datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-06 00:37:09
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-06 00:34:34
trending_score
float64
0
40
card
large_stringlengths
31
1.01M
Yuto2007/scFoundationEmbeddings_Detailed_Clusters
Yuto2007
2025-06-03T15:14:48Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T13:48:37Z
null
--- dataset_info: features: - name: Detailed_Cluster_names dtype: string - name: input_ids sequence: float32 - name: labels dtype: int64 splits: - name: train num_bytes: 18877493822 num_examples: 1533093 - name: test num_bytes: 2359689710 num_examples: 191637 - name: validation num_bytes: 2359691130 num_examples: 191637 download_size: 24771881770 dataset_size: 23596874662 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
VGraf/self-talk_gpt3.5_gpt4o_prefpairs_with_Meta-Llama-3.1-8B-Instruct_chosen
VGraf
2025-06-03T15:11:06Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:10:54Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 24629 num_examples: 2 download_size: 25672 dataset_size: 24629 configs: - config_name: default data_files: - split: train path: data/train-* ---
cobordism/LC_train_3_no_percep
cobordism
2025-06-03T15:05:50Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:05:47Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: image dtype: image splits: - name: train num_bytes: 22820687.0 num_examples: 999 download_size: 21800134 dataset_size: 22820687.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
thomas-kuntz/MNLP_M2_dpo_dataset
thomas-kuntz
2025-06-03T14:54:23Z
57
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-26T15:17:34Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 3777155.9881329113 num_examples: 1011 - name: test num_bytes: 945223.0118670886 num_examples: 253 download_size: 2440962 dataset_size: 4722379.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
LivingOptics/hyperspectral-grapes
LivingOptics
2025-06-03T14:48:38Z
37
0
[ "language:en", "license:mit", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-01-23T09:22:15Z
null
--- license: mit language: - en size_categories: - n<1K --- # Non-contact sugar estimation with hyperpsectral data ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66aa0ad8f46d069c6339c72c/oVtV8fWMlXljp9BKQEaGq.png) ## Access the data You can now access this dataset via the [Living Optics Cloud Portal](https://cloud.livingoptics.com/shared-resources?file=data/annotated-datasets/Grapes-Dataset.zip) ## Motivation ### Precision viticulture and adaptive harvesting Wine quality is heavily dependent on the grape maturity at harvest and can decline by 10\% in a week. To maximise quality, the harvest time of grape berries should be optimised for - **sugar levels**, usually measured as total soluble solids (TSS) or Brix - berry acidity, often expressed as pH and titratable acidity (TA); - concentrations of the main organic acids in the berry, such as tartaric and malic acid; and for red varieties anthocyanin and - total phenol concentrations. These values are typically analysed using wet chemistry procedures on periodically sampled berries one to three weeks before harvest. These analytical methods are **destructive, require time-consuming berry sampling, as well as sample preparation in most instances**. ### Why Hyperspectral imaging? Hyperspectral imaging offers a method for non-destructive, high-throughput testing of grape berries. These measurements require less specialised labour, no reagents and can have relatively low cost per analysis. Hyperspectral imagers, combined with statistical modelling techniques, have been shown to accurately predict grape parameters in a non-destructive manner for table and wine grapes using methods such as partial least squares regression analysis (PLSA). Living Optics are developing pioneering hyperspectral cameras for the mass market. Our mission is to enable the next generation of computer vision through Spatial Spectral Information. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66aa0ad8f46d069c6339c72c/st56aYWI5Lj1-2oqQzerj.png) > This is a notebook showing how hyperspectral data, collected with the Living Optics camera, can be paired with statistical analysis to train a regressor for extracting grape parameters. ## Method Individual grapes were extracted from six boxes of white table grapes (Agrimessina, Italy). These 300 individual table grapes were imaged using a custom lighting rig. The Living Optics camera was mounted on a downwards facing tripod directly above the sample to achieve a (45/0◦) imaging geometry. Twelve grape samples were placed on a black PLA tray per imaging round shown in Figure 9(b). Additionally, a white reference was collected by imaging a sheet of Tyvek in place of the tray. Using an objective lens focal length of 18 mm, approximately 150 sampling points were obtained per grape on average. After imaging, 3-4 drops of juice from each grape ( 0.2ml) were extracted and measured with a handheld BRIX refractometer (AS-Q6, Aicevoos, China). The error of the instrument is given as ±0.2 ◦Bx. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66aa0ad8f46d069c6339c72c/zjDw9CoSFP3DAFoZDd5VE.png) ## Dataset contains - 🍇 300 processed diffuse reflectance spectra of white grapes collected with the Living Optics camera - 🧑‍🔬 Paired sugar content values for each grape ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66aa0ad8f46d069c6339c72c/_zHSsU0kINePe6gtIGMFq.png) ## Citation Raw data is available by request
LivingOptics/hyperspectral-plant-virus
LivingOptics
2025-06-03T14:47:12Z
51
0
[ "language:en", "license:mit", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-29T14:11:05Z
null
--- license: mit language: - en size_categories: - n<1K --- # Super Beet Virus Classification Dataset ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66aa0ad8f46d069c6339c72c/st56aYWI5Lj1-2oqQzerj.png) ## Access the Data You can access this dataset via the [Living Optics Cloud Portal](https://cloud.livingoptics.com/shared-resources?file=data/annotated-datasets/Field-Crop-Classification-Dataset.zip). ## Motivation ### Enhancing Sugar Beet Health Monitoring Sugar beet crops are susceptible to various viral infections that can significantly impact yield and quality. Early and accurate detection of these viruses is crucial for effective disease management and crop protection. ![image/png](https://huggingface.co/datasets/LivingOptics/hyperspectral-plant-virus/resolve/main/field_crop_dataset.png) ### Leveraging Hyperspectral Imaging for Disease Classification Hyperspectral imaging provides a non-destructive and high-throughput method for detecting plant diseases by capturing detailed spectral information. This technology, combined with machine learning techniques, enables the classification of different virus types affecting sugar beet plants. ## Method The dataset