = k.render_jsonnet(jsonnetstr, self.tla_codes) self.update(r) def _load_yaml(self, yamlstr, files): try: jsonnetstr = yaml_to_jsonnet(yamlstr, self.tla_codes) files['manifest.jsonnet'] = jsonnetstr self._load_jsonnet(jsonnetstr, files) except yaml.YAMLError as exc: print('Error in configuration file:') if hasattr(exc, 'problem_mark'): mark = exc.problem_mark # pylint: disable=E1101 print('Error position: (%s:%s)' % (mark.line + 1, mark.column + 1)) raise exc
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/formats/appr/manifest_jsonnet.py", "copies": "2", "size": "2349", "license": "apache-2.0", "hash": -1232279893608426800, "line_mean": 33.0434782609, "line_max": 94, "alpha_frac": 0.5917411665, "autogenerated": false, "ratio": 3.7285714285714286, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5320312595071428, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import os, sys, argparse import urllib import tflearn from tflearn.data_utils import * parser = argparse.ArgumentParser(description= 'Pass a text file to generate LSTM output') parser.add_argument('filename') parser.add_argument('-t','--temp', help= 'Defaults to displaying multiple temperature outputs which is suggested.' + ' If temp is specified, a value of 0.0 to 2.0 is recommended.' + ' Temperature is the novelty or' + ' riskiness of the generated output. A value closer to 0 will result' + ' in output closer to the input, so higher is riskier.', required=False, nargs=1, type=float) parser.add_argument('-l','--length', help= 'Optional length of text sequences to analyze. Defaults to 25.', required=False, default=25, nargs=1, type=int) args = vars(parser.parse_args()) path = args['filename'] if args['temp'] and args['temp'][0] is not None: temp = args['temp'][0] print("Temperature set to", temp) if temp > 2 or temp < 0: print("Temperature out of suggested range. Suggested temp range is 0.0-2.0") else: print("Will display multiple temperature outputs") if args['length'] is not 25: maxlen = args['length'][0] # default 25 is set in .add_argument above if not set by user print("Sequence max length set to ", maxlen) else: maxlen = args['length'] model_name=path.split('.')[0] # create model name from textfile input if not os.path.isfile(path): print("Couldn't find the text file. Are you sure the you passed is correct?") X, Y, char_idx = \ textfile_to_semi_redundant_sequences(path, seq_maxlen=maxlen, redun_step=3) g = tflearn.input_data([None, maxlen, len(char_idx)]) g = tflearn.lstm(g, 512, return_seq=True) g = tflearn.dropout(g, 0.5) g = tflearn.lstm(g, 512, return_seq=True) g = tflearn.dropout(g, 0.5) g = tflearn.lstm(g, 512) g = tflearn.dropout(g, 0.5) g = tflearn.fully_connected(g, len(char_idx), activation='softmax') g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.001) m = tflearn.SequenceGenerator(g, dictionary=char_idx, seq_maxlen=maxlen, clip_gradients=5.0, checkpoint_path='model_'+ model_name) for i in range(50): seed = random_sequence_from_textfile(path, maxlen) m.fit(X, Y, validation_set=0.1, batch_size=128, n_epoch=1, run_id=model_name) print("-- TESTING...") if args['temp'] is not None: temp = args['temp'][0] print("-- Test with temperature of %s --" % temp) print(m.generate(600, temperature=temp, seq_seed=seed)) else: print("-- Test with temperature of 1.0 --") print(m.generate(600, temperature=1.0, seq_seed=seed)) print("-- Test with temperature of 0.5 --") print(m.generate(600, temperature=0.5, seq_seed=seed))
{ "repo_name": "hashware/tflearn-learn", "path": "examples/nlp/lstm_generator_textfile.py", "copies": "2", "size": "2983", "license": "mit", "hash": 7709433194300414000, "line_mean": 37.7402597403, "line_max": 92, "alpha_frac": 0.6473348978, "autogenerated": false, "ratio": 3.4208715596330275, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5068206457433028, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd from ..expr import (Expr, Symbol, Field, Arithmetic, Math, Date, Time, DateTime, Millisecond, Microsecond, broadcast, sin, cos, Map, UTCFromTimestamp, DateTimeTruncate, symbol, USub, Not) from ..expr import math as expr_math from ..expr.expressions import valid_identifier from ..dispatch import dispatch from . import pydatetime import datetime import math import toolz import itertools funcnames = ('func_%d' % i for i in itertools.count()) def parenthesize(s): if ' ' in s: return '(%s)' % s else: return s def print_python(leaves, expr): """ Print expression to be evaluated in Python >>> from blaze.expr import ceil, sin >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> print_python([t], t.x + t.y) ('t[0] + t[1]', {}) Supports mathematical and datetime access >>> print_python([t], sin(t.x) > ceil(t.y)) # doctest: +SKIP ('math.sin(t[0]) > math.ceil(t[1])', {'math':<module 'math'>}) >>> print_python([t], t.when.day + 1) ('t[3].day + 1', {}) Specify leaves of the expression to control level of printing >>> print_python([t.x, t.y], t.x + t.y) ('x + y', {}) Returns ------- s: string A evalable string scope: dict A namespace to add to be given to eval """ if isinstance(expr, Expr) and any(expr.isidentical(lf) for lf in leaves): return valid_identifier(expr._name), {} return _print_python(expr, leaves=leaves) @dispatch(object) def _print_python(expr, leaves=None): return repr(expr), {} @dispatch((datetime.datetime, datetime.date)) def _print_python(expr, leaves=None): return repr(expr), {'datetime': datetime, 'Timestamp': pd.Timestamp} @dispatch(Symbol) def _print_python(expr, leaves=None): return valid_identifier(expr._name), {} @dispatch(Field) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) index = expr._child.fields.index(expr._name) return '%s[%d]' % (parenthesize(child), index), scope @dispatch(Arithmetic) def _print_python(expr, leaves=None): lhs, left_scope = print_python(leaves, expr.lhs) rhs, right_scope = print_python(leaves, expr.rhs) return ('%s %s %s' % (parenthesize(lhs), expr.symbol, parenthesize(rhs)), toolz.merge(left_scope, right_scope)) @dispatch(USub) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return '%s%s' % (expr.symbol, parenthesize(child)), scope @dispatch(Not) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return 'not %s' % parenthesize(child), scope @dispatch(Math) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('math.%s(%s)' % (type(expr).__name__, child), toolz.merge(scope, {'math': math})) @dispatch(expr_math.abs) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('abs(%s)' % child, scope) @dispatch(Date) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.date()' % parenthesize(child), scope) @dispatch(Time) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.time()' % parenthesize(child), scope) @dispatch(Millisecond) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.microsecond // 1000' % parenthesize(child), scope) @dispatch(UTCFromTimestamp) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('datetime.datetime.utcfromtimestamp(%s)' % parenthesize(child), toolz.merge({'datetime': datetime}, scope)) @dispatch(DateTime) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) attr = type(expr).__name__.lower() return ('%s.%s' % (parenthesize(child), attr), scope) @dispatch(DateTimeTruncate) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) scope['truncate'] = pydatetime.truncate return ('truncate(%s, %s, "%s")' % (child, expr.measure, expr.unit), scope) @dispatch(Map) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) funcname = next(funcnames) return ('%s(%s)' % (funcname, child), toolz.assoc(scope, funcname, expr.func)) @dispatch(Expr) def _print_python(expr, leaves=None): raise NotImplementedError("Do not know how to write expressions of type %s" " to Python code" % type(expr).__name__) def funcstr(leaves, expr): """ Lambda string for an expresion >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> funcstr([t], t.x + t.y) ('lambda t: t[0] + t[1]', {}) >>> funcstr([t.x, t.y], t.x + t.y) ('lambda x, y: x + y', {}) Also returns scope for libraries like math or datetime >>> funcstr([t.x, t.y], sin(t.x) + t.y) # doctest: +SKIP ('lambda x, y: math.sin(x) + y', {'math': <module 'math'>}) >>> from datetime import date >>> funcstr([t.x, t.y, t.when], t.when.date > date(2001, 12, 25)) #doctest: +SKIP ('lambda x, y, when: when.day > datetime.date(2001, 12, 25)', {'datetime': <module 'datetime'>}) """ result, scope = print_python(leaves, expr) leaf_names = [print_python([leaf], leaf)[0] for leaf in leaves] return 'lambda %s: %s' % (', '.join(leaf_names), result), scope def lambdify(leaves, expr): """ Lambda for an expresion >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> f = lambdify([t], t.x + t.y) >>> f((1, 10, 100, '')) 11 >>> f = lambdify([t.x, t.y, t.z, t.when], t.x + cos(t.y)) >>> f(1, 0, 100, '') 2.0 """ s, scope = funcstr(leaves, expr) return eval(s, scope)
{ "repo_name": "dwillmer/blaze", "path": "blaze/compute/pyfunc.py", "copies": "3", "size": "6148", "license": "bsd-3-clause", "hash": 4429572772047655000, "line_mean": 29.8944723618, "line_max": 100, "alpha_frac": 0.6107677293, "autogenerated": false, "ratio": 3.2615384615384615, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5372306190838462, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd from ..expr import (Expr, Symbol, Field, Arithmetic, UnaryMath, BinaryMath, Date, Time, DateTime, Millisecond, Microsecond, broadcast, sin, cos, Map, UTCFromTimestamp, DateTimeTruncate, symbol, USub, Not, notnull, greatest, least, atan2, Like) from ..expr import math as expr_math from ..expr.expressions import valid_identifier from ..dispatch import dispatch from . import pydatetime import numpy as np import datetime import fnmatch import math import toolz import itertools funcnames = ('func_%d' % i for i in itertools.count()) def parenthesize(s): if ' ' in s: return '(%s)' % s else: return s def print_python(leaves, expr): """ Print expression to be evaluated in Python >>> from blaze.expr import ceil, sin >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> print_python([t], t.x + t.y) ('t[0] + t[1]', {}) Supports mathematical and datetime access >>> print_python([t], sin(t.x) > ceil(t.y)) # doctest: +SKIP ('math.sin(t[0]) > math.ceil(t[1])', {'math':<module 'math'>}) >>> print_python([t], t.when.day + 1) ('t[3].day + 1', {}) Specify leaves of the expression to control level of printing >>> print_python([t.x, t.y], t.x + t.y) ('x + y', {}) Returns ------- s: string A evalable string scope: dict A namespace to add to be given to eval """ if isinstance(expr, Expr) and any(expr.isidentical(lf) for lf in leaves): return valid_identifier(expr._name), {} return _print_python(expr, leaves=leaves) @dispatch(object) def _print_python(expr, leaves=None): return repr(expr), {} @dispatch((datetime.datetime, datetime.date)) def _print_python(expr, leaves=None): return repr(expr), {'datetime': datetime, 'Timestamp': pd.Timestamp} @dispatch(Symbol) def _print_python(expr, leaves=None): return valid_identifier(expr._name), {} @dispatch(Field) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) index = expr._child.fields.index(expr._name) return '%s[%d]' % (parenthesize(child), index), scope @dispatch(Arithmetic) def _print_python(expr, leaves=None): lhs, left_scope = print_python(leaves, expr.lhs) rhs, right_scope = print_python(leaves, expr.rhs) return ('%s %s %s' % (parenthesize(lhs), expr.symbol, parenthesize(rhs)), toolz.merge(left_scope, right_scope)) @dispatch(USub) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return '%s%s' % (expr.symbol, parenthesize(child)), scope @dispatch(Not) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return 'not %s' % parenthesize(child), scope @dispatch(UnaryMath) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('np.%s(%s)' % (type(expr).__name__, child), toolz.merge(scope, {'np': np})) @dispatch(BinaryMath) def _print_python(expr, leaves=None): lhs, scope_lhs = print_python(leaves, expr.lhs) rhs, scope_rhs = print_python(leaves, expr.rhs) return ('np.%s(%s, %s)' % (type(expr).__name__, lhs, rhs), toolz.merge(scope_lhs, scope_rhs, {'np': np})) @dispatch(atan2) def _print_python(expr, leaves=None): lhs, scope_lhs = print_python(leaves, expr.lhs) rhs, scope_rhs = print_python(leaves, expr.rhs) return ('np.arctan2(%s, %s)' % (lhs, rhs), toolz.merge(scope_lhs, scope_rhs, {'np': np})) @dispatch(greatest) def _print_python(expr, leaves=None): lhs, scope_lhs = print_python(leaves, expr.lhs) rhs, scope_rhs = print_python(leaves, expr.rhs) return 'max(%s, %s)' % (lhs, rhs), toolz.merge(scope_lhs, scope_rhs) @dispatch(least) def _print_python(expr, leaves=None): lhs, scope_lhs = print_python(leaves, expr.lhs) rhs, scope_rhs = print_python(leaves, expr.rhs) return 'min(%s, %s)' % (lhs, rhs), toolz.merge(scope_lhs, scope_rhs) @dispatch(expr_math.abs) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('abs(%s)' % child, scope) @dispatch(Date) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.date()' % parenthesize(child), scope) @dispatch(Time) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.time()' % parenthesize(child), scope) @dispatch(Millisecond) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.microsecond // 1000' % parenthesize(child), scope) @dispatch(UTCFromTimestamp) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('datetime.datetime.utcfromtimestamp(%s)' % parenthesize(child), toolz.merge({'datetime': datetime}, scope)) @dispatch(DateTime) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) attr = type(expr).__name__.lower() return ('%s.%s' % (parenthesize(child), attr), scope) @dispatch(DateTimeTruncate) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) scope['truncate'] = pydatetime.truncate return ('truncate(%s, %s, "%s")' % (child, expr.measure, expr.unit), scope) @dispatch(Map) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) funcname = next(funcnames) return ('%s(%s)' % (funcname, child), toolz.assoc(scope, funcname, expr.func)) @dispatch(notnull) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('notnull(%s)' % child, toolz.merge(scope, dict(notnull=lambda x: x is not None))) @dispatch(Like) def _print_python(expr, leaves): child, scope = print_python(leaves, expr._child) return ( 'fnmatch(%s, %r)' % (child, expr.pattern), toolz.merge(scope, dict(fnmatch=fnmatch.fnmatch)) ) @dispatch(Expr) def _print_python(expr, leaves=None): raise NotImplementedError("Do not know how to write expressions of type %s" " to Python code" % type(expr).__name__) def funcstr(leaves, expr): """ Lambda string for an expresion >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> funcstr([t], t.x + t.y) ('lambda t: t[0] + t[1]', {}) >>> funcstr([t.x, t.y], t.x + t.y) ('lambda x, y: x + y', {}) Also returns scope for libraries like math or datetime >>> funcstr([t.x, t.y], sin(t.x) + t.y) # doctest: +SKIP ('lambda x, y: math.sin(x) + y', {'math': <module 'math'>}) >>> from datetime import date >>> funcstr([t.x, t.y, t.when], t.when.date > date(2001, 12, 25)) #doctest: +SKIP ('lambda x, y, when: when.day > datetime.date(2001, 12, 25)', {'datetime': <module 'datetime'>}) """ result, scope = print_python(leaves, expr) leaf_names = [print_python([leaf], leaf)[0] for leaf in leaves] return 'lambda %s: %s' % (', '.join(leaf_names), result), scope def lambdify(leaves, expr): """ Lambda for an expresion >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> f = lambdify([t], t.x + t.y) >>> f((1, 10, 100, '')) 11 >>> f = lambdify([t.x, t.y, t.z, t.when], t.x + cos(t.y)) >>> f(1, 0, 100, '') 2.0 """ s, scope = funcstr(leaves, expr) return eval(s, scope)