comprises 97 high-resolution images of sugar beet plants, each annotated to indicate the presence of specific viral infections. A total of 146 annotations are included, covering the following classes: - **BChV (Beet Chlorosis Virus)**: 24 instances - **BMYV (Beet Mild Yellowing Virus)**: 16 instances - **BYV (Beet Yellows Virus)**: 24 instances - **Uninoculated (Healthy Plants)**: 30 instances Annotations were performed considering clear gaps between plants, ensuring accurate labeling. Some images include white reference targets to aid in spectral calibration. ## Dataset Contains - 🖼️ 97 images of sugar beet plants under various inoculation statuses - 🔖 146 annotations across 4 classes (3 virus types and healthy plants) - 🎯 Labels indicating inoculation status or reference targets - ⚠️ Note: The dataset exhibits some class imbalance ## Virus Descriptions - **Beet Chlorosis Virus (BChV)**: A polerovirus causing interveinal yellowing in sugar beet leaves. Transmitted by aphids, BChV can lead to significant yield losses if not managed properly. - **Beet Mild Yellowing Virus (BMYV)**: Another polerovirus spread by aphids, BMYV results in mild yellowing symptoms and can reduce sugar content in beets. - **Beet Yellows Virus (BYV)**: A closterovirus known for causing severe yellowing and necrosis in sugar beet leaves. BYV is considered one of the most damaging viruses affecting sugar beet crops. ## Citation Raw data is available upon request. For more information on the viruses and their impact on sugar beet crops, refer to the following resources: - [Virus Yellows - Bayer Crop Science UK](https://cropscience.bayer.co.uk/agronomy-id/diseases/sugar-beet-diseases/virus-yellows-beet) - [Disease control: Learn about Virus Yellows - NFU](https://www.nfuonline.com/updates-and-information/disease-control-learn-about-virus-yellows/) - [Beet yellows virus - Wikipedia](https://en.wikipedia.org/wiki/Beet_yellows_virus)
adamezzaim/M3_mcqa_context
adamezzaim
2025-06-03T14:39:08Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T14:38:54Z
null
--- dataset_info: features: - name: id dtype: string - name: dataset dtype: string - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: explanation dtype: string splits: - name: train num_bytes: 303770784 num_examples: 35460 download_size: 173517952 dataset_size: 303770784 configs: - config_name: default data_files: - split: train path: data/train-* ---
baogui123/test
baogui123
2025-06-03T14:36:40Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-03T14:36:40Z
null
--- license: apache-2.0 ---
CHOOSEIT/MCQA_small_alignment_1000
CHOOSEIT
2025-06-03T14:10:43Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T14:10:39Z
null
--- dataset_info: features: - name: source_dataset dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: rationale dtype: string - name: split dtype: string - name: subject dtype: string splits: - name: train num_bytes: 3391469 num_examples: 4898 - name: test num_bytes: 373739 num_examples: 1080 - name: validation num_bytes: 133973 num_examples: 346 download_size: 2391571 dataset_size: 3899181 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
anonloftune/insurance-10-facttune-mc
anonloftune
2025-06-03T13:42:16Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T13:42:13Z
null
--- dataset_info: features: - name: question dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 40642652 num_examples: 23371 - name: validation num_bytes: 4778090 num_examples: 2866 download_size: 3915129 dataset_size: 45420742 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
while0628/vqasynth_sample_spatial_new_ttt
while0628
2025-06-03T13:39:00Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "vqasynth", "remyx" ]
[]
2025-06-03T13:38:54Z
null
--- dataset_info: features: - name: image dtype: image - name: messages sequence: 'null' splits: - name: train num_bytes: 1162100.0 num_examples: 8 download_size: 1163534 dataset_size: 1162100.0 configs: - config_name: default data_files: - split: train path: data/train-* tags: - vqasynth - remyx ---
Kyleyee/train_data_Helpful_drdpo_preference
Kyleyee
2025-06-03T13:36:05Z
80
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T16:07:59Z
null
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: a_1 list: - name: content dtype: string - name: role dtype: string - name: a_2 list: - name: content dtype: string - name: role dtype: string - name: chosen_preference dtype: float64 - name: rejected_preference dtype: float64 - name: a_1_preference dtype: float64 - name: a_2_preference dtype: float64 splits: - name: train num_bytes: 69438428 num_examples: 43835 - name: test num_bytes: 3812201 num_examples: 2354 download_size: 42617495 dataset_size: 73250629 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ManTang034/so101_test
ManTang034
2025-06-03T13:32:28Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-03T13:32:11Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 10, "total_frames": 5960, "total_tasks": 1, "total_videos": 10, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Tamnemtf/SGU_BOOK
Tamnemtf
2025-06-03T13:23:10Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T13:23:06Z
null
--- dataset_info: features: - name: id dtype: string - name: description dtype: string - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 2632329 num_examples: 2252 download_size: 351845 dataset_size: 2632329 configs: - config_name: default data_files: - split: train path: data/train-* ---
youssefbelghmi/MNLP_M3_mcqa_dataset_2
youssefbelghmi
2025-06-03T13:16:38Z
44
0
[ "task_categories:multiple-choice", "task_ids:multiple-choice-qa", "annotations_creators:expert-generated", "multilinguality:monolingual", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "multiple-choice" ]
2025-06-03T11:12:01Z
null
--- annotations_creators: - expert-generated language: - en license: mit multilinguality: - monolingual size_categories: - 10K<n<100K task_categories: - multiple-choice task_ids: - multiple-choice-qa pretty_name: MNLP M3 MCQA Dataset --- # MNLP M3 MCQA Dataset The **MNLP M3 MCQA Dataset** is a carefully curated collection of **Multiple-Choice Question Answering (MCQA)** examples, unified from several academic and benchmark datasets. Developed as part of the *CS-552: Modern NLP* course at EPFL (Spring 2025), this dataset is designed for training and evaluating models on multiple-choice QA tasks, particularly in the **STEM** and general knowledge domains. ## Key Features - ~30,000 MCQA questions - 6 diverse sources: `SciQ`, `OpenBookQA`, `MathQA`, `ARC-Easy`, `ARC-Challenge`, and `MedMCQA` - Each question has exactly 4 options (A–D) and one correct answer - Covers a wide range of topics: science, technology, engineering, mathematics, and general knowledge ## Dataset Structure Each example is a dictionary with the following fields: | Field | Type | Description | |-----------|----------|---------------------------------------------------| | `dataset` | `string` | Source dataset (`sciq`, `openbookqa`, etc.) | | `id` | `string` | Unique identifier for the question | | `question`| `string` | The question text | | `choices` | `list` | List of 4 answer options (corresponding to A–D) | | `answer` | `string` | The correct option, as a letter: `"A"`, `"B"`, `"C"`, or `"D"` | ```markdown Example: ```json { "dataset": "sciq", "id": "sciq_01_00042", "question": "What does a seismograph measure?", "choices": ["Earthquakes", "Rainfall", "Sunlight", "Temperature"], "answer": "A" } ``` ## Source Datasets This dataset combines multiple high-quality MCQA sources to support research and fine-tuning in STEM education and reasoning. The full corpus contains **29,870 multiple-choice questions** from the following sources: | Source (Hugging Face) | Name | Size | Description & Role in the Dataset | | ------------------------------------------- | ------------------- | ------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `allenai/sciq` | **SciQ** | 11,679 | **Science questions** (Physics, Chemistry, Biology, Earth science). Crowdsourced with 4 answer choices and optional supporting evidence. Used to provide **well-balanced, factual STEM questions** at a middle/high-school level. | | `allenai/openbookqa` | **OpenBookQA** | 4,957 | Science exam-style questions requiring **multi-step reasoning** and use of **commonsense or external knowledge**. Contributes more **challenging** and **inference-based** questions. | | `allenai/math_qa` | **MathQA** | 5,000 | Subsample of quantitative math word problems derived from AQuA-RAT, annotated with structured answer options. Introduces **numerical reasoning** and **problem-solving** components into the dataset. | | `allenai/ai2_arc` (config: `ARC-Easy`) | **ARC-Easy** | 2,140 | Science questions at the middle school level. Useful for testing **basic STEM understanding** and **factual recall**. Filtered to retain only valid 4-choice entries. | | `allenai/ai2_arc` (config: `ARC-Challenge`) | **ARC-Challenge** | 1,094 | More difficult science questions requiring **reasoning and inference**. Widely used as a benchmark for evaluating LLMs. Also filtered for clean MCQA format compatibility. | | `openlifescienceai/medmcqa` | **MedMCQA** | 5,000 | A subsample of multiple-choice questions on **medical topics** from various exams, filtered for a single-choice format. Contains real-world and domain-specific **clinical reasoning** questions covering various medical disciplines. | ## Intended Applications and Structure This dataset is split into three parts: - `train` (~70%) — for training MCQA models - `validation` (~15%) — for tuning and monitoring performance during training - `test` (~15%) — for final evaluation on unseen questions It is suitable for multiple-choice question answering tasks, especially in the **STEM** domain (Science, Technology, Engineering, Mathematics). ## Author This dataset was created and published by [Youssef Belghmi](https://huggingface.co/youssefbelghmi) as part of the *CS-552: Modern NLP* course at EPFL (Spring 2025).
ricdomolm/lawma-reasoning-qwen4b-v0
ricdomolm
2025-06-03T13:13:34Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T13:13:06Z
null
--- dataset_info: features: - name: index dtype: int64 - name: response dtype: string splits: - name: train num_bytes: 1555621301 num_examples: 272800 download_size: 504545897 dataset_size: 1555621301 configs: - config_name: default data_files: - split: train path: data/train-* ---
anfindsen/M3_fixed_ds
anfindsen
2025-06-03T13:10:06Z
78
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-30T13:09:27Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: openr1_source dtype: string - name: id dtype: string - name: dataset dtype: string - name: choices sequence: string splits: - name: open_train num_bytes: 261175677.3129466 num_examples: 209341 - name: open_eval num_bytes: 29020628.687053423 num_examples: 23261 - name: train num_bytes: 148520607.22336814 num_examples: 99920 - name: test num_bytes: 16503445.77663187 num_examples: 11103 - name: final_train num_bytes: 150518.10557768925 num_examples: 451 - name: final_test num_bytes: 17020.894422310757 num_examples: 51 download_size: 252044861 dataset_size: 455387898.00000006 configs: - config_name: default data_files: - split: open_train path: data/open_train-* - split: open_eval path: data/open_eval-* - split: train path: data/train-* - split: test path: data/test-* - split: final_train path: data/final_train-* - split: final_test path: data/final_test-* ---
interstellarninja/atropos_salesforce_apigen
interstellarninja
2025-06-03T13:03:52Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T13:03:27Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 111375968 num_examples: 4574 download_size: 20591781 dataset_size: 111375968 configs: - config_name: default data_files: - split: train path: data/train-* ---
vietnhat/grandpa-interview-dataset
vietnhat
2025-06-03T12:35:06Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T12:34:59Z
null
--- dataset_info: features: - name: text dtype: string - name: audio dtype: audio splits: - name: train num_bytes: 2356619.0 num_examples: 9 download_size: 2168827 dataset_size: 2356619.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
albertfares/NLP4Education_filtered
albertfares
2025-06-03T12:04:36Z
37
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T13:15:39Z
null
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: num_options dtype: int64 splits: - name: train num_bytes: 978662 num_examples: 2656 download_size: 572520 dataset_size: 978662 configs: - config_name: default data_files: - split: train path: data/train-* ---
RainS/MEG-Multi-Exposure-Gradient-dataset
RainS
2025-06-03T11:42:10Z
0
0
[ "license:mit", "size_categories:1K<n<10K", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us" ]
[]
2025-06-03T08:39:45Z
null
--- license: mit --- This is a Multi-Exposure Gradient dataset for low light enhancement and also for overexposure recovery, which contains about 1000 group of photos. The contents include variety of scenes such as indoor, outdoor, sunny, rainy, cloudy, nightime, city, rural, campus and so on. There are 5 photos in each group with different exposure gradient, from low light to overexposure noted as 01 to 05. We provide two versions, one is continuous shooting data, whose contents of each group maybe a little bit different because of the moving scene, but they have more natural illumination and color. The other is post processing data, whose contents of each group are strictly same, and the exposure is adjuste by PS. You can choose one version according to your requirement, for example the continuous shooting data for unsupervised learning and the post processing data for supervised learning.