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/compute/pyfunc.py", "copies": "5", "size": "7748", "license": "bsd-3-clause", "hash": -5583132074411088000, "line_mean": 28.572519084, "line_max": 100, "alpha_frac": 0.6143520909, "autogenerated": false, "ratio": 3.213604313562837, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6327956404462837, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd from toolz import partial from dask.base import compute def _categorize_block(df, categories): """ Categorize a dataframe with given categories df: DataFrame categories: dict mapping column name to iterable of categories """ df = df.copy() for col, vals in categories.items(): df[col] = pd.Categorical(df[col], categories=vals, ordered=False) return df def categorize(df, columns=None, **kwargs): """ Convert columns of dataframe to category dtype This aids performance, both in-memory and in spilling to disk """ if columns is None: dtypes = df.dtypes columns = [name for name, dt in zip(dtypes.index, dtypes.values) if dt == 'O'] if not isinstance(columns, (list, tuple)): columns = [columns] distincts = [df[col].drop_duplicates() for col in columns] values = compute(*distincts, **kwargs) func = partial(_categorize_block, categories=dict(zip(columns, values))) meta = func(df._meta) return df.map_partitions(func, meta=meta) def _categorize(categories, df): """ Categorize columns in dataframe >>> df = pd.DataFrame({'x': [1, 2, 3], 'y': [0, 2, 0]}) >>> categories = {'y': ['A', 'B', 'c']} >>> _categorize(categories, df) x y 0 1 A 1 2 c 2 3 A >>> _categorize(categories, df.y) 0 A 1 c 2 A dtype: category Categories (3, object): [A, B, c] """ if '.index' in categories: index = pd.CategoricalIndex( pd.Categorical.from_codes(df.index.values, categories['.index'])) else: index = df.index if isinstance(df, pd.Series): if df.name in categories: cat = pd.Categorical.from_codes(df.values, categories[df.name]) return pd.Series(cat, index=index) else: return df else: return pd.DataFrame( dict((col, pd.Categorical.from_codes(df[col].values, categories[col]) if col in categories else df[col].values) for col in df.columns), columns=df.columns, index=index) def strip_categories(df): """ Strip categories from dataframe >>> df = pd.DataFrame({'x': [1, 2, 3], 'y': ['A', 'B', 'A']}) >>> df['y'] = df.y.astype('category') >>> strip_categories(df) x y 0 1 0 1 2 1 2 3 0 """ return pd.DataFrame(dict((col, df[col].cat.codes.values if iscategorical(df.dtypes[col]) else df[col].values) for col in df.columns), columns=df.columns, index=df.index.codes if iscategorical(df.index.dtype) else df.index) def iscategorical(dt): return isinstance(dt, pd.core.common.CategoricalDtype) def get_categories(df): """ Get Categories of dataframe >>> df = pd.DataFrame({'x': [1, 2, 3], 'y': ['A', 'B', 'A']}) >>> df['y'] = df.y.astype('category') >>> get_categories(df) {'y': Index([u'A', u'B'], dtype='object')} """ result = dict((col, df[col].cat.categories) for col in df.columns if iscategorical(df.dtypes[col])) if iscategorical(df.index.dtype): result['.index'] = df.index.categories return result
{ "repo_name": "cowlicks/dask", "path": "dask/dataframe/categorical.py", "copies": "2", "size": "3559", "license": "bsd-3-clause", "hash": -985202191573583100, "line_mean": 28.4132231405, "line_max": 85, "alpha_frac": 0.5465018264, "autogenerated": false, "ratio": 3.790202342917998, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5336704169317997, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd import nfldb from nfldb.update import log from nfldbproj.names import name_to_id from nfldbproj import update def from_dataframe(db, df, metadata, single_week_only=False, season_totals=False, fp_projection=True, stat_projection=True, fp_score=False, dfs_salary=False): if 'opp' in df: df = drop_byes(df) if 'gsis_id' not in df and not season_totals: # Not needed for season projections. assign_gsis_ids(db, df, metadata) fix_dst_names(df) if 'fantasy_player_id' not in df: assign_player_ids(db, df) if fp_projection: fp_df = pd.DataFrame(index=df.index) for column in ('fantasy_player_id', 'gsis_id', 'team', 'fantasy_pos', 'projected_fp', 'fp_variance', 'week'): if column in df: fp_df[column] = df[column] _from_dataframe_filtered(db, drop_null(fp_df, 'projected_fp'), metadata, season_totals=season_totals, single_week_only=single_week_only) if stat_projection: stat_df = df.copy() stat_metadata = metadata.copy() stat_metadata['fpsys_name'] = 'None' if 'fpsys_url' in stat_metadata: del stat_metadata['fpsys_url'] for column in ('projected_fp', 'fp_variance', 'actual_fp', 'salary'): if column in stat_df: del stat_df[column] _from_dataframe_filtered(db, stat_df, stat_metadata, season_totals=season_totals, single_week_only=single_week_only) if fp_score: results_df = pd.DataFrame(index=df.index) for column in ('fantasy_player_id', 'gsis_id', 'team', 'fantasy_pos', 'actual_fp', 'week'): if column in df: results_df[column] = df[column] _from_dataframe_filtered(db, results_df, metadata, season_totals=season_totals, single_week_only=single_week_only) if dfs_salary: salary_df = pd.DataFrame(index=df.index) for column in ('fantasy_player_id', 'gsis_id', 'team', 'fantasy_pos', 'salary', 'week'): if column in df: salary_df[column] = df[column] _from_dataframe_filtered(db, drop_null(salary_df, 'salary'), metadata, season_totals=season_totals, single_week_only=single_week_only) def _from_dataframe_filtered(db, df, metadata, season_totals=False, single_week_only=False): if season_totals: return _from_season_dataframe(db, df, metadata) if single_week_only: return _from_week_dataframe(db, df, metadata) for week, week_df in df.groupby('week'): week_metadata = metadata.copy() week_metadata['week'] = week _from_week_dataframe(db, week_df, week_metadata) def _from_week_dataframe(db, df, metadata): if len(df['week'].unique()) > 1: raise ValueError('More than one week in data') metadata['week'] = df['week'].iloc[0] update.insert_data(db, metadata, _df_to_dicts(df)) def _from_season_dataframe(db, df, metadata): pass def _df_to_dicts(df): for _, row in df.iterrows(): yield dict(row[~row.isnull()]) def drop_byes(df): return df.drop(df.index[(df['opp'].isnull()) | (df['opp'] == '-')], axis=0) def drop_null(df, column): return df.drop(df.index[df[column].isnull()], axis=0) def assign_gsis_ids(db, df, metadata): log('finding game ids...', end='') for (week, team, home, opp), sub_df in df.groupby(['week', 'team', 'home', 'opp']): gsis_id = get_gsis_id( db, season_year=metadata['season_year'], season_type=metadata.get('season_type', 'Regular'), week=week, home_team=team if home else opp, ) df.loc[(df['week'] == week) & (df['team'] == team), 'gsis_id'] = gsis_id log('done') def get_gsis_id(db, **data): q = nfldb.Query(db) games = q.game(**data).as_games() if not games: raise ValueError('Cound not find game matching {}'.format(data)) if len(games) > 1: raise ValueError('Found {} games matching {}'.format(len(games), data)) return games[0].gsis_id def assign_player_ids(db, df): log('finding player ids...', end='') df['fantasy_player_id'] = None for name, sub_df in df.groupby('name'): df.loc[df['name'] == name, 'fantasy_player_id'] = name_to_id(db, sub_df['name'].iloc[0]) log('done') def fix_dst_names(df): df.loc[df['fantasy_pos'] == 'DST', 'name'] = df.loc[df['fantasy_pos'] == 'DST', 'team']
{ "repo_name": "hsharrison/nfldb-projections", "path": "nfldbproj/import_.py", "copies": "1", "size": "4785", "license": "bsd-2-clause", "hash": -5380721281696894000, "line_mean": 33.6739130435, "line_max": 117, "alpha_frac": 0.5740856844, "autogenerated": false, "ratio": 3.353188507358094, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4427274191758094, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd import numpy as np from ..core import tokenize, DataFrame from .io import from_delayed from ...delayed import delayed from ...utils import random_state_data __all__ = ['make_timeseries'] def make_float(n, rstate): return rstate.rand(n) * 2 - 1 def make_int(n, rstate): return rstate.poisson(1000, size=n) names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank', 'George', 'Hannah', 'Ingrid', 'Jerry', 'Kevin', 'Laura', 'Michael', 'Norbert', 'Oliver', 'Patricia', 'Quinn', 'Ray', 'Sarah', 'Tim', 'Ursula', 'Victor', 'Wendy', 'Xavier', 'Yvonne', 'Zelda'] def make_string(n, rstate): return rstate.choice(names, size=n) def make_categorical(n, rstate): return pd.Categorical.from_codes(rstate.randint(0, len(names), size=n), names) make = {float: make_float, int: make_int, str: make_string, object: make_string, 'category': make_categorical} def make_timeseries_part(start, end, dtypes, freq, state_data): index = pd.DatetimeIndex(start=start, end=end, freq=freq) state = np.random.RandomState(state_data) columns = dict((k, make[dt](len(index), state)) for k, dt in dtypes.items()) df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def make_timeseries(start, end, dtypes, freq, partition_freq, seed=None): """ Create timeseries dataframe with random data Parameters ---------- start: datetime (or datetime-like string) Start of time series end: datetime (or datetime-like string) End of time series dtypes: dict Mapping of column names to types. Valid types include {float, int, str, 'category'} freq: string String like '2s' or '1H' or '12W' for the time series frequency partition_freq: string String like '1M' or '2Y' to divide the dataframe into partitions seed: int (optional) Randomstate seed >>> import dask.dataframe as dd >>> df = dd.demo.make_timeseries('2000', '2010', ... {'value': float, 'name': str, 'id': int}, ... freq='2H', partition_freq='1D', seed=1) >>> df.head() # doctest: +SKIP id name value 2000-01-01 00:00:00 969 Jerry -0.309014 2000-01-01 02:00:00 1010 Ray -0.760675 2000-01-01 04:00:00 1016 Patricia -0.063261 2000-01-01 06:00:00 960 Charlie 0.788245 2000-01-01 08:00:00 1031 Kevin 0.466002 """ divisions = list(pd.DatetimeIndex(start=start, end=end, freq=partition_freq)) state_data = random_state_data(len(divisions) - 1, seed) name = 'make-timeseries-' + tokenize(start, end, dtypes, freq, partition_freq, state_data) dsk = {(name, i): (make_timeseries_part, divisions[i], divisions[i + 1], dtypes, freq, state_data[i]) for i in range(len(divisions) - 1)} head = make_timeseries_part('2000', '2000', dtypes, '1H', state_data[0]) return DataFrame(dsk, name, head, divisions) def generate_day(date, open, high, low, close, volume, freq=pd.Timedelta(seconds=60), random_state=None): """ Generate a day of financial data from open/close high/low values """ if not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) if not isinstance(date, pd.Timestamp): date = pd.Timestamp(date) if not isinstance(freq, pd.Timedelta): freq = pd.Timedelta(freq) time = pd.date_range(date + pd.Timedelta(hours=9), date + pd.Timedelta(hours=12 + 4), freq=freq / 5, name='timestamp') n = len(time) while True: values = (random_state.random_sample(n) - 0.5).cumsum() values *= (high - low) / (values.max() - values.min()) # scale values += np.linspace(open - values[0], close - values[-1], len(values)) # endpoints assert np.allclose(open, values[0]) assert np.allclose(close, values[-1]) mx = max(close, open) mn = min(close, open) ind = values > mx values[ind] = (values[ind] - mx) * (high - mx) / (values.max() - mx) + mx ind = values < mn values[ind] = (values[ind] - mn) * (low - mn) / (values.min() - mn) + mn # The process fails if min/max are the same as open close. This is rare if (np.allclose(values.max(), high) and np.allclose(values.min(), low)): break s = pd.Series(values.round(3), index=time) rs = s.resample(freq) # TODO: add in volume return pd.DataFrame({'open': rs.first(), 'close': rs.last(), 'high': rs.max(), 'low': rs.min()}) def daily_stock(symbol, start, stop, freq=pd.Timedelta(seconds=1), data_source='yahoo', random_state=None): """ Create artificial stock data This data matches daily open/high/low/close values from Yahoo! Finance, but interpolates values within each day with random values. This makes the results look natural without requiring the downloading of large volumes of data. This is useful for education and benchmarking. Parameters ---------- symbol: string A stock symbol like "GOOG" or "F" start: date, str, or pd.Timestamp The start date, input will be fed into pd.Timestamp for normalization stop: date, str, or pd.Timestamp The start date, input will be fed into pd.Timestamp for normalization freq: timedelta, str, or pd.Timedelta The frequency of sampling data_source: str, optional defaults to 'yahoo'. See pandas_datareader.data.DataReader for options random_state: int, np.random.RandomState object random seed, defaults to randomly chosen Examples -------- >>> import dask.dataframe as dd >>> df = dd.demo.daily_stock('GOOG', '2010', '2011', freq='1s') >>> df # doctest: +NORMALIZE_WHITESPACE Dask DataFrame Structure: close high low open npartitions=252 2010-01-04 09:00:00 float64 float64 float64 float64 2010-01-05 09:00:00 ... ... ... ... ... ... ... ... ... 2010-12-31 09:00:00 ... ... ... ... 2010-12-31 16:00:00 ... ... ... ... Dask Name: from-delayed, 504 tasks >>> df.head() # doctest: +SKIP close high low open timestamp 2010-01-04 09:00:00 626.944 626.964 626.944 626.951 2010-01-04 09:00:01 626.906 626.931 626.906 626.931 2010-01-04 09:00:02 626.901 626.911 626.901 626.905 2010-01-04 09:00:03 626.920 626.920 626.905 626.905 2010-01-04 09:00:04 626.894 626.917 626.894 626.906 """ from pandas_datareader import data df = data.DataReader(symbol, data_source, start, stop) seeds = random_state_data(len(df), random_state=random_state) parts = [] divisions = [] for i, seed in zip(range(len(df)), seeds): s = df.iloc[i] part = delayed(generate_day)(s.name, s.loc['Open'], s.loc['High'], s.loc['Low'], s.loc['Close'], s.loc['Volume'], freq=freq, random_state=seed) parts.append(part) divisions.append(s.name + pd.Timedelta(hours=9)) divisions.append(s.name + pd.Timedelta(hours=12 + 4)) meta = generate_day('2000-01-01', 1, 2, 0, 1, 100) return from_delayed(parts, meta=meta, divisions=divisions)
{ "repo_name": "cpcloud/dask", "path": "dask/dataframe/io/demo.py", "copies": "1", "size": "7953", "license": "bsd-3-clause", "hash": -8599157415794791000, "line_mean": 38.1773399015, "line_max": 88, "alpha_frac": 0.5743744499, "autogenerated": false, "ratio": 3.4683820322721326, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4542756482172132, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd import numpy as np from .core import tokenize, DataFrame from ..utils import different_seeds __all__ = ['make_timeseries'] def make_float(n, rstate): return rstate.rand(n) * 2 - 1 def make_int(n, rstate): return rstate.poisson(1000, size=n) names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank', 'George', 'Hannah', 'Ingrid', 'Jerry', 'Kevin', 'Laura', 'Michael', 'Norbert', 'Oliver', 'Patricia', 'Quinn', 'Ray', 'Sarah', 'Tim', 'Ursula', 'Victor', 'Wendy', 'Xavier', 'Yvonne', 'Zelda'] def make_string(n, rstate): return rstate.choice(names, size=n) def make_categorical(n, rstate): return pd.Categorical.from_codes(rstate.randint(0, len(names), size=n), names) make = {float: make_float, int: make_int, str: make_string, object: make_string, 'category': make_categorical} def make_timeseries_part(start, end, dtypes, freq, seed): index = pd.DatetimeIndex(start=start, end=end, freq=freq) state = np.random.RandomState(seed) columns = dict((k, make[dt](len(index), state)) for k, dt in dtypes.items()) df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def make_timeseries(start, end, dtypes, freq, partition_freq, seed=None): """ Create timeseries dataframe with random data Parameters ---------- start: datetime (or datetime-like string) Start of time series end: datetime (or datetime-like string) End of time series dtypes: dict Mapping of column names to types. Valid types include {float, int, str, 'category'} freq: string String like '2s' or '1H' or '12W' for the time series frequency partition_freq: string String like '1M' or '2Y' to divide the dataframe into partitions seed: int (optional) Randomstate seed >>> import dask.dataframe as dd >>> df = dd.demo.make_timeseries('2000', '2010', ... {'value': float, 'name': str, 'id': int}, ... freq='2H', partition_freq='1D', seed=1) >>> df.head() id name value 2000-01-01 00:00:00 960 Dan 0.824008 2000-01-01 02:00:00 1033 Xavier 0.575390 2000-01-01 04:00:00 986 George 0.693842 2000-01-01 06:00:00 1073 Sarah 0.900580 2000-01-01 08:00:00 976 Hannah -0.373847 """ divisions = list(pd.DatetimeIndex(start=start, end=end, freq=partition_freq)) state = np.random.RandomState(seed) seeds = different_seeds(len(divisions), state) name = 'make-timeseries-' + tokenize(start, end, dtypes, freq, partition_freq) dsk = dict(((name, i), (make_timeseries_part, divisions[i], divisions[i + 1], dtypes, freq, seeds[i])) for i in range(len(divisions) - 1)) head = make_timeseries_part('2000','2000', dtypes, '1H', 1) return DataFrame(dsk, name, head, divisions)