ljnlonoljpiljm/BIGstockimage-1.5M-scored-pt-one
ljnlonoljpiljm
2025-06-03T11:19:37Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T10:58:10Z
null
--- dataset_info: features: - name: id dtype: string - name: image dtype: image - name: text dtype: string - name: similarity dtype: float64 splits: - name: train num_bytes: 29323222699.0 num_examples: 750000 download_size: 29309357098 dataset_size: 29323222699.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
louisebrix/smk_only_paintings
louisebrix
2025-06-03T11:13:11Z
44
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T11:12:56Z
null
--- dataset_info: features: - name: smk_id dtype: string - name: period dtype: string - name: start_year dtype: int64 - name: title dtype: string - name: first_artist dtype: string - name: all_artists sequence: string - name: num_artists dtype: int64 - name: main_type dtype: string - name: all_types sequence: string - name: image_thumbnail dtype: string - name: gender sequence: string - name: birth_death sequence: string - name: nationality sequence: string - name: history sequence: string - name: artist_roles sequence: string - name: creator_roles sequence: string - name: num_creators dtype: int64 - name: techniques sequence: string - name: enrichment_url dtype: string - name: content_person sequence: string - name: has_text dtype: bool - name: colors sequence: string - name: geo_location dtype: string - name: entropy dtype: float64 - name: tags_en sequence: string - name: image dtype: image - name: rgb dtype: string splits: - name: train num_bytes: 237193836.69 num_examples: 1687 download_size: 232341252 dataset_size: 237193836.69 configs: - config_name: default data_files: - split: train path: data/train-* ---
sumuks/openalex
sumuks
2025-06-03T11:11:08Z
0
0
[ "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T23:57:53Z
null
--- dataset_info: - config_name: authors features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 782950242225 num_examples: 103480180 download_size: 128603695157 dataset_size: 782950242225 - config_name: concepts features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 434567730 num_examples: 65073 download_size: 149586112 dataset_size: 434567730 - config_name: domains features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 5899 num_examples: 4 download_size: 8723 dataset_size: 5899 - config_name: fields features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 56037 num_examples: 26 download_size: 21602 dataset_size: 56037 - config_name: funders features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 127287864 num_examples: 32437 download_size: 27402892 dataset_size: 127287864 - config_name: institutions features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 2247783574 num_examples: 114883 download_size: 391692914 dataset_size: 2247783574 - config_name: publishers features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 35165382 num_examples: 10741 download_size: 7180922 dataset_size: 35165382 - config_name: sources features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 4985902135 num_examples: 260798 download_size: 767043697 dataset_size: 4985902135 - config_name: subfields features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 986219 num_examples: 252 download_size: 245766 dataset_size: 986219 - config_name: topics features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 29540660 num_examples: 4516 download_size: 8240326 dataset_size: 29540660 - config_name: works features: - name: id dtype: string - name: data dtype: string - name: updated_date dtype: string splits: - name: train num_bytes: 47184276960 num_examples: 2322509 - name: updated_2025_05_28 num_bytes: 44222267882 num_examples: 2634576 - name: updated_2025_05_27 num_bytes: 33156479642 num_examples: 2099881 download_size: 31002445366 dataset_size: 124563024484 configs: - config_name: authors data_files: - split: train path: authors/train-* - config_name: concepts data_files: - split: train path: concepts/train-* - config_name: domains data_files: - split: train path: domains/train-* - config_name: fields data_files: - split: train path: fields/train-* - config_name: funders data_files: - split: train path: funders/train-* - config_name: institutions data_files: - split: train path: institutions/train-* - config_name: publishers data_files: - split: train path: publishers/train-* - config_name: sources data_files: - split: train path: sources/train-* - config_name: subfields data_files: - split: train path: subfields/train-* - config_name: topics data_files: - split: train path: topics/train-* - config_name: works data_files: - split: train path: works/train-* - split: updated_2025_05_28 path: works/updated_2025_05_28-* - split: updated_2025_05_27 path: works/updated_2025_05_27-* ---
jaeyong2/Reason-Qwen3-06B-En-3
jaeyong2
2025-06-03T11:09:11Z
203
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-25T05:46:08Z
null
--- dataset_info: features: - name: content dtype: string - name: response sequence: string splits: - name: train num_bytes: 2235927107 num_examples: 18000 download_size: 738754934 dataset_size: 2235927107 configs: - config_name: default data_files: - split: train path: data/train-* ---
hassno/synth_cv_parser_faker
hassno
2025-06-03T10:53:32Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T10:52:56Z
null
--- dataset_info: features: - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 18326097.0 num_examples: 9000 - name: test num_bytes: 2036233.0 num_examples: 1000 download_size: 10180009 dataset_size: 20362330.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
haraouikouceil/doc
haraouikouceil
2025-06-03T10:33:27Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T10:33:22Z
null
--- dataset_info: features: - name: prompt dtype: string splits: - name: train num_bytes: 31117380 num_examples: 71452 download_size: 2843773 dataset_size: 31117380 configs: - config_name: default data_files: - split: train path: data/train-* ---
davanstrien/dataset_cards_with_metadata
davanstrien
2025-06-03T10:20:08Z
422
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-17T09:48:47Z
null
--- dataset_info: features: - name: datasetId dtype: large_string - name: author dtype: large_string - name: last_modified dtype: large_string - name: downloads dtype: int64 - name: likes dtype: int64 - name: tags large_list: large_string - name: task_categories large_list: large_string - name: createdAt dtype: large_string - name: trending_score dtype: float64 - name: card dtype: large_string splits: - name: train num_bytes: 110530629 num_examples: 32315 download_size: 30124925 dataset_size: 110530629 configs: - config_name: default data_files: - split: train path: data/train-* ---
EQX55/test_voice2
EQX55
2025-06-03T10:14:58Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T10:14:55Z
null
--- dataset_info: features: - name: audio dtype: audio - name: text dtype: string splits: - name: train num_bytes: 17464862.0 num_examples: 26 download_size: 13153100 dataset_size: 17464862.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
gaianet/gaianet
gaianet
2025-06-03T10:14:47Z
13
1
[ "license:apache-2.0", "region:us" ]
[]
2024-05-08T04:01:05Z
null
--- license: apache-2.0 ---
daniel-dona/sparql-dataset-reasoning-test3
daniel-dona
2025-06-03T10:13:56Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T10:13:51Z
null
--- dataset_info: features: - name: qid dtype: string - name: lang dtype: string - name: nlq dtype: string - name: classes sequence: string - name: properties sequence: string - name: features sequence: string - name: sparql dtype: string - name: reasoning dtype: string splits: - name: train num_bytes: 11712015 num_examples: 2500 download_size: 961054 dataset_size: 11712015 configs: - config_name: default data_files: - split: train path: data/train-* ---
gisako/multiwoz-chat
gisako
2025-06-03T09:28:19Z
0
0
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
[ "text-generation" ]
2025-06-03T09:23:31Z
null
--- license: mit task_categories: - text-generation language: - en pretty_name: multiwoz-chat-llama-gpt size_categories: - 1K<n<10K ---
burtenshaw/testing-dedup-in-space
burtenshaw
2025-06-03T09:20:07Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T09:19:57Z
null
--- dataset_info: features: - name: id dtype: string - name: label dtype: int64 - name: text dtype: string - name: label_text dtype: string splits: - name: train num_bytes: 146629 num_examples: 2195 download_size: 72048 dataset_size: 146629 configs: - config_name: default data_files: - split: train path: data/train-* ---
yycgreentea/so100_test_v2
yycgreentea
2025-06-03T09:17:26Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-03T06:57:34Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1491, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 25, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ustc-zyt/time-r1-data
ustc-zyt
2025-06-03T09:13:46Z
0
0
[ "task_categories:time-series-forecasting", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "time-series-forecasting" ]
2025-06-03T09:01:15Z
null
--- license: apache-2.0 task_categories: - time-series-forecasting language: - en pretty_name: a size_categories: - 1K<n<10K --- # 📊 Time-R1 RL Training Dataset This dataset is used in the **Reinforcement Learning (RL)** phase of the paper: **"Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs"**. --- ## 📁 Data Format Overview The dataset is stored in **Parquet** format. Each sample includes: | Field | Type | Description | | -------------- | ------------ | ---------------------------------------------------------------------------- | | `prompt` | `list[dict]` | Natural language instruction including 96-step historical input sequence. | | `reward_model` | `dict` | Contains the `ground_truth` field – the target values for the next 96 steps. | | `data_source` | `string` | Dataset name (e.g., `"ETTh1"`). | | `ability` | `string` | Task type – here always `"TimeSeriesForecasting"`. | | `extra_info` | `dict` | Metadata including sample `index` and data `split` (e.g., `"train"`). | --- ## 🧾 Example Sample ```json { "prompt": [ { "content": "Here is the High Useful Load data of the transformer. (dataset is ETTh1)..." } ], "data_source": "ETTh1", "ability": "TimeSeriesForecasting", "reward_model": { "ground_truth": "date HUFL\n2016-07-05 00:00:00 11.989\n2016-07-05 01:00:00 12.525\n..." }, "extra_info": { "index": 0, "split": "train" } } ``` Each prompt contains structured temporal input (96 steps) in a language-style format. The `ground_truth` contains corresponding 96-step future targets with timestamps and values.
pepijn223/record-test
pepijn223
2025-06-03T09:08:47Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-03T09:08:43Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 2, "total_frames": 510, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 1080, 1920, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 1080, "video.width": 1920, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
StonyBrook-CVLab/ZoomLDM-demo-dataset
StonyBrook-CVLab
2025-06-03T09:07:27Z
333
0
[ "language:en", "license:apache-2.0", "size_categories:n<1K", "region:us" ]
[]
2025-05-19T10:57:35Z
null
--- license: apache-2.0 language: - en size_categories: - n<1K --- Demo dataset for our CVPR 2025 paper "ZoomLDM: Latent Diffusion Model for multi-scale image generation". We extract patches from TCGA-BRCA Whole slide images. ## Usage ```python from datasets import load_dataset ds = load_dataset("StonyBrook-CVLab/ZoomLDM-demo-dataset", name="5x", trust_remote_code=True, split='train') print(np.array(ds[0]['ssl_feat']).shape) >>> (1024, 16, 16) ``` ## Citations ```bibtex @InProceedings{Yellapragada_2025_CVPR, author = {Yellapragada, Srikar and Graikos, Alexandros and Triaridis, Kostas and Prasanna, Prateek and Gupta, Rajarsi and Saltz, Joel and Samaras, Dimitris}, title = {ZoomLDM: Latent Diffusion Model for Multi-scale Image Generation}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {23453-23463} } ``` ``` @article{lingle2016cancer, title={The cancer genome atlas breast invasive carcinoma collection (TCGA-BRCA)}, author={Lingle, Wilma and Erickson, Bradley J and Zuley, Margarita L and Jarosz, Rose and Bonaccio, Ermelinda and Filippini, Joe and Net, Jose M and Levi, Len and Morris, Elizabeth A and Figler, Gloria G and others}, year={2016}, publisher={The Cancer Imaging Archive} } ```
3sara/colpali_italian_documents
3sara
2025-06-03T09:06:53Z
129
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-29T17:04:02Z
null
--- dataset_info: features: - name: image dtype: image - name: domanda1 dtype: string - name: risposta1 dtype: string - name: domanda2 dtype: string - name: risposta2 dtype: string - name: domanda3 dtype: string - name: risposta3 dtype: string - name: query_generica dtype: string - name: query_specifica dtype: string - name: query_visuale dtype: string - name: documento dtype: string - name: anno dtype: string splits: - name: train num_bytes: 1465913549.0 num_examples: 934 download_size: 1464198933 dataset_size: 1465913549.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
imdatta0/aime
imdatta0
2025-06-03T09:05:30Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T09:05:19Z
null
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: solution dtype: string splits: - name: aime_2025 num_bytes: 16342 num_examples: 30 - name: aime_2024 num_bytes: 136649 num_examples: 30 download_size: 93497 dataset_size: 152991 configs: - config_name: default data_files: - split: aime_2025 path: data/aime_2025-* - split: aime_2024 path: data/aime_2024-* ---
Nitish906099/dream11-eng-wi-_7
Nitish906099
2025-06-03T08:58:46Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:58:44Z
null