{ "repo_name": "mikegraham/dask", "path": "dask/dataframe/demo.py", "copies": "1", "size": "3180", "license": "bsd-3-clause", "hash": -5252871372486875000, "line_mean": 34.3333333333, "line_max": 82, "alpha_frac": 0.593081761, "autogenerated": false, "ratio": 3.3263598326359833, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9407061875295886, "avg_score": 0.002475943668019406, "num_lines": 90 }
from __future__ import absolute_import, division, print_function import pandas as pd import numpy as np from ..core import tokenize, DataFrame from ...utils import random_state_data __all__ = ['make_timeseries'] def make_float(n, rstate): return rstate.rand(n) * 2 - 1 def make_int(n, rstate): return rstate.poisson(1000, size=n) names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank', 'George', 'Hannah', 'Ingrid', 'Jerry', 'Kevin', 'Laura', 'Michael', 'Norbert', 'Oliver', 'Patricia', 'Quinn', 'Ray', 'Sarah', 'Tim', 'Ursula', 'Victor', 'Wendy', 'Xavier', 'Yvonne', 'Zelda'] def make_string(n, rstate): return rstate.choice(names, size=n) def make_categorical(n, rstate): return pd.Categorical.from_codes(rstate.randint(0, len(names), size=n), names) make = {float: make_float, int: make_int, str: make_string, object: make_string, 'category': make_categorical} def make_timeseries_part(start, end, dtypes, freq, state_data): index = pd.DatetimeIndex(start=start, end=end, freq=freq) state = np.random.RandomState(state_data) columns = dict((k, make[dt](len(index), state)) for k, dt in dtypes.items()) df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def make_timeseries(start, end, dtypes, freq, partition_freq, seed=None): """ Create timeseries dataframe with random data Parameters ---------- start: datetime (or datetime-like string) Start of time series end: datetime (or datetime-like string) End of time series dtypes: dict Mapping of column names to types. Valid types include {float, int, str, 'category'} freq: string String like '2s' or '1H' or '12W' for the time series frequency partition_freq: string String like '1M' or '2Y' to divide the dataframe into partitions seed: int (optional) Randomstate seed >>> import dask.dataframe as dd >>> df = dd.demo.make_timeseries('2000', '2010', ... {'value': float, 'name': str, 'id': int}, ... freq='2H', partition_freq='1D', seed=1) >>> df.head() id name value 2000-01-01 00:00:00 969 Jerry -0.309014 2000-01-01 02:00:00 1010 Ray -0.760675 2000-01-01 04:00:00 1016 Patricia -0.063261 2000-01-01 06:00:00 960 Charlie 0.788245 2000-01-01 08:00:00 1031 Kevin 0.466002 """ divisions = list(pd.DatetimeIndex(start=start, end=end, freq=partition_freq)) state_data = random_state_data(len(divisions) - 1, seed) name = 'make-timeseries-' + tokenize(start, end, dtypes, freq, partition_freq) dsk = {(name, i): (make_timeseries_part, divisions[i], divisions[i + 1], dtypes, freq, state_data[i]) for i in range(len(divisions) - 1)} head = make_timeseries_part('2000', '2000', dtypes, '1H', state_data[0]) return DataFrame(dsk, name, head, divisions)
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/io/demo.py", "copies": "1", "size": "3187", "license": "mit", "hash": -1467380368623516000, "line_mean": 34.4111111111, "line_max": 82, "alpha_frac": 0.5917791026, "autogenerated": false, "ratio": 3.31633714880333, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9404703423135526, "avg_score": 0.000682565653560745, "num_lines": 90 }
from __future__ import absolute_import, division, print_function import pandas as pd import re import ast log_pattern = re.compile("^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d+ - \w+ - .*$") def _is_legal_log_line(line): return log_pattern.match(line) is not None def _hublog_read_scan_line(line): """ Parses a single scan line from a hub log Parameters ---------- line : str A single line of log file Returns ------- dictionary: Scan data of a single badge. When an advertisement packet was available, it will include voltage, sync and recording status, etc. If the lien is not a scan line, it will return None """ # Removing ANSI from line (colors) ansi_escape = re.compile(r'\x1B\[[0-?]*[ -/]*[@-~]') line = ansi_escape.sub('', line) # remove end of line line = line.rstrip("\n\r") # Filter out rows with illegal structure if not _is_legal_log_line(line): return None # parse data = line.split(" - ")[2] if not data.startswith("Found"): return None scan_data = {} adv_payload_raw = data.split("adv_payload': ")[1][0:-1] adv_payload = ast.literal_eval(adv_payload_raw) if not adv_payload: adv_payload = {'proximity_status': None, \ 'sync_status': None, \ 'audio_status': None, \ 'mac': None, \ 'badge_id': None, \ 'voltage': None, \ 'status_flags': None, \ 'project_id': None} scan_data.update(adv_payload) scan_data['mac'] = data.split(" ")[1][0:-1] scan_data['rssi'] = data.split(": ")[2].split(",")[0] scan_data['datetime'] = line.split(" - ")[0] scan_data['adv_payload'] = re.sub('[ :\'\[]', '', adv_payload_raw) # shortenning it return scan_data def hublog_scans(fileobject, log_tz, tz='US/Eastern'): """Creates a DataFrame of hub scans. Parameters ---------- fileobject : file or iterable list of str The raw log file from a hub. log_tz : str The time zone used in the logfile itself tz : str The time zone used for localization of dates. Defaults to 'US/Eastern'. Returns ------- pd.Series : A scan record with mac, rssi, and device status (if available) """ def readfile(fileobject): for line in fileobject: line_num = line_num + 1 data = _hublog_read_scan_line(line) if data: yield (data['datetime'], str(data['mac']), float(data['rssi']), data['voltage'], data['badge_id'], data['project_id'], data['sync_status'], data['audio_status'], data['proximity_status'], ) else: continue # skip unneeded lines df = pd.DataFrame(readfile(fileobject), columns=['datetime', 'mac', 'rssi', 'voltage', 'badge_id', \ 'project_id', 'sync_status', 'audio_status', \ 'proximity_status']) # Localized record date df['datetime'] = pd.to_datetime(df['datetime'], utc=True) \ .dt.tz_localize(log_tz).dt.tz_convert(tz) # Sort df = df.set_index('datetime') df.sort_index(inplace=True) return df def _hublog_read_reset_line(line): """ Parses a single reset line from a hub log Parameters ---------- line : str A single line of log file Returns ------- dictionary: Parses a sync event - when badge was previously not synced and was sent a new date """ # remove end of line line = line.rstrip("\n\r") # Filter out rows with illegal structure if not _is_legal_log_line(line): return None # Parse data data = line.split(" - ")[2] if not data.endswith("Badge previously unsynced."): return None sync_data = {} sync_data['datetime'] = line.split(" - ")[0] sync_data['mac'] = data[1:18] return sync_data def hublog_resets(fileobject, log_tz, tz='US/Eastern'): """Creates a DataFrame of reset events - when badge were previously not synced and the hub sent a new date Parameters ---------- fileobject : file or iterable list of str The raw log file from a hub. log_tz : str The time zone used in the logfile itself tz : str The time zone used for localization of dates. Defaults to 'US/Eastern'. Returns ------- pd.Series : A record with mac and timestamp """ def readfile(fileobject): for line in fileobject: data = _hublog_read_reset_line(line) if data: yield (data['datetime'], str(data['mac']), ) else: continue # skip unneeded lines df = pd.DataFrame(readfile(fileobject), columns=['datetime', 'mac']) # Localized record date df['datetime'] = pd.to_datetime(df['datetime'], utc=True) \ .dt.tz_localize(log_tz).dt.tz_convert(tz) # Sort df = df.set_index('datetime') df.sort_index(inplace=True) return df def _hublog_read_clock_sync_line(line): """ Parses a single clock line from a hub log Parameters ---------- line : str A single line of log file Returns ------- dictionary: Parses a sync event """ # remove end of line line = line.rstrip("\n\r") # look for clock syncs if "Badge datetime was" not in line: return None # Parse data data = re.match('(.*) - INFO - \[(.*)\] Badge datetime was: ([\d,]*)', line).group(1, 2, 3) d = {} d['datetime'] = data[0] d['mac'] = data[1] d['badge_timestamp'] = data[2].replace(",", ".") return d def hublog_clock_syncs(fileobject, log_tz, tz='US/Eastern'): """Creates a DataFrame of sync events - when badge were previously not synced and the hub sent a new date Parameters ---------- fileobject : file or iterable list of str The raw log file from a hub. log_tz : str The time zone used in the logfile itself tz : str The time zone used for localization of dates. Defaults to 'US/Eastern'. Returns ------- pd.Series : A record with mac and timestamps """ def readfile(fileobject): for line in fileobject: data = _hublog_read_clock_sync_line(line) if data: yield (data['datetime'], str(data['mac']), str(data['badge_timestamp']), ) else: continue # skip unneeded lines df = pd.DataFrame(readfile(fileobject), columns=['datetime', 'mac', 'badge_timestamp']) # Localized record date df['datetime'] = pd.to_datetime(df['datetime'], utc=True) \ .dt.tz_localize(log_tz).dt.tz_convert(tz) # Convert the badge timestamp to a datetime, localized in UTC df['badge_datetime'] = pd.to_datetime(df['badge_timestamp'], unit='s', utc=True) \ .dt.tz_localize('UTC').dt.tz_convert(tz) del df['badge_timestamp'] # Sort df = df.set_index('datetime') df.sort_index(inplace=True) return df
{ "repo_name": "HumanDynamics/openbadge-analysis", "path": "openbadge_analysis/preprocessing/hublog.py", "copies": "1", "size": "7539", "license": "mit", "hash": -2815039506591023000, "line_mean": 26.5182481752, "line_max": 104, "alpha_frac": 0.5370738825, "autogenerated": false, "ratio": 3.890092879256966, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9915530033390689, "avg_score": 0.0023273456732551745, "num_lines": 274 }
from __future__ import absolute_import, division, print_function import pandas as pd from .alignment import deep_align from .pycompat import OrderedDict, basestring from .utils import Frozen from .variable import as_variable, assert_unique_multiindex_level_names PANDAS_TYPES = (pd.Series, pd.DataFrame, pd.Panel) _VALID_COMPAT = Frozen({'identical': 0, 'equals': 1, 'broadcast_equals': 2, 'minimal': 3, 'no_conflicts': 4}) def broadcast_dimension_size(variables): # type: (List[Variable],) -> Variable """Extract dimension sizes from a dictionary of variables. Raises ValueError if any dimensions have different sizes. """ dims = OrderedDict() for var in variables: for dim, size in zip(var.dims, var.shape): if dim in dims and size != dims[dim]: raise ValueError('index %r not aligned' % dim) dims[dim] = size return dims class MergeError(ValueError): """Error class for merge failures due to incompatible arguments. """ # inherits from ValueError for backward compatibility # TODO: move this to an xarray.exceptions module? def unique_variable(name, variables, compat='broadcast_equals'): # type: (Any, List[Variable], str) -> Variable """Return the unique variable from a list of variables or raise MergeError. Parameters ---------- name : hashable Name for this variable. variables : list of xarray.Variable List of Variable objects, all of which go by the same name in different inputs. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts'}, optional Type of equality check to use. Returns ------- Variable to use in the result. Raises ------ MergeError: if any of the variables are not equal. """ out = variables[0] if len(variables) > 1: combine_method = None if compat == 'minimal': compat = 'broadcast_equals' if compat == 'broadcast_equals': dim_lengths = broadcast_dimension_size(variables) out = out.set_dims(dim_lengths) if compat == 'no_conflicts': combine_method = 'fillna' for var in variables[1:]: if not getattr(out, compat)(var): raise MergeError('conflicting values for variable %r on ' 'objects to be combined:\n' 'first value: %r\nsecond value: %r' % (name, out, var)) if combine_method: # TODO: add preservation of attrs into fillna out = getattr(out, combine_method)(var) out.attrs = var.attrs return out def _assert_compat_valid(compat): if compat not in _VALID_COMPAT: raise ValueError("compat=%r invalid: must be %s" % (compat, set(_VALID_COMPAT))) class OrderedDefaultDict(OrderedDict): # minimal version of an ordered defaultdict # beware: does not pickle or copy properly def __init__(self, default_factory): self.default_factory = default_factory super(OrderedDefaultDict, self).__init__() def __missing__(self, key): self[key] = default = self.default_factory() return default def merge_variables( list_of_variables_dicts, # type: List[Mapping[Any, Variable]] priority_vars=None, # type: Optional[Mapping[Any, Variable]] compat='minimal', # type: str ): # type: (...) -> OrderedDict[Any, Variable] """Merge dicts of variables, while resolving conflicts appropriately. Parameters ---------- lists_of_variables_dicts : list of mappings with Variable values List of mappings for which each value is a xarray.Variable object. priority_vars : mapping with Variable or None values, optional If provided, variables are always taken from this dict in preference to the input variable dictionaries, without checking for conflicts. compat : {'identical', 'equals', 'broadcast_equals', 'minimal', 'no_conflicts'}, optional Type of equality check to use when checking for conflicts. Returns ------- OrderedDict with keys taken by the union of keys on list_of_variable_dicts, and Variable values corresponding to those that should be found on the merged result. """ if priority_vars is None: priority_vars = {} _assert_compat_valid(compat) dim_compat = min(compat, 'equals', key=_VALID_COMPAT.get) lookup = OrderedDefaultDict(list) for variables in list_of_variables_dicts: for name, var in variables.items(): lookup[name].append(var) # n.b. it's important to fill up merged in the original order in which # variables appear merged = OrderedDict() for name, variables in lookup.items(): if name in priority_vars: # one of these arguments (e.g., the first for in-place arithmetic # or the second for Dataset.update) takes priority merged[name] = priority_vars[name] else: dim_variables = [var for var in variables if (name,) == var.dims] if dim_variables: # if there are dimension coordinates, these must be equal (or # identical), and they take priority over non-dimension # coordinates merged[name] = unique_variable(name, dim_variables, dim_compat) else: try: merged[name] = unique_variable(name, variables, compat) except MergeError: if compat != 'minimal': # we need more than "minimal" compatibility (for which # we drop conflicting coordinates) raise return merged def expand_variable_dicts(list_of_variable_dicts): # type: (List[Union[Dataset, Dict]]) -> List[Dict[Any, Variable]] """Given a list of dicts with xarray object values, expand the values. Parameters ---------- list_of_variable_dicts : list of dict or Dataset objects Each value for the mappings must be of the following types: - an xarray.Variable - a tuple `(dims, data[, attrs[, encoding]])` that can be converted in an xarray.Variable - or an xarray.DataArray Returns ------- A list of ordered dictionaries corresponding to inputs, or coordinates from an input's values. The values of each ordered dictionary are all xarray.Variable objects. """ var_dicts = [] for variables in list_of_variable_dicts: if hasattr(variables, 'variables'): # duck-type Dataset sanitized_vars = variables.variables else: # append coords to var_dicts before appending sanitized_vars, # because we want coords to appear first sanitized_vars = OrderedDict() for name, var in variables.items(): if hasattr(var, '_coords'): # duck-type DataArray # use private API for speed coords = var._coords.copy() # explicitly overwritten variables should take precedence coords.pop(name, None) var_dicts.append(coords) var = as_variable(var, name=name) sanitized_vars[name] = var var_dicts.append(sanitized_vars) return var_dicts def determine_coords(list_of_variable_dicts): # type: (List[Dict]) -> Tuple[Set, Set] """Given a list of dicts with xarray object values, identify coordinates. Parameters ---------- list_of_variable_dicts : list of dict or Dataset objects Of the same form as the arguments to expand_variable_dicts. Returns ------- coord_names : set of variable names noncoord_names : set of variable names All variable found in the input should appear in either the set of coordinate or non-coordinate names. """ coord_names = set() noncoord_names = set() for variables in list_of_variable_dicts: if hasattr(variables, 'coords') and hasattr(variables, 'data_vars'): # duck-type Dataset coord_names.update(variables.coords) noncoord_names.update(variables.data_vars) else: for name, var in variables.items(): if hasattr(var, '_coords'): # duck-type DataArray coords = set(var._coords) # use private API for speed # explicitly overwritten variables should take precedence coords.discard(name) coord_names.update(coords) return coord_names, noncoord_names def coerce_pandas_values(objects): """Convert pandas values found in a list of labeled objects. Parameters ---------- objects : list of Dataset or mappings The mappings may contain any sort of objects coercible to xarray.Variables as keys, including pandas objects. Returns ------- List of Dataset or OrderedDict objects. Any inputs or values in the inputs that were pandas objects have been converted into native xarray objects. """ from .dataset import Dataset from .dataarray import DataArray out = [] for obj in objects: if isinstance(obj, Dataset): variables = obj else: variables = OrderedDict() if isinstance(obj, PANDAS_TYPES): obj = OrderedDict(obj.iteritems()) for k, v in obj.items(): if isinstance(v, PANDAS_TYPES): v = DataArray(v) variables[k] = v out.append(variables) return out def merge_coords_for_inplace_math(objs, priority_vars=None): """Merge coordinate variables without worrying about alignment. This function is used for merging variables in coordinates.py. """ expanded = expand_variable_dicts(objs) variables = merge_variables(expanded, priority_vars) assert_unique_multiindex_level_names(variables) return variables def _get_priority_vars(objects, priority_arg, compat='equals'): """Extract the priority variable from a list of mappings. We need this method because in some cases the priority argument itself might have conflicting values (e.g., if it is a dict with two DataArray values with conflicting coordinate values). Parameters ---------- objects : list of dictionaries of variables Dictionaries in which to find the priority variables. priority_arg : int or None Integer object whose variable should take priority. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts'}, optional Compatibility checks to use when merging variables. Returns ------- None, if priority_arg is None, or an OrderedDict with Variable objects as values indicating priority variables. """ if priority_arg is None: priority_vars = {} else: expanded = expand_variable_dicts([objects[priority_arg]]) priority_vars = merge_variables(expanded, compat=compat) return priority_vars def expand_and_merge_variables(objs, priority_arg=None): """Merge coordinate variables without worrying about alignment. This function is used for merging variables in computation.py. """ expanded = expand_variable_dicts(objs) priority_vars = _get_priority_vars(objs, priority_arg) variables = merge_variables(expanded, priority_vars) return variables def merge_coords(objs, compat='minimal', join='outer', priority_arg=None, indexes=None): """Merge coordinate variables. See merge_core below for argument descriptions. This works similarly to merge_core, except everything we don't worry about whether variables are coordinates or not. """ _assert_compat_valid(compat) coerced = coerce_pandas_values(objs) aligned = deep_align(coerced, join=join, copy=False, indexes=indexes) expanded = expand_variable_dicts(aligned) priority_vars = _get_priority_vars(aligned, priority_arg, compat=compat) variables = merge_variables(expanded, priority_vars, compat=compat) assert_unique_multiindex_level_names(variables) return variables def merge_data_and_coords(data, coords, compat='broadcast_equals', join='outer'): """Used in Dataset.__init__.""" objs = [data, coords] explicit_coords = coords.keys() return merge_core(objs, compat, join, explicit_coords=explicit_coords) def assert_valid_explicit_coords(variables, dims, explicit_coords): """Validate explicit coordinate names/dims. Raise a MergeError if an explicit coord shares a name with a dimension but is comprised of arbitrary dimensions. """ for coord_name in explicit_coords: if coord_name in dims and variables[coord_name].dims != (coord_name,): raise MergeError( 'coordinate %s shares a name with a dataset dimension, but is ' 'not a 1D variable along that dimension. This is disallowed ' 'by the xarray data model.' % coord_name) def merge_core(objs, compat='broadcast_equals', join='outer', priority_arg=None, explicit_coords=None, indexes=None): """Core logic for merging labeled objects. This is not public API. Parameters ---------- objs : list of mappings All values must be convertable to labeled arrays. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts'}, optional Compatibility checks to use when merging variables. join : {'outer', 'inner', 'left', 'right'}, optional How to combine objects with different indexes. priority_arg : integer, optional Optional argument in `objs` that takes precedence over the others. explicit_coords : set, optional An explicit list of variables from `objs` that are coordinates. indexes : dict, optional Dictionary with values given by pandas.Index objects. Returns ------- variables : OrderedDict Ordered dictionary of Variable objects. coord_names : set Set of coordinate names. dims : dict Dictionary mapping from dimension names to sizes. Raises ------ MergeError if the merge cannot be done successfully. """ from .dataset import calculate_dimensions _assert_compat_valid(compat) coerced = coerce_pandas_values(objs) aligned = deep_align(coerced, join=join, copy=False, indexes=indexes) expanded = expand_variable_dicts(aligned) coord_names, noncoord_names = determine_coords(coerced) priority_vars = _get_priority_vars(aligned, priority_arg, compat=compat) variables = merge_variables(expanded, priority_vars, compat=compat) assert_unique_multiindex_level_names(variables) dims = calculate_dimensions(variables) if explicit_coords is not None: assert_valid_explicit_coords(variables, dims, explicit_coords) coord_names.update(explicit_coords) for dim, size in dims.items(): if dim in variables: coord_names.add(dim) ambiguous_coords = coord_names.intersection(noncoord_names) if ambiguous_coords: raise MergeError('unable to determine if these variables should be ' 'coordinates or not in the merged result: %s' % ambiguous_coords) return variables, coord_names, dict(dims) def merge(objects, compat='no_conflicts', join='outer'): """Merge any number of xarray objects into a single Dataset as variables. Parameters ---------- objects : Iterable[Union[xarray.Dataset, xarray.DataArray, dict]] Merge together all variables from these objects. If any of them are DataArray objects, they must have a name. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts'}, optional String indicating how to compare variables of the same name for potential conflicts: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. join : {'outer', 'inner', 'left', 'right', 'exact'}, optional How to combine objects with different indexes. Returns ------- Dataset Dataset with combined variables from each object. Examples -------- >>> arrays = [xr.DataArray(n, name='var%d' % n) for n in range(5)] >>> xr.merge(arrays) <xarray.Dataset> Dimensions: () Coordinates: *empty* Data variables: var0 int64 0 var1 int64 1 var2 int64 2 var3 int64 3 var4 int64 4 Raises ------ xarray.MergeError If any variables with the same name have conflicting values. See also -------- concat """ from .dataarray import DataArray from .dataset import Dataset dict_like_objects = [ obj.to_dataset() if isinstance(obj, DataArray) else obj for obj in objects] variables, coord_names, dims = merge_core(dict_like_objects, compat, join) merged = Dataset._construct_direct(variables, coord_names, dims) return merged def dataset_merge_method(dataset, other, overwrite_vars, compat, join): """Guts of the Dataset.merge method.""" # we are locked into supporting overwrite_vars for the Dataset.merge # method due for backwards compatibility # TODO: consider deprecating it? if isinstance(overwrite_vars, basestring): overwrite_vars = set([overwrite_vars]) overwrite_vars = set(overwrite_vars) if not overwrite_vars: objs = [dataset, other] priority_arg = None elif overwrite_vars == set(other): objs = [dataset, other] priority_arg = 1 else: other_overwrite = OrderedDict() other_no_overwrite = OrderedDict() for k, v in other.items(): if k in overwrite_vars: other_overwrite[k] = v else: other_no_overwrite[k] = v objs = [dataset, other_no_overwrite, other_overwrite] priority_arg = 2 return merge_core(objs, compat, join, priority_arg=priority_arg) def dataset_update_method(dataset, other): """Guts of the Dataset.update method This drops a duplicated coordinates from `other` (GH:2068) """ from .dataset import Dataset from .dataarray import DataArray other = other.copy() for k, obj in other.items(): if isinstance(obj, (Dataset, DataArray)): # drop duplicated coordinates coord_names = [c for c in obj.coords if c not in obj.dims and c in dataset.coords] if coord_names: other[k] = obj.drop(coord_names) return merge_core([dataset, other], priority_arg=1, indexes=dataset.indexes)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/merge.py", "copies": "1", "size": "19661", "license": "apache-2.0", "hash": -4577991834176582000, "line_mean": 33.6754850088, "line_max": 79, "alpha_frac": 0.6252988149, "autogenerated": false, "ratio": 4.524971231300345, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5650270046200345, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd from .core import Series, map_partitions, partial class Accessor(object): """ Base class for pandas Accessor objects cat, dt, and str. Properties ---------- _meta_attributes : set set of strings indicting attributes that can be computed on just the ``_meta_nonempty`` attribute Notes ----- Subclasses should implement * getattr * call """ _meta_attributes = set() def __init__(self, series): if not isinstance(series, Series): raise ValueError('Accessor cannot be initialized') self._series = series def _get_property_out(self, key): # For CategoricalAccessor to override with _meta return self.getattr(self._series._meta_nonempty, key) def _property_map(self, key): out = self._get_property_out(key) if key in self._meta_attributes: return out meta = self._series._partition_type([], dtype=out.dtype, name=getattr(out, 'name', None)) return map_partitions(self.getattr, self._series, key, meta=meta) def _function_map(self, key, *args, **kwargs): out = self.call(self._series._meta_nonempty, key, *args, **kwargs) meta = self._series._partition_type([], dtype=out.dtype, name=getattr(out, 'name', None)) return map_partitions(self.call, self._series, key, *args, meta=meta, **kwargs) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + dir(self.ns))) def __getattr__(self, key): if key in dir(self.ns): if isinstance(getattr(self.ns, key), property): return self._property_map(key) else: return partial(self._function_map, key) else: raise AttributeError(key) class DatetimeAccessor(Accessor): """ Accessor object for datetimelike properties of the Series values. Examples -------- >>> s.dt.microsecond # doctest: +SKIP """ ns = pd.Series.dt @staticmethod def getattr(obj, attr): return getattr(obj.dt, attr) @staticmethod def call(obj, attr, *args): return getattr(obj.dt, attr)(*args) class StringAccessor(Accessor): """ Accessor object for string properties of the Series values. Examples -------- >>> s.str.lower() # doctest: +SKIP """ ns = pd.Series.str @staticmethod def getattr(obj, attr): return getattr(obj.str, attr) @staticmethod def call(obj, attr, *args, **kwargs): return getattr(obj.str, attr)(*args, **kwargs) class CategoricalAccessor(Accessor): """ Accessor object for categorical properties of the Series values. Examples -------- >>> s.cat.categories # doctest: +SKIP Notes ----- Attributes that depend only on metadata are eager * categories * ordered Attributes depending on the entire dataset are lazy * codes * ... So `df.a.cat.categories` <=> `df.a._meta.cat.categories` So `df.a.cat.codes` <=> `df.a.map_partitions(lambda x: x.cat.codes)` """ ns = pd.Series.cat _meta_attributes = {'categories', 'ordered'} def _function_map(self, key, *args, **kwargs): out = self.call(self._series._meta, key, *args, **kwargs) meta = self._series._partition_type( pd.Categorical([], categories=out.cat.categories, ordered=out.cat.ordered), name=getattr(out, 'name', None) ) return map_partitions(self.call, self._series, key, *args, meta=meta, **kwargs) def _get_property_out(self, key): # _meta should have all type-info, and _meta_nonempty may fail # See https://github.com/dask/dask/issues/1705 return self.getattr(self._series._meta, key) @staticmethod def getattr(obj, attr): return getattr(obj.cat, attr) @staticmethod def call(obj, attr, *args, **kwargs): return getattr(obj.cat, attr)(*args, **kwargs) def remove_unused_categories(self): """ Removes categories which are not used Notes ----- This method requires a full scan of the data to compute the unique values, which can be expensive. """ # get the set of used categories present = self._series.dropna().unique() present = pd.Index(present.compute()) # Reorder to keep cat:code relationship, filtering unused (-1) ordered, mask = present.reindex(self._series._meta.cat.categories) new_categories = ordered[mask != -1] meta = self._series._meta.cat.set_categories( new_categories, ordered=self._series._meta.cat.ordered ) result = map_partitions(self.call, self._series, 'set_categories', meta=meta, new_categories=new_categories) return result
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/accessor.py", "copies": "3", "size": "5164", "license": "mit", "hash": 4052590670606854000, "line_mean": 28.3409090909, "line_max": 77, "alpha_frac": 0.5807513555, "autogenerated": false, "ratio": 4.141138732959102, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6221890088459102, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd import datashape from datashape import discover from ..append import append from ..convert import convert, ooc_types from ..chunks import chunks, Chunks from ..resource import resource HDFDataset = (pd.io.pytables.AppendableFrameTable, pd.io.pytables.FrameFixed) @discover.register(pd.HDFStore) def discover_hdfstore(f): d = dict() for key in f.keys(): d2 = d key2 = key.lstrip('/') while '/' in key2: group, key2 = key2.split('/', 1) if group not in d2: d2[group] = dict() d2 = d2[group] d2[key2] = f.get_storer(key) return discover(d) @discover.register(pd.io.pytables.Fixed) def discover_hdfstore_storer(storer): f = storer.parent n = storer.shape if isinstance(n, list): n = n[0] measure = discover(f.select(storer.pathname, start=0, stop=10)).measure return n * measure @convert.register(chunks(pd.DataFrame), pd.io.pytables.AppendableFrameTable) def hdfstore_to_chunks_dataframes(data, chunksize=1000000, **kwargs): return chunks(pd.DataFrame)(data.parent.select(data.pathname, chunksize=chunksize)) @convert.register(pd.DataFrame, (pd.io.pytables.AppendableFrameTable, pd.io.pytables.FrameFixed)) def hdfstore_to_chunks_dataframes(data, **kwargs): return data.read() from collections import namedtuple EmptyHDFStoreDataset = namedtuple('EmptyHDFStoreDataset', 'parent,pathname,dshape') @resource.register('hdfstore://.+', priority=11) def resource_hdfstore(uri, datapath=None, dshape=None, **kwargs): # TODO: # 1. Support nested datashapes (e.g. groups) # 2. Try translating unicode to ascii? (PyTables fails here) fn = uri.split('://')[1] f = pd.HDFStore(fn) if dshape is None: if datapath: return f.get_storer(datapath) else: return f dshape = datashape.dshape(dshape) # Already exists, return it if datapath in f: return f.get_storer(datapath) # Need to create new datast. # HDFStore doesn't support empty datasets, so we use a proxy object. return EmptyHDFStoreDataset(f, datapath, dshape) @append.register((pd.io.pytables.Fixed, EmptyHDFStoreDataset), pd.DataFrame) def append_dataframe_to_hdfstore(store, df, **kwargs): store.parent.append(store.pathname, df, append=True) return store.parent.get_storer(store.pathname) @append.register((pd.io.pytables.Fixed, EmptyHDFStoreDataset), chunks(pd.DataFrame)) def append_chunks_dataframe_to_hdfstore(store, c, **kwargs): parent = store.parent for chunk in c: parent.append(store.pathname, chunk) return parent.get_storer(store.pathname) @append.register((pd.io.pytables.Fixed, EmptyHDFStoreDataset), object) def append_object_to_hdfstore(store, o, **kwargs): return append(store, convert(chunks(pd.DataFrame), o, **kwargs), **kwargs) ooc_types |= set(HDFDataset)