--- dataset_info: features: - name: Name dtype: string - name: Mat dtype: int64 - name: Inns dtype: int64 - name: 'NO' dtype: float64 - name: Runs dtype: int64 - name: Ball dtype: int64 - name: Avg dtype: float64 - name: SR dtype: float64 - name: HS dtype: int64 - name: 100s dtype: float64 - name: 50s dtype: float64 - name: 0s dtype: float64 - name: 6s dtype: float64 - name: 4s dtype: float64 - name: SR.1 dtype: float64 - name: Dream Team dtype: int64 - name: Tot Pts dtype: int64 - name: Bat Pts dtype: int64 - name: Bowl Pts dtype: float64 - name: Field Pts dtype: float64 - name: Pace Bowl dtype: float64 - name: Spin Bowl dtype: float64 - name: RHB dtype: float64 - name: LHB dtype: float64 - name: Match Type dtype: string splits: - name: train num_bytes: 1027 num_examples: 5 download_size: 10323 dataset_size: 1027 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "dream11-eng-wi-_7" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Nitish906099/dream11-eng-wi-___
Nitish906099
2025-06-03T08:58:32Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:58:31Z
null
--- dataset_info: features: - name: Player dtype: string - name: Avg Fpts dtype: float64 - name: Runs dtype: int64 - name: WK dtype: int64 - name: RR1 dtype: int64 - name: RR2 dtype: int64 - name: RR3 dtype: int64 - name: RR4 dtype: int64 - name: RR5 dtype: int64 - name: RW1 dtype: int64 - name: RW2 dtype: int64 - name: RW3 dtype: int64 - name: RW4 dtype: int64 - name: RW5 dtype: int64 splits: - name: train num_bytes: 622 num_examples: 5 download_size: 5893 dataset_size: 622 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "dream11-eng-wi-___" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Nitish906099/dream11-eng-wi-__
Nitish906099
2025-06-03T08:58:30Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:58:29Z
null
--- dataset_info: features: - name: Player Name dtype: string - name: Team dtype: string - name: Bowling Style dtype: string - name: Avg Fpts dtype: int64 - name: Avg Fpts Bowling 1st dtype: string - name: Avg Fpts Bowling 2nd dtype: string - name: Avg Fpts vs Opposition dtype: string - name: Avg Fpts at Venue dtype: string - name: Wkts dtype: int64 - name: PP Wkts dtype: int64 - name: Death Wkts dtype: int64 - name: Overs dtype: float64 - name: Bowled PP dtype: string - name: Bowled Death dtype: string splits: - name: train num_bytes: 571 num_examples: 5 download_size: 6095 dataset_size: 571 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "dream11-eng-wi-__" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
EQUES/YakugakuQA
EQUES
2025-06-03T08:46:36Z
68
0
[ "task_categories:question-answering", "language:ja", "license:cc-by-sa-4.0", "arxiv:2505.16661", "region:us" ]
[ "question-answering" ]
2025-04-26T03:33:34Z
null
--- license: cc-by-sa-4.0 task_categories: - question-answering language: - ja viewer: true columns: - name: problem_id type: string - name: problem_text type: string - name: choices type: list[string] - name: text_only type: bool - name: answer type: list[string] - name: comment type: string - name: num_images type: int --- # YakugakuQA <!-- Provide a quick summary of the dataset. --> YakugakuQA is a question answering dataset, consisting of 13 years (2012-2024) of past questions and answers from the Japanese National License Examination for Pharmacists. It contains over 4K pairs of questions, answers, and commentaries. **2025-5-29: Leaderboard added.** **2025-2-17: Image data added.** **2024-12-10: Dataset release.** ## Leaderboard 3-shot Accuracy (%) || [YakugakuQA](https://huggingface.co/datasets/EQUES/YakugakuQA/) | [IgakuQA](https://github.com/jungokasai/IgakuQA)| | ---- | ---- | ---- | | o1-preview | 87.9 | | | GPT-4o | 83.6 | 86.6 | | [pfnet/Preferred-MedLLM-Qwen-72B](https://huggingface.co/pfnet/Preferred-MedLLM-Qwen-72B) | 77.2 | | | [Qwen/Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | 73.6 | | | [google/medgemma-27b-text-it](https://huggingface.co/google/medgemma-27b-text-it) | 62.2 (*)| | | [EQUES/JPharmatron-7B](https://huggingface.co/EQUES/JPharmatron-7B) | 62.0 | 64.7 | | [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) (**) | 59.9 | | (*) Several issues in instruction-following, e.g., think and reason too much to reach token limit. (**) enable_thinking=False for fair evaluation. ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** EQUES Inc. - **Funded by [optional]:** [GENIAC Project](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html) - **Shared by [optional]:** - **Language(s) (NLP):** Japanese - **License:** cc-by-sa-4.0 ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> YakugakuQA is intended to be used as a benchmark for evaluating the knowledge of large language models (LLMs) in the field of pharmacy. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> Any usage except above. ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> YakugakuQA consists of two files: `data.jsonl`, which contains the questions, answers, and commentaries, and `metadata.jsonl`, which holds supplementary information about the question categories and additional details related to the answers. ### data.jsonl - "problem_id" : unique ID, represented by a six-digit integer. The higher three digits indicate the exam number, while the lower three digits represent the question number within that specific exam. - "problem_text" : problem statement. - "choices" : choices corresponding to each question. Note that the Japanese National License Examination for Pharmacists is a multiple-choice format examination. - "text_only" : whether the question includes images or tables. The corresponding images or tables are not included in this dataset, even if `text_only` is marked as `false`. - "answer" : list of indices of the correct choices. Note the following points: - the choices are 1-indexed. - multiple choices may be included, depending on the question format. - "解なし" indicates there is no correct choice. The reason for this is documented in `metadata.jsonl` in most cases. - "comment" : commentary text. - "num_images" : number of images included in the question. ### metadata.jsonl - "problem_id" : see above. - "category" : question caterogy. One of the `["Physics", "Chemistry", "Biology", "Hygiene", "Pharmacology", "Pharmacy", "Pathology", "Law", "Practice"]`. - "note" : additional information about the question. ### images The image filenames follow the format: `problem_id_{image_id}.png` ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> YakugakuQA aims to provide a Japanese-language evaluation benchmark for assessing the domain knowledge of LLMs. ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> All questions, answers and commentaries for the target years have been collected. The parsing process has been performed automatically. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> All question, answers, and commentaries have been obtained from [yakugaku lab](https://yakugakulab.info/). All metadata has been obtained from the website of the Ministry of Health, Labour and Welfare. It should be noted that the original questions and answers are also sourced from materials published by the Ministry of Health, Labour and Welfare. ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ``` @misc{sukeda2025japaneselanguagemodelnew, title={A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP}, author={Issey Sukeda and Takuro Fujii and Kosei Buma and Shunsuke Sasaki and Shinnosuke Ono}, year={2025}, eprint={2505.16661}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.16661}, } ``` ## Contributions Thanks to [@shinnosukeono](https://github.com/shinnosukeono) for adding this dataset. ## Acknowledgement 本データセットは、経済産業省及び国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)による生成AI開発力強化プロジェクト「GENIAC」により支援を受けた成果の一部である。
infinite-dataset-hub/LegalCasePrecedent
infinite-dataset-hub
2025-06-03T08:44:58Z
0
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-06-03T08:44:57Z
null
--- license: mit tags: - infinite-dataset-hub - synthetic --- # LegalCasePrecedent tags: legal, precedent, classification _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'LegalCasePrecedent' dataset contains a collection of legal case documents which have been previously adjudicated. Each case document has been labeled with a classification that represents the type of legal precedent it set. This dataset is aimed at helping machine learning practitioners train models to automatically classify legal cases based on their precedent value. **CSV Content Preview:** ``` case_id,document_text,label 001,"In the case of Smith v. Jones, the court held that electronic communication can constitute a breach of contract.",ContractBreach 002,"In the landmark case of Brown v. Board of Education, the Supreme Court declared state laws establishing separate public schools for black and white students to be unconstitutional.",EducationRights 003,"In the matter of Doe v. City, the precedent was set that municipalities are not immune from lawsuits related to traffic violations.",TrafficLaw 004,"In the case of Roe v. Wade, the court recognized a woman's constitutional right to an abortion.",ReproductiveRights 005,"The ruling in Miller v. Alabama established that mandatory life sentences without parole for juveniles violate the Eighth Amendment.",JuvenileJustice ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'legal': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=legal&dataset=LegalCasePrecedent&tags=legal,+precedent,+classification - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
clairedhx/edu3-clinical-fr-mesh-4
clairedhx
2025-06-03T08:35:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:35:51Z
null
--- dataset_info: features: - name: article_id dtype: string - name: article_text dtype: string - name: document_type dtype: string - name: domain dtype: string - name: language dtype: string - name: language_score dtype: float32 - name: detected_entities list: - name: label dtype: string - name: mesh_id dtype: string - name: term dtype: string - name: mesh_from_gliner sequence: string - name: pubmed_mesh sequence: string - name: mesh_clean sequence: string - name: icd10_codes sequence: string splits: - name: train num_bytes: 690563 num_examples: 309 download_size: 342375 dataset_size: 690563 configs: - config_name: default data_files: - split: train path: data/train-* ---
Gusanidas/countdown-tasks-dataset-med-vl5
Gusanidas
2025-06-03T08:35:12Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:35:09Z
null
--- dataset_info: features: - name: numbers sequence: int64 - name: target dtype: int64 - name: solution dtype: string - name: attempts dtype: int64 - name: tag dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 28045 num_examples: 256 download_size: 11867 dataset_size: 28045 configs: - config_name: default data_files: - split: train path: data/train-* ---
Ktzoras/shipping_features
Ktzoras
2025-06-03T08:32:19Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:08:58Z
null
--- dataset_info: features: - name: link dtype: string - name: date dtype: timestamp[ns] - name: title dtype: string - name: content dtype: string - name: led_summ dtype: string - name: bart_summ dtype: string - name: impact_idrbfe dtype: int64 - name: sen_emb sequence: float64 - name: sen_emb_mean sequence: float64 - name: sen_emb_max sequence: float64 - name: sen_emb_mix sequence: float64 - name: sen_emb_sum sequence: float64 - name: sen_emb_concat sequence: float64 - name: sen_emb_mix2 sequence: float64 - name: full_emb sequence: float64 - name: pr_en_vessel_type_fe dtype: int64 - name: pr_en_size_of_vessel_idfe dtype: int64 - name: pr_en_vessel_type_idrbfe dtype: int64 - name: pr_en_vessel_type_rag dtype: int64 - name: pr_en_vessel_type_idfe dtype: int64 - name: pr_en_route_idrbfe dtype: int64 - name: pr_en_route_fe dtype: int64 - name: pr_en_size_of_vessel_rag dtype: int64 - name: pr_en_size_of_vessel_fe dtype: int64 - name: pr_en_size_of_vessel_idrbfe dtype: int64 - name: pr_en_impact_idfe dtype: int64 - name: pr_en_route_rag dtype: int64 - name: pr_en_route_idfe dtype: int64 - name: pr_en_scale_idfe dtype: int64 - name: pr_en_duration_fe dtype: int64 - name: pr_en_duration_idrbfe dtype: int64 - name: pr_en_scale_fe dtype: int64 - name: pr_en_duration_rag dtype: int64 - name: pr_en_scale_idrbfe dtype: int64 - name: pr_en_impact_rag dtype: int64 - name: pr_en_scale_rag dtype: int64 - name: pr_en_impact_fe dtype: int64 - name: pr_en_impact_idrbfe dtype: int64 - name: pr_en_duration_idfe dtype: int64 - name: pr_en_impact_size_fe dtype: int64 - name: pr_en_impact_size_idrbfe dtype: int64 - name: pr_en_impact_size_idfe dtype: int64 - name: pr_en_impact_size_rag dtype: int64 splits: - name: train num_bytes: 2182756728 num_examples: 40013 download_size: 1719038846 dataset_size: 2182756728 configs: - config_name: default data_files: - split: train path: data/train-* ---
LLM360/guru_RL
LLM360
2025-06-03T08:26:44Z
0
0
[ "task_categories:text2text-generation", "task_categories:text-generation", "task_categories:table-question-answering", "task_categories:question-answering", "language:aa", "license:cc-by-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "code", "math", "reasoning", "logic", "tabular" ]
[ "text2text-generation", "text-generation", "table-question-answering", "question-answering" ]
2025-06-03T04:39:38Z
null