{ "repo_name": "mrocklin/into", "path": "into/backends/hdfstore.py", "copies": "1", "size": "3041", "license": "bsd-3-clause", "hash": -3648227019648136700, "line_mean": 30.3505154639, "line_max": 87, "alpha_frac": 0.6797106215, "autogenerated": false, "ratio": 3.420697412823397, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46004080343233966, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas as pd import xarray as xr from . import randn, requires_dask try: import dask # noqa except ImportError: pass def make_bench_data(shape, frac_nan, chunks): vals = randn(shape, frac_nan) coords = {'time': pd.date_range('2000-01-01', freq='D', periods=shape[0])} da = xr.DataArray(vals, dims=('time', 'x', 'y'), coords=coords) if chunks is not None: da = da.chunk(chunks) return da def time_interpolate_na(shape, chunks, method, limit): if chunks is not None: requires_dask() da = make_bench_data(shape, 0.1, chunks=chunks) actual = da.interpolate_na(dim='time', method='linear', limit=limit) if chunks is not None: actual = actual.compute() time_interpolate_na.param_names = ['shape', 'chunks', 'method', 'limit'] time_interpolate_na.params = ([(3650, 200, 400), (100, 25, 25)], [None, {'x': 25, 'y': 25}], ['linear', 'spline', 'quadratic', 'cubic'], [None, 3]) def time_ffill(shape, chunks, limit): da = make_bench_data(shape, 0.1, chunks=chunks) actual = da.ffill(dim='time', limit=limit) if chunks is not None: actual = actual.compute() time_ffill.param_names = ['shape', 'chunks', 'limit'] time_ffill.params = ([(3650, 200, 400), (100, 25, 25)], [None, {'x': 25, 'y': 25}], [None, 3]) def time_bfill(shape, chunks, limit): da = make_bench_data(shape, 0.1, chunks=chunks) actual = da.bfill(dim='time', limit=limit) if chunks is not None: actual = actual.compute() time_bfill.param_names = ['shape', 'chunks', 'limit'] time_bfill.params = ([(3650, 200, 400), (100, 25, 25)], [None, {'x': 25, 'y': 25}], [None, 3])
{ "repo_name": "shoyer/xray", "path": "asv_bench/benchmarks/dataarray_missing.py", "copies": "3", "size": "1938", "license": "apache-2.0", "hash": -6081267601055488000, "line_mean": 26.2957746479, "line_max": 73, "alpha_frac": 0.5521155831, "autogenerated": false, "ratio": 3.3241852487135506, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5376300831813551, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas import os from toolz import curry, concat, map import pandas as pd import numpy as np from collections import Iterator, Iterable from odo import into from odo.chunks import chunks, Chunks from odo.backends.csv import CSV, csv_to_DataFrame from multipledispatch import MDNotImplementedError from ..dispatch import dispatch from ..expr import Expr, Head, ElemWise, Distinct, Symbol, Projection, Field from ..expr.core import path from ..utils import available_memory from ..expr.split import split from .core import compute from ..expr.optimize import lean_projection from .pmap import get_default_pmap @dispatch(Expr, CSV) def optimize(expr, _): return lean_projection(expr) # This is handled in pre_compute @dispatch(Expr, CSV) def pre_compute(expr, data, comfortable_memory=None, chunksize=2**18, **kwargs): comfortable_memory = comfortable_memory or min(1e9, available_memory() / 4) kwargs = dict() # Chunk if the file is large if os.path.getsize(data.path) > comfortable_memory: kwargs['chunksize'] = chunksize else: chunksize = None # Insert projection into read_csv oexpr = optimize(expr, data) leaf = oexpr._leaves()[0] pth = list(path(oexpr, leaf)) if len(pth) >= 2 and isinstance(pth[-2], (Projection, Field)): kwargs['usecols'] = pth[-2].fields if chunksize: return into(chunks(pd.DataFrame), data, dshape=leaf.dshape, **kwargs) else: return into(pd.DataFrame, data, dshape=leaf.dshape, **kwargs) Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, CSV) def pre_compute(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return into(Iterator, data, chunksize=10000, dshape=leaf.dshape) else: raise MDNotImplementedError() def compute_chunk(chunk, chunk_expr, part): return compute(chunk_expr, {chunk: part}) @dispatch(Expr, pandas.io.parsers.TextFileReader) def compute_down(expr, data, map=None, **kwargs): if map is None: map = get_default_pmap() leaf = expr._leaves()[0] (chunk, chunk_expr), (agg, agg_expr) = split(leaf, expr) parts = list(map(curry(compute_chunk, chunk, chunk_expr), data)) if isinstance(parts[0], np.ndarray): intermediate = np.concatenate(parts) elif isinstance(parts[0], pd.DataFrame): intermediate = pd.concat(parts) elif isinstance(parts[0], (Iterable, Iterator)): intermediate = concat(parts) return compute(agg_expr, {agg: intermediate})
{ "repo_name": "mrocklin/blaze", "path": "blaze/compute/csv.py", "copies": "1", "size": "2625", "license": "bsd-3-clause", "hash": -498708794102937200, "line_mean": 29.523255814, "line_max": 80, "alpha_frac": 0.6933333333, "autogenerated": false, "ratio": 3.5377358490566038, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47310691823566037, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pandas import os from toolz import curry, concat import pandas as pd import numpy as np from collections import Iterator, Iterable from odo import into from odo.chunks import chunks from odo.backends.csv import CSV from multipledispatch import MDNotImplementedError from ..dispatch import dispatch from ..expr import Expr, Head, ElemWise, Distinct, Symbol, Projection, Field from ..expr.core import path from ..utils import available_memory from ..expr.split import split from .core import compute from ..expr.optimize import lean_projection from .pmap import get_default_pmap __all__ = ['optimize', 'pre_compute', 'compute_chunk', 'compute_down'] @dispatch(Expr, CSV) def optimize(expr, _): return lean_projection(expr) # This is handled in pre_compute @dispatch(Expr, CSV) def pre_compute(expr, data, comfortable_memory=None, chunksize=2**18, **kwargs): comfortable_memory = comfortable_memory or min(1e9, available_memory() / 4) kwargs = dict() # Chunk if the file is large if os.path.getsize(data.path) > comfortable_memory: kwargs['chunksize'] = chunksize else: chunksize = None # Insert projection into read_csv oexpr = optimize(expr, data) leaf = oexpr._leaves()[0] pth = list(path(oexpr, leaf)) if len(pth) >= 2 and isinstance(pth[-2], (Projection, Field)): kwargs['usecols'] = pth[-2].fields if chunksize: return into(chunks(pd.DataFrame), data, dshape=leaf.dshape, **kwargs) else: return into(pd.DataFrame, data, dshape=leaf.dshape, **kwargs) Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, CSV) def pre_compute(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return into(Iterator, data, chunksize=10000, dshape=leaf.dshape) else: raise MDNotImplementedError() def compute_chunk(chunk, chunk_expr, part): return compute(chunk_expr, {chunk: part}) @dispatch(Expr, pandas.io.parsers.TextFileReader) def compute_down(expr, data, map=None, **kwargs): if map is None: map = get_default_pmap() leaf = expr._leaves()[0] (chunk, chunk_expr), (agg, agg_expr) = split(leaf, expr) parts = list(map(curry(compute_chunk, chunk, chunk_expr), data)) if isinstance(parts[0], np.ndarray): intermediate = np.concatenate(parts) elif isinstance(parts[0], pd.DataFrame): intermediate = pd.concat(parts) elif isinstance(parts[0], (Iterable, Iterator)): intermediate = concat(parts) return compute(agg_expr, {agg: intermediate})
{ "repo_name": "LiaoPan/blaze", "path": "blaze/compute/csv.py", "copies": "11", "size": "2667", "license": "bsd-3-clause", "hash": -4761388397392479000, "line_mean": 28.9662921348, "line_max": 80, "alpha_frac": 0.6902887139, "autogenerated": false, "ratio": 3.532450331125828, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9722739045025829, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import paramiko from contextlib import contextmanager from toolz import keyfilter, memoize, take, curry from datashape import discover import re import uuid from ..directory import Directory from ..utils import keywords, tmpfile, sample, ignoring, copydoc from ..resource import resource from ..append import append from ..convert import convert from ..temp import Temp, _Temp from ..drop import drop from .csv import CSV from .json import JSON, JSONLines from .text import TextFile connection_pool = dict() def connect(**auth): key = tuple(sorted(auth.items())) if key in connection_pool: ssh = connection_pool[key] if not ssh.get_transport() or not ssh.get_transport().is_active(): ssh.connect(**auth) else: ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(**auth) connection_pool[key] = ssh return ssh sftp_pool = dict() def sftp(**auth): ssh = connect(**auth) # Need to call this explicitly (can't memoize) key = tuple(sorted(auth.items())) if key in sftp_pool: conn = sftp_pool[key] else: conn = ssh.open_sftp() sftp_pool[key] = conn conn.sock.setblocking(True) return conn class _SSH(object): """ Parent class for data accessed through ``ssh`` See ``paramiko.SSHClient.connect`` for authentication keyword arguments Examples -------- >>> from odo import SSH, CSV >>> s = SSH(CSV)('/path/to/file.csv', hostname='hostname', username='alice') Normally create through resource uris >>> data = resource('ssh://alice@host:/path/to/file.csv', password='pass') >>> data.path '/path/to/file.csv' >>> data.auth['hostname'] 'host' """ def __init__(self, *args, **kwargs): self.auth = keyfilter(keywords(paramiko.SSHClient.connect).__contains__, kwargs) self.subtype.__init__(self, *args, **kwargs) def lines(self): conn = sftp(**self.auth) return conn.file(self.path, 'r') @memoize @copydoc(_SSH) def SSH(cls): return type('SSH(%s)' % cls.__name__, (_SSH, cls), {'subtype': cls}) types_by_extension = {'csv': CSV, 'json': JSONLines} ssh_pattern = '((?P<username>[a-zA-Z]\w*)@)?(?P<hostname>[\w.-]*)(:(?P<port>\d+))?:(?P<path>[/\w.*-]+)' @resource.register('ssh://.+', priority=16) def resource_ssh(uri, **kwargs): if 'ssh://' in uri: uri = uri[len('ssh://'):] d = re.match(ssh_pattern, uri).groupdict() d = dict((k, v) for k, v in d.items() if v is not None) path = d.pop('path') kwargs.update(d) try: subtype = types_by_extension[path.split('.')[-1]] if '*' in path: subtype = Directory(subtype) path = path.rsplit('/', 1)[0] + '/' except KeyError: subtype = type(resource(path)) return SSH(subtype)(path, **kwargs) @sample.register((SSH(CSV), SSH(JSON), SSH(JSONLines))) @contextmanager def sample_ssh(data, lines=500): """ Grab a few lines from the remote file """ with tmpfile() as fn: with open(fn, 'w') as f: for line in take(lines, data.lines()): f.write(line) yield fn @sample.register((SSH(Directory(CSV)), SSH(Directory(JSON)), SSH(Directory(JSONLines)))) @contextmanager def sample_ssh(data, **kwargs): """ Grab a few lines from a file in a remote directory """ conn = sftp(**data.auth) fn = data.path + '/' + conn.listdir(data.path)[0] one_file = SSH(data.container)(fn, **data.auth) with sample(one_file, **kwargs) as result: yield result @discover.register(_SSH) def discover_ssh(data, **kwargs): with sample(data) as fn: o = data.subtype(fn) result = discover(o) return result @discover.register(SSH(CSV)) def discover_ssh_csv(data, **kwargs): with sample(data) as fn: o = CSV(fn, encoding=data.encoding, has_header=data.has_header, **data.dialect) result = discover(o) return result @discover.register((SSH(JSON), SSH(JSONLines))) def discover_ssh_json(data, **kwargs): with sample(data) as fn: result = discover(data.subtype(fn)) return result @discover.register((SSH(Directory(CSV)), SSH(Directory(JSON)), SSH(Directory(JSONLines)))) def discover_ssh_directory(data, **kwargs): conn = sftp(**data.auth) fn = data.path + '/' + conn.listdir(data.path)[0] one_file = SSH(data.container)(fn, **data.auth) result = discover(one_file) return result @drop.register((_SSH, SSH(CSV), SSH(JSON), SSH(JSONLines))) def drop_ssh(data, **kwargs): conn = sftp(**data.auth) with ignoring(IOError): conn.remove(data.path) @append.register(_SSH, object) def append_anything_to_ssh(target, source, **kwargs): if not isinstance(source, target.subtype): source = convert(Temp(target.subtype), source, **kwargs) # TODO: handle overwrite case conn = sftp(**target.auth) conn.put(source.path, target.path) return target @append.register(TextFile, SSH(TextFile)) @append.register(JSONLines, SSH(JSONLines)) @append.register(JSON, SSH(JSON)) @append.register(CSV, SSH(CSV)) def append_sshX_to_X(target, source, **kwargs): # TODO: handle overwrite case conn = sftp(**source.auth) conn.get(source.path, target.path) return target @curry def file_to_temp_ssh_file(typ, data, **kwargs): """ Generic convert function sending data to ssh(data) Needs to be partially evaluated with a type""" # don't use . prefix to hide because Hive doesn't like it fn = '%s.%s' % (uuid.uuid1(), typ.canonical_extension) target = Temp(SSH(typ))(fn, **kwargs) return append(target, data, **kwargs) for typ in [CSV, JSON, JSONLines, TextFile]: convert.register(Temp(SSH(typ)), (Temp(typ), typ))( file_to_temp_ssh_file(typ)) @convert.register(Temp(TextFile), (Temp(SSH(TextFile)), SSH(TextFile))) @convert.register(Temp(JSONLines), (Temp(SSH(JSONLines)), SSH(JSONLines))) @convert.register(Temp(JSON), (Temp(SSH(JSON)), SSH(JSON))) @convert.register(Temp(CSV), (Temp(SSH(CSV)), SSH(CSV))) def ssh_file_to_temp_file(data, **kwargs): fn = '.%s' % uuid.uuid1() target = Temp(data.subtype)(fn, **kwargs) return append(target, data, **kwargs) @convert.register(Temp(SSH(TextFile)), (TextFile, Temp(TextFile))) @convert.register(Temp(SSH(JSONLines)), (JSONLines, Temp(JSONLines))) @convert.register(Temp(SSH(JSON)), (JSON, Temp(JSON))) @convert.register(Temp(SSH(CSV)), (CSV, Temp(CSV))) def file_to_temp_ssh_file(data, **kwargs): fn = '%s' % uuid.uuid1() if isinstance(data, _Temp): target = Temp(SSH(data.persistent_type))(fn, **kwargs) else: target = Temp(SSH(type(data)))(fn, **kwargs) return append(target, data, **kwargs)
{ "repo_name": "Dannnno/odo", "path": "odo/backends/ssh.py", "copies": "9", "size": "7008", "license": "bsd-3-clause", "hash": 1505857868421652700, "line_mean": 28.6949152542, "line_max": 103, "alpha_frac": 0.6245719178, "autogenerated": false, "ratio": 3.421875, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.85464469178, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import paramiko from contextlib import contextmanager from toolz import keyfilter, memoize, take from datashape import discover import re from ..directory import _Directory, Directory from ..utils import keywords, tmpfile, sample from ..resource import resource from ..append import append from ..drop import drop @contextmanager def connect(**auth): ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(**auth) try: yield ssh finally: ssh.close() @contextmanager def sftp(**auth): with connect(**auth) as ssh: sftp = ssh.open_sftp() yield sftp class _SSH(object): """ Parent class for data accessed through ``ssh`` See ``paramiko.SSHClient.connect`` for authentication keyword arguments Examples -------- >>> from into import SSH, CSV >>> s = SSH(CSV)('/path/to/file.csv', hostname='hostname', username='alice') Normally create through resource uris >>> data = resource('ssh://alice@host:/path/to/file.csv', password='pass') >>> data.path '/path/to/file.csv' >>> data.auth['hostname'] 'host' """ def __init__(self, *args, **kwargs): self.auth = keyfilter(keywords(paramiko.SSHClient.connect).__contains__, kwargs) self.subtype.__init__(self, *args, **kwargs) def lines(self): with sftp(**self.auth) as conn: for line in conn.file(self.path, 'r'): yield line def SSH(cls): return type('SSH(%s)' % cls.__name__, (_SSH, cls), {'subtype': cls}) SSH.__doc__ = _SSH.__doc__ SSH = memoize(SSH) from .csv import CSV from .json import JSON, JSONLines types_by_extension = {'csv': CSV, 'json': JSONLines} ssh_pattern = '((?P<username>[a-zA-Z]\w*)@)?(?P<hostname>[\w.-]*)(:(?P<port>\d+))?:(?P<path>[/\w.*-]+)' @resource.register('ssh://.+', priority=16) def resource_ssh(uri, **kwargs): if 'ssh://' in uri: uri = uri[len('ssh://'):] d = re.match(ssh_pattern, uri).groupdict() d = dict((k, v) for k, v in d.items() if v is not None) path = d.pop('path') kwargs.update(d) try: subtype = types_by_extension[path.split('.')[-1]] if '*' in path: subtype = Directory(subtype) path = path.rsplit('/', 1)[0] + '/' except KeyError: subtype = type(resource(path)) return SSH(subtype)(path, **kwargs) @sample.register(SSH(CSV)) @contextmanager def sample_ssh(data, lines=500): """ Grab a few lines from the remote file """ with tmpfile('csv') as fn: with open(fn, 'w') as f: for line in take(lines, data.lines()): f.write(line) f.write('\n') yield fn @sample.register(SSH(Directory(CSV))) @contextmanager def sample_ssh(data, **kwargs): """ Grab a few lines from a file in a remote directory """ with sftp(**data.auth) as conn: fn = data.path + '/' + conn.listdir(data.path)[0] one_file = SSH(data.container)(fn, **data.auth) with sample(one_file, **kwargs) as result: yield result @discover.register(_SSH) def discover_ssh(data, **kwargs): with sample(data) as fn: o = data.subtype(fn) result = discover(o) return result @discover.register(SSH(CSV)) def discover_ssh_csv(data, **kwargs): with sample(data) as fn: o = CSV(fn, encoding=data.encoding, has_header=data.has_header, **data.dialect) result = discover(o) return result @discover.register(SSH(Directory(CSV))) def discover_ssh_directory(data, **kwargs): with sftp(**data.auth) as conn: fn = data.path + '/' + conn.listdir(data.path)[0] one_file = SSH(data.container)(fn, **data.auth) result = discover(one_file) return result @drop.register(_SSH) def drop_ssh(data, **kwargs): with sftp(**data.auth) as conn: conn.remove(data.path) @append.register(_SSH, object) def append_anything_to_ssh(target, source, **kwargs): if not isinstance(source, target.subtype): raise NotImplementedError() # TODO: create local temp # TODO: handle overwrite case with sftp(**target.auth) as conn: conn.put(source.path, target.path) return target @append.register(JSONLines, SSH(JSONLines)) @append.register(JSON, SSH(JSON)) @append.register(CSV, SSH(CSV)) def append_sshX_to_X(target, source, **kwargs): # TODO: handle overwrite case with sftp(**source.auth) as conn: conn.get(source.path, target.path) return target
{ "repo_name": "mrocklin/into", "path": "into/backends/ssh.py", "copies": "1", "size": "4636", "license": "bsd-3-clause", "hash": 8174014660481400000, "line_mean": 25.7976878613, "line_max": 103, "alpha_frac": 0.6147540984, "autogenerated": false, "ratio": 3.520121488230828, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9628024255075551, "avg_score": 0.0013702663110552315, "num_lines": 173 }
from __future__ import absolute_import, division, print_function import pickle from collections import OrderedDict import numpy as np import theano.tensor as T from functools import reduce from .. import optimizer from ..layers import layers class ModelBasis(object): """ Arguments model_config: model configuration dictionary Attributes of model_config input_size: input image size, (height, width). num_ch: number of input channels mae: mean absolute error (MAE) / mean square error (MSE) ratio. 0: only MSE / 1: only MAE lr: initial learning rate """ def __init__(self, model_config={}, rng=None): # Check input_size input_size = model_config.get('input_size', None) if isinstance(input_size, int): self.input_size = (input_size, input_size) elif isinstance(input_size, (list, tuple)): assert len(input_size) == 2 self.input_size = tuple(input_size) else: raise ValueError('Wrong input_size:', input_size) self.num_ch = model_config.get('num_ch', None) assert self.num_ch is not None self.input_shape = (None, self.num_ch) + self.input_size self.mae = float(model_config.get('mae', 0.0)) self.opt = optimizer.Optimizer() self.set_opt_configs(model_config) if rng is None: rng = np.random.RandomState(1234) self.rng = rng self.layers = OrderedDict() self.params = OrderedDict() def set_opt_configs(self, model_config=None, opt_scheme=None, lr=None): if model_config is None: assert lr is not None and opt_scheme is not None else: lr = float(model_config.get('lr', 1e-3)) opt_scheme = model_config.get('opt_scheme', 'adam') self.lr = lr self.opt_scheme = opt_scheme self.opt.set_learning_rate(self.lr) ########################################################################### # Functions for cost calculation def get_l2_regularization(self, layer_keys=None, mode='sum'): if layer_keys is None: layer_keys = list(self.layers.keys()) l2 = [] if mode == 'sum': for key in layer_keys: for layer in self.layers[key]: if hasattr(layer, 'W'): l2.append(T.sum(layer.W ** 2)) return T.sum(l2) elif mode == 'mean': for key in layer_keys: for layer in self.layers[key]: if hasattr(layer, 'W'): l2.append(T.mean(layer.W ** 2)) return T.mean(l2) else: raise NotImplementedError def get_cost_mse_mae(self, x, y): diff = x - y if self.mae == 0: return T.mean(diff ** 2) elif self.mae > 0 and self.mae < 1.0: return ((1.0 - self.mae) * T.mean(diff ** 2) + self.mae * T.mean(T.abs_(diff))) else: return T.mean(T.abs_(diff)) def get_mse(self, x, y, return_map=False): if return_map: return (x - y) ** 2 else: return T.mean(((x - y) ** 2).flatten(2), axis=1) def add_all_losses_with_weight(self, losses, weights): """Add the losses with the weights multiplied. If the weight is 0, the corresponding loss is ignored. """ assert len(losses) == len(weights) loss_list = [] for loss, weight in zip(losses, weights): if weight != 0: loss_list.append(weight * loss) return reduce(lambda x, y: x + y, loss_list) ########################################################################### # Functions to help build layers def get_input_shape(self, batch_size=None): """Get the input shape of the Mode. Returns ------- (batch_size, self.num_ch) + self.input_size """ return (batch_size, self.num_ch) + self.input_size def get_out_shape(self, key, nth=-1): """Get the `nth` output shape in the `key` layers """ if nth < 0: idx = len(self.layers[key]) + nth else: idx = nth out_sh = None while out_sh is None: if idx < 0: raise ValueError('Cannot obtain the output size from %s' % key) out_sh = self.layers[key][idx].get_out_shape() idx = idx - 1 return out_sh def get_conc_shape(self, key0, key1): """Get the concatenated shape of the ouputs of `key0` and `key1` layers """ prev_sh0 = self.get_out_shape(key0) prev_sh1 = self.get_out_shape(key1) if isinstance(prev_sh0, (list, tuple)): assert prev_sh0[0] == prev_sh1[0] assert prev_sh0[2:] == prev_sh1[2:] return (prev_sh0[0], prev_sh0[1] + prev_sh1[1]) + prev_sh0[2:] else: return prev_sh0 + prev_sh1 ########################################################################### # Functions to help make computation graph def image_vec_to_tensor(self, input): """Reshape input into 4D tensor. """ # im_sh = (-1, self.input_size[0], # self.input_size[1], self.num_ch) # return input.reshape(im_sh).dimshuffle(0, 3, 1, 2) return input.dimshuffle(0, 3, 1, 2) # def tensor_to_image_vec(self, input): # """Reshape 4D tensor into input.""" # return input.dimshuffle(0, 2, 3, 1).flatten(2) def get_key_layers_output(self, input, key, var_shape=False): """Put input to the `key` layers and get output. """ prev_out = input for layer in self.layers[key]: prev_out = layer.get_output(prev_out, var_shape=var_shape) return prev_out def get_updates(self, cost, wrt_params): return self.opt.get_updates_cost(cost, wrt_params, self.opt_scheme) def get_updates_keys(self, cost, keys=[], params=[]): wrt_params = [] for key in keys: wrt_params += self.params[key] if params: wrt_params += params print(' - Update w.r.t.: %s' % ', '.join(keys)) return self.opt.get_updates_cost(cost, wrt_params, self.opt_scheme) ########################################################################### # Functions to contol batch normalization and dropout layers def get_batch_norm_layers(self, keys=[]): layers = [] for key in list(self.layers.keys()): layers += self.bn_layers[key] return layers def set_batch_norm_update_averages(self, update_averages, keys=[]): # if update_averages: # print(' - Batch norm: update the stored averages') # else: # print(' - Batch norm: not update the stored averages') layers = self.get_batch_norm_layers(keys) for layer in layers: layer.update_averages = update_averages def set_batch_norm_training(self, training, keys=[]): # if training: # print(' - Batch norm: use mini-batch statistics') # else: # print(' - Batch norm: use the stored statistics') layers = self.get_batch_norm_layers(keys) for layer in layers: layer.deterministic = not training def set_dropout_on(self, training): layers.DropoutLayer.set_dropout_training(training) def set_training_mode(self, training): """Decide the behavior of batch normalization and dropout. Parameters ---------- training: boolean True: trainig mode / False: testing mode. """ # Decide behaviors of the model during training # Batch normalization l_keys = [key for key in list(self.layers.keys())] self.set_batch_norm_update_averages(training, l_keys) self.set_batch_norm_training(training, l_keys) # Dropout self.set_dropout_on(training) ########################################################################### # Functions to help deal with parameters of the model def make_param_list(self): """collect all the parameters from `self.layers` and store into `self.params['layer_key']` """ self.params, self.bn_layers = {}, {} for key in list(self.layers.keys()): self.params[key] = [] self.bn_layers[key] = [] for layer in self.layers[key]: if layer.get_params(): self.params[key] += layer.get_params() if layer.has_batch_norm(): self.bn_layers[key].append(layer.bn_layer) def show_num_params(self): """Dislay the number of paraemeters for each layer_key. """ paramscnt = {} for key in list(self.layers.keys()): paramscnt[key] = 0 for p in self.params[key]: paramscnt[key] += np.prod(p.get_value(borrow=True).shape) if paramscnt[key] > 0: print(' - Num params %s:' % key, '{:,}'.format(paramscnt[key])) def get_params(self, layer_keys=None): """Get concatenated parameter list from layers belong to layer_keys""" if layer_keys is None: layer_keys = list(self.layers.keys()) params = [] bn_mean_std = [] for key in layer_keys: params += self.params[key] for key in layer_keys: for layer in self.bn_layers[key]: bn_mean_std += layer.statistics params += bn_mean_std return params def save(self, filename): """Save parameters to file. """ params = self.get_params() with open(filename, 'wb') as f: pickle.dump(params, f, protocol=2) # pickle.dump(params, f, protocol=pickle.HIGHEST_PROTOCOL) print(' = Save params: %s' % (filename)) def load(self, filename): """Load parameters from file. """ params = self.get_params() with open(filename, 'rb') as f: newparams = pickle.load(f) assert len(newparams) == len(params) for p, new_p in zip(params, newparams): if p.name != new_p.name: print((' @ WARNING: Different name - (loaded) %s != %s' % (new_p.name, p.name))) new_p_sh = new_p.get_value(borrow=True).shape p_sh = p.get_value(borrow=True).shape if p_sh != new_p_sh: # print(new_p.name, p_sh, new_p_sh) print(' @ WARNING: Different shape %s - (loaded)' % new_p.name, new_p_sh, end='') print(' !=', p_sh) continue p.set_value(new_p.get_value()) print(' = Load all params: %s ' % (filename)) def load_params_keys(self, layer_keys, filename): """Load the selecte parameters from file. Parameters from layers belong to layer_keys. """ print(' = Load params: %s (keys = %s)' % ( filename, ', '.join(layer_keys))) to_params = self.get_params(layer_keys) with open(filename, 'rb') as f: from_params = pickle.load(f) # Copy the params having same shape and name copied_idx = [] for fidx, f_param in enumerate(from_params): f_val = f_param.get_value(borrow=True) for tidx, t_param in enumerate(to_params): t_val = t_param.get_value(borrow=True) if f_val.shape == t_val.shape and f_param.name == t_param.name: t_param.set_value(f_val) del to_params[tidx] copied_idx.append(fidx) break # print(' = Copied from_param: ', [ # from_params[idx] for idx in copied_idx]) if to_params: print(' = Not existing to_param: ', to_params)
{ "repo_name": "jongyookim/IQA_BIECON_release", "path": "IQA_BIECON_release/models/model_basis.py", "copies": "1", "size": "12088", "license": "mit", "hash": -2358152926982187000, "line_mean": 34.8694362018, "line_max": 79, "alpha_frac": 0.524652548, "autogenerated": false, "ratio": 3.841118525579917, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48657710735799176, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pickle from distutils.version import LooseVersion from textwrap import dedent import numpy as np import pandas as pd import pytest import xarray as xr import xarray.ufuncs as xu from xarray import DataArray, Dataset, Variable from xarray.core.pycompat import OrderedDict, suppress from xarray.tests import mock from . import ( TestCase, assert_allclose, assert_array_equal, assert_equal, assert_frame_equal, assert_identical, raises_regex) dask = pytest.importorskip('dask') da = pytest.importorskip('dask.array') dd = pytest.importorskip('dask.dataframe') class DaskTestCase(TestCase): def assertLazyAnd(self, expected, actual, test): with dask.set_options(get=dask.get): test(actual, expected) if isinstance(actual, Dataset): for k, v in actual.variables.items(): if k in actual.dims: assert isinstance(v.data, np.ndarray) else: assert isinstance(v.data, da.Array) elif isinstance(actual, DataArray): assert isinstance(actual.data, da.Array) for k, v in actual.coords.items(): if k in actual.dims: assert isinstance(v.data, np.ndarray) else: assert isinstance(v.data, da.Array) elif isinstance(actual, Variable): assert isinstance(actual.data, da.Array) else: assert False class TestVariable(DaskTestCase): def assertLazyAndIdentical(self, expected, actual): self.assertLazyAnd(expected, actual, assert_identical) def assertLazyAndAllClose(self, expected, actual): self.assertLazyAnd(expected, actual, assert_allclose) def setUp(self): self.values = np.random.RandomState(0).randn(4, 6) self.data = da.from_array(self.values, chunks=(2, 2)) self.eager_var = Variable(('x', 'y'), self.values) self.lazy_var = Variable(('x', 'y'), self.data) def test_basics(self): v = self.lazy_var assert self.data is v.data assert self.data.chunks == v.chunks assert_array_equal(self.values, v) def test_copy(self): self.assertLazyAndIdentical(self.eager_var, self.lazy_var.copy()) self.assertLazyAndIdentical(self.eager_var, self.lazy_var.copy(deep=True)) def test_chunk(self): for chunks, expected in [(None, ((2, 2), (2, 2, 2))), (3, ((3, 1), (3, 3))), ({'x': 3, 'y': 3}, ((3, 1), (3, 3))), ({'x': 3}, ((3, 1), (2, 2, 2))), ({'x': (3, 1)}, ((3, 1), (2, 2, 2)))]: rechunked = self.lazy_var.chunk(chunks) assert rechunked.chunks == expected self.assertLazyAndIdentical(self.eager_var, rechunked) def test_indexing(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(u[0], v[0]) self.assertLazyAndIdentical(u[:1], v[:1]) self.assertLazyAndIdentical(u[[0, 1], [0, 1, 2]], v[[0, 1], [0, 1, 2]]) with raises_regex(TypeError, 'stored in a dask array'): v[:1] = 0 def test_squeeze(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(u[0].squeeze(), v[0].squeeze()) def test_equals(self): v = self.lazy_var assert v.equals(v) assert isinstance(v.data, da.Array) assert v.identical(v) assert isinstance(v.data, da.Array) def test_transpose(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(u.T, v.T) def test_shift(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(u.shift(x=2), v.shift(x=2)) self.assertLazyAndIdentical(u.shift(x=-2), v.shift(x=-2)) assert v.data.chunks == v.shift(x=1).data.chunks def test_roll(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(u.roll(x=2), v.roll(x=2)) assert v.data.chunks == v.roll(x=1).data.chunks def test_unary_op(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(-u, -v) self.assertLazyAndIdentical(abs(u), abs(v)) self.assertLazyAndIdentical(u.round(), v.round()) def test_binary_op(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(2 * u, 2 * v) self.assertLazyAndIdentical(u + u, v + v) self.assertLazyAndIdentical(u[0] + u, v[0] + v) def test_repr(self): expected = dedent("""\ <xarray.Variable (x: 4, y: 6)> dask.array<shape=(4, 6), dtype=float64, chunksize=(2, 2)>""") assert expected == repr(self.lazy_var) def test_pickle(self): # Test that pickling/unpickling does not convert the dask # backend to numpy a1 = Variable(['x'], build_dask_array('x')) a1.compute() assert not a1._in_memory assert kernel_call_count == 1 a2 = pickle.loads(pickle.dumps(a1)) assert kernel_call_count == 1 assert_identical(a1, a2) assert not a1._in_memory assert not a2._in_memory def test_reduce(self): u = self.eager_var v = self.lazy_var self.assertLazyAndAllClose(u.mean(), v.mean()) self.assertLazyAndAllClose(u.std(), v.std()) self.assertLazyAndAllClose(u.argmax(dim='x'), v.argmax(dim='x')) self.assertLazyAndAllClose((u > 1).any(), (v > 1).any()) self.assertLazyAndAllClose((u < 1).all('x'), (v < 1).all('x')) with raises_regex(NotImplementedError, 'dask'): v.median() def test_missing_values(self): values = np.array([0, 1, np.nan, 3]) data = da.from_array(values, chunks=(2,)) eager_var = Variable('x', values) lazy_var = Variable('x', data) self.assertLazyAndIdentical(eager_var, lazy_var.fillna(lazy_var)) self.assertLazyAndIdentical(Variable('x', range(4)), lazy_var.fillna(2)) self.assertLazyAndIdentical(eager_var.count(), lazy_var.count()) def test_concat(self): u = self.eager_var v = self.lazy_var self.assertLazyAndIdentical(u, Variable.concat([v[:2], v[2:]], 'x')) self.assertLazyAndIdentical(u[:2], Variable.concat([v[0], v[1]], 'x')) self.assertLazyAndIdentical(u[:2], Variable.concat([u[0], v[1]], 'x')) self.assertLazyAndIdentical(u[:2], Variable.concat([v[0], u[1]], 'x')) self.assertLazyAndIdentical( u[:3], Variable.concat([v[[0, 2]], v[[1]]], 'x', positions=[[0, 2], [1]])) def test_missing_methods(self): v = self.lazy_var try: v.argsort() except NotImplementedError as err: assert 'dask' in str(err) try: v[0].item() except NotImplementedError as err: assert 'dask' in str(err) def test_univariate_ufunc(self): u = self.eager_var v = self.lazy_var self.assertLazyAndAllClose(np.sin(u), xu.sin(v)) def test_bivariate_ufunc(self): u = self.eager_var v = self.lazy_var self.assertLazyAndAllClose(np.maximum(u, 0), xu.maximum(v, 0)) self.assertLazyAndAllClose(np.maximum(u, 0), xu.maximum(0, v)) @pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', reason='Need dask 0.16 for new interface') def test_compute(self): u = self.eager_var v = self.lazy_var assert dask.is_dask_collection(v) (v2,) = dask.compute(v + 1) assert not dask.is_dask_collection(v2) assert ((u + 1).data == v2.data).all() @pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', reason='Need dask 0.16 for new interface') def test_persist(self): u = self.eager_var v = self.lazy_var + 1 (v2,) = dask.persist(v) assert v is not v2 assert len(v2.__dask_graph__()) < len(v.__dask_graph__()) assert v2.__dask_keys__() == v.__dask_keys__() assert dask.is_dask_collection(v) assert dask.is_dask_collection(v2) self.assertLazyAndAllClose(u + 1, v) self.assertLazyAndAllClose(u + 1, v2) class TestDataArrayAndDataset(DaskTestCase): def assertLazyAndIdentical(self, expected, actual): self.assertLazyAnd(expected, actual, assert_identical) def assertLazyAndAllClose(self, expected, actual): self.assertLazyAnd(expected, actual, assert_allclose) def assertLazyAndEqual(self, expected, actual): self.assertLazyAnd(expected, actual, assert_equal) def setUp(self): self.values = np.random.randn(4, 6) self.data = da.from_array(self.values, chunks=(2, 2)) self.eager_array = DataArray(self.values, coords={'x': range(4)}, dims=('x', 'y'), name='foo') self.lazy_array = DataArray(self.data, coords={'x': range(4)}, dims=('x', 'y'), name='foo') def test_rechunk(self): chunked = self.eager_array.chunk({'x': 2}).chunk({'y': 2}) assert chunked.chunks == ((2,) * 2, (2,) * 3) self.assertLazyAndIdentical(self.lazy_array, chunked) def test_new_chunk(self): chunked = self.eager_array.chunk() assert chunked.data.name.startswith('xarray-<this-array>') def test_lazy_dataset(self): lazy_ds = Dataset({'foo': (('x', 'y'), self.data)}) assert isinstance(lazy_ds.foo.variable.data, da.Array) def test_lazy_array(self): u = self.eager_array v = self.lazy_array self.assertLazyAndAllClose(u, v) self.assertLazyAndAllClose(-u, -v) self.assertLazyAndAllClose(u.T, v.T) self.assertLazyAndAllClose(u.mean(), v.mean()) self.assertLazyAndAllClose(1 + u, 1 + v) actual = xr.concat([v[:2], v[2:]], 'x') self.assertLazyAndAllClose(u, actual) @pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', reason='Need dask 0.16 for new interface') def test_compute(self): u = self.eager_array v = self.lazy_array assert dask.is_dask_collection(v) (v2,) = dask.compute(v + 1) assert not dask.is_dask_collection(v2) assert ((u + 1).data == v2.data).all() @pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', reason='Need dask 0.16 for new interface') def test_persist(self): u = self.eager_array v = self.lazy_array + 1 (v2,) = dask.persist(v) assert v is not v2 assert len(v2.__dask_graph__()) < len(v.__dask_graph__()) assert v2.__dask_keys__() == v.__dask_keys__() assert dask.is_dask_collection(v) assert dask.is_dask_collection(v2) self.assertLazyAndAllClose(u + 1, v) self.assertLazyAndAllClose(u + 1, v2) def test_concat_loads_variables(self): # Test that concat() computes not-in-memory variables at most once # and loads them in the output, while leaving the input unaltered. d1 = build_dask_array('d1') c1 = build_dask_array('c1') d2 = build_dask_array('d2') c2 = build_dask_array('c2') d3 = build_dask_array('d3') c3 = build_dask_array('c3') # Note: c is a non-index coord. # Index coords are loaded by IndexVariable.__init__. ds1 = Dataset(data_vars={'d': ('x', d1)}, coords={'c': ('x', c1)}) ds2 = Dataset(data_vars={'d': ('x', d2)}, coords={'c': ('x', c2)}) ds3 = Dataset(data_vars={'d': ('x', d3)}, coords={'c': ('x', c3)}) assert kernel_call_count == 0 out = xr.concat([ds1, ds2, ds3], dim='n', data_vars='different', coords='different') # each kernel is computed exactly once assert kernel_call_count == 6 # variables are loaded in the output assert isinstance(out['d'].data, np.ndarray) assert isinstance(out['c'].data, np.ndarray) out = xr.concat( [ds1, ds2, ds3], dim='n', data_vars='all', coords='all') # no extra kernel calls assert kernel_call_count == 6 assert isinstance(out['d'].data, dask.array.Array) assert isinstance(out['c'].data, dask.array.Array) out = xr.concat( [ds1, ds2, ds3], dim='n', data_vars=['d'], coords=['c']) # no extra kernel calls assert kernel_call_count == 6 assert isinstance(out['d'].data, dask.array.Array) assert isinstance(out['c'].data, dask.array.Array) out = xr.concat([ds1, ds2, ds3], dim='n', data_vars=[], coords=[]) # variables are loaded once as we are validing that they're identical assert kernel_call_count == 12 assert isinstance(out['d'].data, np.ndarray) assert isinstance(out['c'].data, np.ndarray) out = xr.concat([ds1, ds2, ds3], dim='n', data_vars='different', coords='different', compat='identical') # compat=identical doesn't do any more kernel calls than compat=equals assert kernel_call_count == 18 assert isinstance(out['d'].data, np.ndarray) assert isinstance(out['c'].data, np.ndarray) # When the test for different turns true halfway through, # stop computing variables as it would not have any benefit ds4 = Dataset(data_vars={'d': ('x', [2.0])}, coords={'c': ('x', [2.0])}) out = xr.concat([ds1, ds2, ds4, ds3], dim='n', data_vars='different', coords='different') # the variables of ds1 and ds2 were computed, but those of ds3 didn't assert kernel_call_count == 22 assert isinstance(out['d'].data, dask.array.Array) assert isinstance(out['c'].data, dask.array.Array) # the data of ds1 and ds2 was loaded into numpy and then # concatenated to the data of ds3. Thus, only ds3 is computed now. out.compute() assert kernel_call_count == 24 # Finally, test that riginals are unaltered assert ds1['d'].data is d1 assert ds1['c'].data is c1 assert ds2['d'].data is d2 assert ds2['c'].data is c2 assert ds3['d'].data is d3 assert ds3['c'].data is c3 def test_groupby(self): if LooseVersion(dask.__version__) == LooseVersion('0.15.3'): pytest.xfail('upstream bug in dask: ' 'https://github.com/dask/dask/issues/2718') u = self.eager_array v = self.lazy_array expected = u.groupby('x').mean() actual = v.groupby('x').mean() self.assertLazyAndAllClose(expected, actual) def test_groupby_first(self): u = self.eager_array v = self.lazy_array for coords in [u.coords, v.coords]: coords['ab'] = ('x', ['a', 'a', 'b', 'b']) with raises_regex(NotImplementedError, 'dask'): v.groupby('ab').first() expected = u.groupby('ab').first() actual = v.groupby('ab').first(skipna=False) self.assertLazyAndAllClose(expected, actual) def test_reindex(self): u = self.eager_array.assign_coords(y=range(6)) v = self.lazy_array.assign_coords(y=range(6)) for kwargs in [{'x': [2, 3, 4]}, {'x': [1, 100, 2, 101, 3]}, {'x': [2.5, 3, 3.5], 'y': [2, 2.5, 3]}]: expected = u.reindex(**kwargs) actual = v.reindex(**kwargs) self.assertLazyAndAllClose(expected, actual) def test_to_dataset_roundtrip(self): u = self.eager_array v = self.lazy_array expected = u.assign_coords(x=u['x']) self.assertLazyAndEqual(expected, v.to_dataset('x').to_array('x')) def test_merge(self): def duplicate_and_merge(array): return xr.merge([array, array.rename('bar')]).to_array() expected = duplicate_and_merge(self.eager_array) actual = duplicate_and_merge(self.lazy_array) self.assertLazyAndEqual(expected, actual) def test_ufuncs(self): u = self.eager_array v = self.lazy_array self.assertLazyAndAllClose(np.sin(u), xu.sin(v)) def test_where_dispatching(self): a = np.arange(10) b = a > 3 x = da.from_array(a, 5) y = da.from_array(b, 5) expected = DataArray(a).where(b) self.assertLazyAndEqual(expected, DataArray(a).where(y)) self.assertLazyAndEqual(expected, DataArray(x).where(b)) self.assertLazyAndEqual(expected, DataArray(x).where(y)) def test_simultaneous_compute(self): ds = Dataset({'foo': ('x', range(5)), 'bar': ('x', range(5))}).chunk() count = [0] def counting_get(*args, **kwargs): count[0] += 1 return dask.get(*args, **kwargs) with dask.set_options(get=counting_get): ds.load() assert count[0] == 1 def test_stack(self): data = da.random.normal(size=(2, 3, 4), chunks=(1, 3, 4)) arr = DataArray(data, dims=('w', 'x', 'y')) stacked = arr.stack(z=('x', 'y')) z = pd.MultiIndex.from_product([np.arange(3), np.arange(4)], names=['x', 'y']) expected = DataArray(data.reshape(2, -1), {'z': z}, dims=['w', 'z']) assert stacked.data.chunks == expected.data.chunks self.assertLazyAndEqual(expected, stacked) def test_dot(self): eager = self.eager_array.dot(self.eager_array[0]) lazy = self.lazy_array.dot(self.lazy_array[0]) self.assertLazyAndAllClose(eager, lazy) def test_dataarray_repr(self): # Test that __repr__ converts the dask backend to numpy # in neither the data variable nor the non-index coords data = build_dask_array('data') nonindex_coord = build_dask_array('coord') a = DataArray(data, dims=['x'], coords={'y': ('x', nonindex_coord)}) expected = dedent("""\ <xarray.DataArray 'data' (x: 1)> dask.array<shape=(1,), dtype=int64, chunksize=(1,)> Coordinates: y (x) int64 dask.array<shape=(1,), chunksize=(1,)> Dimensions without coordinates: x""") assert expected == repr(a) assert kernel_call_count == 0 def test_dataset_repr(self): # Test that pickling/unpickling converts the dask backend # to numpy in neither the data variables nor the non-index coords data = build_dask_array('data') nonindex_coord = build_dask_array('coord') ds = Dataset(data_vars={'a': ('x', data)}, coords={'y': ('x', nonindex_coord)}) expected = dedent("""\ <xarray.Dataset> Dimensions: (x: 1) Coordinates: y (x) int64 dask.array<shape=(1,), chunksize=(1,)> Dimensions without coordinates: x Data variables: a (x) int64 dask.array<shape=(1,), chunksize=(1,)>""") assert expected == repr(ds) assert kernel_call_count == 0 def test_dataarray_pickle(self): # Test that pickling/unpickling converts the dask backend # to numpy in neither the data variable nor the non-index coords data = build_dask_array('data') nonindex_coord = build_dask_array('coord') a1 = DataArray(data, dims=['x'], coords={'y': ('x', nonindex_coord)}) a1.compute() assert not a1._in_memory assert not a1.coords['y']._in_memory assert kernel_call_count == 2 a2 = pickle.loads(pickle.dumps(a1)) assert kernel_call_count == 2 assert_identical(a1, a2) assert not a1._in_memory assert not a2._in_memory assert not a1.coords['y']._in_memory assert not a2.coords['y']._in_memory def test_dataset_pickle(self): # Test that pickling/unpickling converts the dask backend # to numpy in neither the data variables nor the non-index coords data = build_dask_array('data') nonindex_coord = build_dask_array('coord') ds1 = Dataset(data_vars={'a': ('x', data)}, coords={'y': ('x', nonindex_coord)}) ds1.compute() assert not ds1['a']._in_memory assert not ds1['y']._in_memory assert kernel_call_count == 2 ds2 = pickle.loads(pickle.dumps(ds1)) assert kernel_call_count == 2 assert_identical(ds1, ds2) assert not ds1['a']._in_memory assert not ds2['a']._in_memory assert not ds1['y']._in_memory assert not ds2['y']._in_memory def test_dataarray_getattr(self): # ipython/jupyter does a long list of getattr() calls to when trying to # represent an object. # Make sure we're not accidentally computing dask variables. data = build_dask_array('data') nonindex_coord = build_dask_array('coord') a = DataArray(data, dims=['x'], coords={'y': ('x', nonindex_coord)}) with suppress(AttributeError): getattr(a, 'NOTEXIST') assert kernel_call_count == 0 def test_dataset_getattr(self): # Test that pickling/unpickling converts the dask backend # to numpy in neither the data variables nor the non-index coords data = build_dask_array('data') nonindex_coord = build_dask_array('coord') ds = Dataset(data_vars={'a': ('x', data)}, coords={'y': ('x', nonindex_coord)}) with suppress(AttributeError): getattr(ds, 'NOTEXIST') assert kernel_call_count == 0 def test_values(self): # Test that invoking the values property does not convert the dask # backend to numpy a = DataArray([1, 2]).chunk() assert not a._in_memory assert a.values.tolist() == [1, 2] assert not a._in_memory def test_from_dask_variable(self): # Test array creation from Variable with dask backend. # This is used e.g. in broadcast() a = DataArray(self.lazy_array.variable, coords={'x': range(4)}, name='foo') self.assertLazyAndIdentical(self.lazy_array, a) class TestToDaskDataFrame(TestCase): def test_to_dask_dataframe(self): # Test conversion of Datasets to dask DataFrames x = da.from_array(np.random.randn(10), chunks=4) y = np.arange(10, dtype='uint8') t = list('abcdefghij') ds = Dataset(OrderedDict([('a', ('t', x)), ('b', ('t', y)), ('t', ('t', t))])) expected_pd = pd.DataFrame({'a': x, 'b': y}, index=pd.Index(t, name='t')) # test if 1-D index is correctly set up expected = dd.from_pandas(expected_pd, chunksize=4) actual = ds.to_dask_dataframe(set_index=True) # test if we have dask dataframes assert isinstance(actual, dd.DataFrame) # use the .equals from pandas to check dataframes are equivalent assert_frame_equal(expected.compute(), actual.compute()) # test if no index is given expected = dd.from_pandas(expected_pd.reset_index(drop=False), chunksize=4) actual = ds.to_dask_dataframe(set_index=False) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected.compute(), actual.compute()) def test_to_dask_dataframe_2D(self): # Test if 2-D dataset is supplied w = da.from_array(np.random.randn(2, 3), chunks=(1, 2)) ds = Dataset({'w': (('x', 'y'), w)}) ds['x'] = ('x', np.array([0, 1], np.int64)) ds['y'] = ('y', list('abc')) # dask dataframes do not (yet) support multiindex, # but when it does, this would be the expected index: exp_index = pd.MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1], ['a', 'b', 'c', 'a', 'b', 'c']], names=['x', 'y']) expected = pd.DataFrame({'w': w.reshape(-1)}, index=exp_index) # so for now, reset the index expected = expected.reset_index(drop=False) actual = ds.to_dask_dataframe(set_index=False) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) @pytest.mark.xfail(raises=NotImplementedError) def test_to_dask_dataframe_2D_set_index(self): # This will fail until dask implements MultiIndex support w = da.from_array(np.random.randn(2, 3), chunks=(1, 2)) ds = Dataset({'w': (('x', 'y'), w)}) ds['x'] = ('x', np.array([0, 1], np.int64)) ds['y'] = ('y', list('abc')) expected = ds.compute().to_dataframe() actual = ds.to_dask_dataframe(set_index=True) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) def test_to_dask_dataframe_coordinates(self): # Test if coordinate is also a dask array x = da.from_array(np.random.randn(10), chunks=4) t = da.from_array(np.arange(10) * 2, chunks=4) ds = Dataset(OrderedDict([('a', ('t', x)), ('t', ('t', t))])) expected_pd = pd.DataFrame({'a': x}, index=pd.Index(t, name='t')) expected = dd.from_pandas(expected_pd, chunksize=4) actual = ds.to_dask_dataframe(set_index=True) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected.compute(), actual.compute()) def test_to_dask_dataframe_not_daskarray(self): # Test if DataArray is not a dask array x = np.random.randn(10) y = np.arange(10, dtype='uint8') t = list('abcdefghij') ds = Dataset(OrderedDict([('a', ('t', x)), ('b', ('t', y)), ('t', ('t', t))])) expected = pd.DataFrame({'a': x, 'b': y}, index=pd.Index(t, name='t')) actual = ds.to_dask_dataframe(set_index=True) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) def test_to_dask_dataframe_no_coordinate(self): x = da.from_array(np.random.randn(10), chunks=4) ds = Dataset({'x': ('dim_0', x)}) expected = ds.compute().to_dataframe().reset_index() actual = ds.to_dask_dataframe() assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) expected = ds.compute().to_dataframe() actual = ds.to_dask_dataframe(set_index=True) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) def test_to_dask_dataframe_dim_order(self): values = np.array([[1, 2], [3, 4]], dtype=np.int64) ds = Dataset({'w': (('x', 'y'), values)}).chunk(1) expected = ds['w'].to_series().reset_index() actual = ds.to_dask_dataframe(dim_order=['x', 'y']) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) expected = ds['w'].T.to_series().reset_index() actual = ds.to_dask_dataframe(dim_order=['y', 'x']) assert isinstance(actual, dd.DataFrame) assert_frame_equal(expected, actual.compute()) with raises_regex(ValueError, 'does not match the set of dimensions'): ds.to_dask_dataframe(dim_order=['x']) @pytest.mark.parametrize("method", ['load', 'compute']) def test_dask_kwargs_variable(method): x = Variable('y', da.from_array(np.arange(3), chunks=(2,))) # args should be passed on to da.Array.compute() with mock.patch.object(da.Array, 'compute', return_value=np.arange(3)) as mock_compute: getattr(x, method)(foo='bar') mock_compute.assert_called_with(foo='bar') @pytest.mark.parametrize("method", ['load', 'compute', 'persist']) def test_dask_kwargs_dataarray(method): data = da.from_array(np.arange(3), chunks=(2,)) x = DataArray(data) if method in ['load', 'compute']: dask_func = 'dask.array.compute' else: dask_func = 'dask.persist' # args should be passed on to "dask_func" with mock.patch(dask_func) as mock_func: getattr(x, method)(foo='bar') mock_func.assert_called_with(data, foo='bar') @pytest.mark.parametrize("method", ['load', 'compute', 'persist']) def test_dask_kwargs_dataset(method): data = da.from_array(np.arange(3), chunks=(2,)) x = Dataset({'x': (('y'), data)}) if method in ['load', 'compute']: dask_func = 'dask.array.compute' else: dask_func = 'dask.persist' # args should be passed on to "dask_func" with mock.patch(dask_func) as mock_func: getattr(x, method)(foo='bar') mock_func.assert_called_with(data, foo='bar') kernel_call_count = 0 def kernel(name): """Dask kernel to test pickling/unpickling and __repr__. Must be global to make it pickleable. """ print("kernel(%s)" % name) global kernel_call_count kernel_call_count += 1 return np.ones(1, dtype=np.int64) def build_dask_array(name): global kernel_call_count kernel_call_count = 0 return dask.array.Array( dask={(name, 0): (kernel, name)}, name=name, chunks=((1,),), dtype=np.int64) # test both the perist method and the dask.persist function # the dask.persist function requires a new version of dask @pytest.mark.parametrize('persist', [ lambda x: x.persist(), pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', lambda x: dask.persist(x)[0], reason='Need Dask 0.16') ]) def test_persist_Dataset(persist): ds = Dataset({'foo': ('x', range(5)), 'bar': ('x', range(5))}).chunk() ds = ds + 1 n = len(ds.foo.data.dask) ds2 = persist(ds) assert len(ds2.foo.data.dask) == 1 assert len(ds.foo.data.dask) == n # doesn't mutate in place @pytest.mark.parametrize('persist', [ lambda x: x.persist(), pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', lambda x: dask.persist(x)[0], reason='Need Dask 0.16') ]) def test_persist_DataArray(persist): x = da.arange(10, chunks=(5,)) y = DataArray(x) z = y + 1 n = len(z.data.dask) zz = persist(z) assert len(z.data.dask) == n assert len(zz.data.dask) == zz.data.npartitions @pytest.mark.skipif(LooseVersion(dask.__version__) <= '0.15.4', reason='Need dask 0.16 for new interface') def test_dataarray_with_dask_coords(): import toolz x = xr.Variable('x', da.arange(8, chunks=(4,))) y = xr.Variable('y', da.arange(8, chunks=(4,)) * 2) data = da.random.random((8, 8), chunks=(4, 4)) + 1 array = xr.DataArray(data, dims=['x', 'y']) array.coords['xx'] = x array.coords['yy'] = y assert dict(array.__dask_graph__()) == toolz.merge(data.__dask_graph__(), x.__dask_graph__(), y.__dask_graph__()) (array2,) = dask.compute(array) assert not dask.is_dask_collection(array2) assert all(isinstance(v._variable.data, np.ndarray) for v in array2.coords.values()) def test_basic_compute(): ds = Dataset({'foo': ('x', range(5)), 'bar': ('x', range(5))}).chunk({'x': 2}) for get in [dask.threaded.get, dask.multiprocessing.get, dask.local.get_sync, None]: with dask.set_options(get=get): ds.compute() ds.foo.compute() ds.foo.variable.compute()
{ "repo_name": "jcmgray/xarray", "path": "xarray/tests/test_dask.py", "copies": "1", "size": "32253", "license": "apache-2.0", "hash": -8719932196461235000, "line_mean": 36.9001175088, "line_max": 79, "alpha_frac": 0.5667689827, "autogenerated": false, "ratio": 3.5153133514986377, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4582082334198638, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import pickle import random from collections import namedtuple import pandas as pd from caar.cleanthermostat import _sort_meta_in_col_order, dict_from_file from future import standard_library standard_library.install_aliases() Cycle = namedtuple('Cycle', ['device_id', 'cycle_mode', 'start_time']) Sensor = namedtuple('Sensor', ['sensor_id', 'timestamp']) Geospatial = namedtuple('Geospatial', ['location_id', 'timestamp']) def create_sensors_df(dict_or_pickle_file, sensor_ids=None): """Returns pandas DataFrame containing sensor ID, timestamps and sensor observations. Args: dict_or_pickle_file (dict or str): The object must have been created with dict_from_file() or pickle_from_file() function. sensor_ids (Optional[list or other iterable of ints or strings]): Sensor IDs. If no argument is specified, all IDs from the first arg will be in the DataFrame. Returns: sensors_df (pandas DataFrame): DataFrame has MultiIndex based on the ID(s) and timestamps. """ fields = list(Sensor._fields) multi_ids, vals, meta = _records_as_lists_of_tuples(dict_or_pickle_file, fields, ids=sensor_ids) id_labels = [meta[col]['heading'] for col in ['id', 'time']] data_labels = _data_labels_from_meta(meta, id_labels) sensors_df = _create_multi_index_df(id_labels, multi_ids, data_labels, vals) return sensors_df def sensors_df_from_text(raw_file, states=None, sensors_file=None, postal_file=None, auto='sensors', id_col_heading=None, encoding='UTF-8', delimiter=None, quote=None, cols_to_ignore=None, meta=False, sensor_ids=None): sensors = dict_from_file(raw_file, states=states, sensors_file=sensors_file, postal_file=postal_file, auto=auto, id_col_heading=id_col_heading, encoding=encoding, delimiter=delimiter, quote=quote, cols_to_ignore=cols_to_ignore, meta=meta) return create_sensors_df(sensors, sensor_ids=sensor_ids) def sensors_df_from_bin(pickle_file, sensor_ids=None): """Returns pandas DataFrame containing sensor ID, timestamps and sensor observations. Args: pickle_file (str): The pickle file must have been created with pickle_from_file() function. sensor_ids (Optional[list or other iterable of ints or strings]): Sensor IDs. If no argument is specified, all IDs from the first arg will be in the DataFrame. Returns: sensors_df (pandas DataFrame): DataFrame has MultiIndex based on the ID(s) and timestamps. """ fields = list(Sensor._fields) multi_ids, vals, meta = _records_as_lists_of_tuples(pickle_file, fields, ids=sensor_ids) id_labels = [meta[col]['heading'] for col in ['id', 'time']] data_labels = _data_labels_from_meta(meta, id_labels) sensors_df = _create_multi_index_df(id_labels, multi_ids, data_labels, vals) return sensors_df def create_cycles_df(dict_or_pickle_file, device_ids=None): """Returns pandas DataFrame containing sensor ids and cycle beginning timestamps as multi-part indexes, and cycle ending times as values. Args: dict_or_pickle_file (dict or str): Must have been created with dict_from_file() or pickle_from_file() function. device_ids (Optional[list or other iterable of ints or strings]): Sensor IDs. If no argument is specified, all IDs from the first arg will be in the DataFrame. Returns: cycles_df (pandas DataFrame): DataFrame has MultiIndex based on the ID(s) and timestamps. """ multi_ids, vals, meta = _records_as_lists_of_tuples(dict_or_pickle_file, list(Cycle._fields), ids=device_ids) id_labels = [meta[col]['heading'] for col in ['id', 'cycle', 'start_time']] data_labels = _data_labels_from_meta(meta, id_labels) cycles_df = _create_multi_index_df(id_labels, multi_ids, data_labels, vals) return cycles_df def cycles_df_from_text(raw_file, cycle=None, states=None, postal_file=None, auto='cycles', id_col_heading=None, cycle_col_heading=None, encoding='UTF-8', delimiter=None, quote=None, cols_to_ignore=None, meta=False, device_ids=None): cycles = dict_from_file(raw_file, cycle=cycle, states=states, postal_file=postal_file, auto=auto, id_col_heading=id_col_heading, cycle_col_heading=cycle_col_heading, encoding=encoding, delimiter=delimiter, quote=quote, cols_to_ignore=cols_to_ignore, meta=meta) return create_cycles_df(cycles, device_ids=device_ids) def cycles_df_from_bin(pickle_file, device_ids=None): """Returns pandas DataFrame containing sensor ids and cycle beginning timestamps as multi-part indexes, and cycle ending times as values. Args: pickle_file (dict or str): Must have been created with dict_from_file() or pickle_from_file() function. device_ids (Optional[list or other iterable of ints or strings]): Sensor IDs. If no argument is specified, all IDs from the first arg will be in the DataFrame. Returns: cycles_df (pandas DataFrame): DataFrame has MultiIndex based on the ID(s) and timestamps. """ multi_ids, vals, meta = _records_as_lists_of_tuples(pickle_file, list(Cycle._fields), ids=device_ids) id_labels = [meta[col]['heading'] for col in ['id', 'cycle', 'start_time']] data_labels = _data_labels_from_meta(meta, id_labels) cycles_df = _create_multi_index_df(id_labels, multi_ids, data_labels, vals) return cycles_df def create_geospatial_df(dict_or_pickle_file, location_ids=None): """Returns pandas DataFrame containing records with location IDs and time stamps as multi-part indexes and outdoor temperatures as values. Args: dict_or_pickle_file (dict or str): Must have been created with dict_from_file() or pickle_from_file() function. location_ids (Optional[list or other iterable of ints or strings]): Location IDs. If no argument is specified, all IDs from the first arg will be in the DataFrame. Returns: geospatial_df (pandas DataFrame): DataFrame has MultiIndex based on the ID(s) and timestamps. """ fields = list(Geospatial._fields) multi_ids, vals, meta = _records_as_lists_of_tuples(dict_or_pickle_file, fields, ids=location_ids) id_labels = [meta[col]['heading'] for col in ['id', 'time']] data_labels = _data_labels_from_meta(meta, id_labels) geospatial_df = _create_multi_index_df(id_labels, multi_ids, data_labels, vals) return geospatial_df def geospatial_df_from_text(raw_file, states=None, sensors_file=None, postal_file=None, auto='geospatial', id_col_heading=None, encoding='UTF-8', delimiter=None, quote=None, cols_to_ignore=None, meta=False, location_ids=None): geos = dict_from_file(raw_file, states=states, sensors_file=sensors_file, postal_file=postal_file, auto=auto, id_col_heading=id_col_heading, encoding=encoding, delimiter=delimiter, quote=quote, cols_to_ignore=cols_to_ignore, meta=meta) return create_geospatial_df(geos, locations_ids=location_ids) def geospatial_df_from_bin(pickle_file, location_ids=None): """Returns pandas DataFrame containing records with location IDs and time stamps as multi-part indexes and outdoor temperatures as values. Args: pickle_file (str): Must have been created with pickle_from_file() function. location_ids (Optional[list or other iterable of ints or strings]): Location IDs. If no argument is specified, all IDs from the first arg will be in the DataFrame. Returns: geospatial_df (pandas DataFrame): DataFrame has MultiIndex based on the ID(s) and timestamps. """ fields = list(Geospatial._fields) multi_ids, vals, meta = _records_as_lists_of_tuples(pickle_file, fields, ids=location_ids) id_labels = [meta[col]['heading'] for col in ['id', 'time']] data_labels = _data_labels_from_meta(meta, id_labels) geospatial_df = _create_multi_index_df(id_labels, multi_ids, data_labels, vals) return geospatial_df def _records_as_lists_of_tuples(dict_or_pickle_file, fields, ids=None): """Returns tuple containing 1) a list of named tuples containing sensor (or outdoor location) ids and timestamps and 2) a list of either indoor (or outdoor) temperatures, or the ending time of a cycle, based on input of a pickle file containing a dict. """ records = {} if isinstance(dict_or_pickle_file, dict): records = dict_or_pickle_file['records'] meta = dict_or_pickle_file['cols_meta'] else: try: with open(dict_or_pickle_file, 'rb') as cp: container = pickle.load(cp) records = container['records'] meta = container['cols_meta'] except ValueError: print('The first argument must be a pickle file or dict.') if ids is not None: for record_key in list(records.keys()): # Discard record if it is not among the desired ids. if getattr(record_key, fields[0]) not in ids: records.pop(record_key, None) multi_ids, vals = _multi_ids_and_data_vals(records, fields) return multi_ids, vals, meta def _data_labels_from_meta(meta, id_labels): sorted_meta = _sort_meta_in_col_order(meta) data_labels = [meta[col]['heading'] for col in list(sorted_meta)[len(id_labels):]] return data_labels def random_record(dict_or_pickle_file, value_only=False): """Returns a randomly chosen key-value pair from a dict or pickle file.""" records = {} if isinstance(dict_or_pickle_file, dict): records = dict_or_pickle_file['records'] else: try: with open(dict_or_pickle_file, 'rb') as cp: container = pickle.load(cp) records = container['records'] except ValueError: print('The first argument must be a pickle file or dict.') copied_keys = list(records.keys()) random_record_key = _random_record_key(copied_keys) if value_only: return records[random_record_key] else: return random_record_key, records[random_record_key] def _random_record_key(keys): try: random_record_key = random.choice(keys) except IndexError: print('No records in the dict or pickle file.') else: return random_record_key def _multi_ids_and_data_vals(records, fields): """Returns tuple containing 1) a list of named tuples containing ids and timestamps (and cycle modes if applicable) and 2) a list of either temperatures or cycle ending times, based on items (records) in a dict. """ multi_ids = [] vals = [] for k, v in records.items(): ids = tuple(getattr(k, f) for f in fields) multi_ids.append(ids) vals.append(v) return multi_ids, vals def _create_multi_index_df(multiindex_names, multi_ids, column_names, values): """Returns MultiIndex pandas dataframe in which the index columns are for an id and timestamp and the value is for a temperature or a timestamp indicating the end of a cycle. """ multiindex_columns = tuple(multiindex_names) multicols = pd.MultiIndex.from_tuples(multi_ids, names=multiindex_columns) df = pd.DataFrame(values, index=multicols, columns=column_names) df.sort_index(inplace=True, sort_remaining=True) return df
{ "repo_name": "nickpowersys/CaaR", "path": "caar/history.py", "copies": "1", "size": "12592", "license": "bsd-3-clause", "hash": -2693026809062823000, "line_mean": 42.8745644599, "line_max": 172, "alpha_frac": 0.6194409149, "autogenerated": false, "ratio": 3.9923906150919466, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5111831529991946, "avg_score": null, "num_lines": null }