--- license: cc-by-2.0 task_categories: - text2text-generation - text-generation - table-question-answering - question-answering language: - aa tags: - code - math - reasoning - logic - tabular pretty_name: >- GURU: Incentivizing General Reasoning Skills with a Curated Open Reinforcement Learning Dataset size_categories: - 10K<n<100K --- # GURU: Incentivizing General Reasoning Skills with a Curated Open Reinforcement Learning Dataset ## Dataset Description **GURU** is a meticulously curated cross-domain dataset specifically designed for training large language models on complex reasoning tasks. The dataset contains 91.9K high-quality samples spanning six diverse reasoning-intensive domains, processed through a comprehensive five-stage curation pipeline to ensure both domain diversity and reward verifiability. ### Dataset Summary GURU addresses the critical need for robust cross-domain reasoning capabilities in LLMs by providing a carefully balanced collection of problems across mathematics, coding, science, logic, simulation, and tabular reasoning. Each sample has been filtered for quality and equipped with automated verification mechanisms, making it ideal for reinforcement learning applications. ### Key Features - **Cross-Domain Coverage**: Six distinct reasoning domains ensuring comprehensive skill development - **Quality Assurance**: Five-stage curation pipeline with deduplication and heuristic filtering - **Automated Verification**: Domain-specific reward functions for reliable evaluation - **Difficulty Calibration**: Samples filtered to maintain appropriate challenge levels - **RL-Ready**: Binary reward system compatible with reinforcement learning frameworks ## Dataset Structure ### Domains and Statistics | Domain | Datasets Included | Final Sample Count | Key Focus Areas | |--------|------------------|-------------------|-----------------| | **Math** | OR1, DAPO, DeepScaler | 54.4K | Competition problems, symbolic reasoning | | **Code** | LeetCode, TACO-Verified, PrimeIntellect, LiveCodeBench | 18.1K | Programming challenges, algorithm design | | **Science** | WebInstruct-Verified | 3.6K | University/PhD-level physics, chemistry, biology | | **Logic** | ARC-AGI, BARC, Custom puzzles | 6.3K | Symbolic reasoning, constraint satisfaction | | **Simulation** | Code I/O (PyEdu) | 3.7K | Code behavior prediction without execution | | **Tabular** | HiTab, MultiHierTT | 6.1K | Single and multi-table reasoning | **Total Samples**: 91.9K (filtered from 684.3K raw samples) ## Citation If you use this dataset in your research, please cite: ```bibtex ``` *This dataset card follows the Hugging Face dataset card template and provides comprehensive information about the GURU dataset structure, creation process, and intended use cases.*
Multilingual-Multimodal-NLP/MMEval
Multilingual-Multimodal-NLP
2025-06-03T08:26:06Z
0
0
[ "license:cc-by-4.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T08:26:41Z
null
--- license: cc-by-4.0 configs: - config_name: default data_files: - split: test path: data/test-* dataset_info: features: - name: lang dtype: string - name: task_id dtype: string - name: instruction dtype: string - name: image dtype: image - name: task dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: signature dtype: string - name: entry_point dtype: string splits: - name: test num_bytes: 23662583.0 num_examples: 300 download_size: 7097693 dataset_size: 23662583.0 ---
willcb/V3-wordle
willcb
2025-06-03T08:18:41Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T08:18:39Z
null
--- dataset_info: features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: completion list: - name: content dtype: string - name: role dtype: string - name: answer dtype: string - name: reward dtype: float64 - name: task dtype: string splits: - name: train num_bytes: 6585001.5 num_examples: 1000 download_size: 1592223 dataset_size: 6585001.5 configs: - config_name: default data_files: - split: train path: data/train-* ---
voidljc/cherry
voidljc
2025-06-03T08:06:28Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-03T08:06:28Z
null
--- license: apache-2.0 ---
freococo/raw_1hr_myanmar_asr_audio
freococo
2025-06-03T08:06:12Z
0
0
[ "task_categories:automatic-speech-recognition", "language:my", "license:mit", "size_categories:n<1K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "Myanmar", "Burmese", "Speech", "RawAudio", "PVTV", "NUG", "ASR" ]
[ "automatic-speech-recognition" ]
2025-06-03T07:33:08Z
null
--- license: mit pretty_name: Raw 1-Hour Burmese ASR Audio Dataset dataset_type: audio task_categories: - automatic-speech-recognition language: - my tags: - Myanmar - Burmese - Speech - RawAudio - PVTV - NUG - ASR --- # 🇲🇲 Raw 1-Hour Burmese ASR Audio Dataset A 1-hour dataset of Burmese (Myanmar language) spoken audio clips with transcripts, curated from official public-service media broadcasts by **PVTV Myanmar** — the media voice of Myanmar’s National Unity Government (NUG). This dataset is intended for automatic speech recognition (ASR) and Burmese speech-processing research. ➡️ **Author**: [freococo](https://huggingface.co/freococo) ➡️ **License**: MIT ➡️ **Language**: Burmese (`my`) --- ## 📦 Dataset Summary - **Duration**: ~1 hour - **Chunks**: Short utterances (0.84s to 25.66s) - **Total Samples**: 583 - **Audio Format**: `.mp3` mono files - **Transcription Source**: Aligned manually using `.srt` files - **Structure**: `file_name`, `transcript`, `duration_seconds` The dataset was created entirely from public content with no modification or noise reduction applied. --- ## ⚠️ Data Quality Notes - This dataset contains **raw speech audio** extracted from public media without denoising or filtering. - Some chunks contain **background music**, instrumental intros/outros, or ambient reverb. - Transcripts were manually aligned via subtitle files (`.srt`) and are mostly accurate. - Estimated transcription error rate: **1–9%**, due to: - Minor typos or spacing issues in Burmese script - Occasional missing particles or honorifics These conditions reflect real-world media audio and are left untouched to improve robustness in training and evaluation. --- ## 💬 Motivation I created this dataset because I'm crazy about languages — especially Myanmar language technology. I noticed a severe shortage of public, modern Burmese audio datasets for speech recognition and wanted to help fix that. This project is fully self-initiated and unfunded — no grants, sponsorships, or institutional backing. Just passion, time, and a lot of cleaning 😄 If you find it helpful, let me know — I’d love to collaborate or help with related research! --- ## 🎙️ Source Acknowledgement All audio was derived from **PVTV Myanmar** — a public voice media channel established by Myanmar’s National Unity Government (NUG). Their mission is to amplify the people's voice in pursuit of freedom, justice, and federal democracy. > ⚠️ This dataset contains raw audio, including background music or ambiance. It is **not denoised** or processed — intended to reflect real-world conditions. The original public content remains available on [PVTV’s YouTube channel](https://www.youtube.com/@PVTVMyanmar). --- ## 🗂️ Dataset Structure Each row in `metadata.csv` includes: | Column | Description | |-------------------|----------------------------------------| | `file_name` | Relative path to audio file (e.g., `audio/my_audio_001.mp3`) | | `transcript` | Burmese-language transcription | | `duration_seconds`| Duration of the audio file in seconds | The audio files are mono `.mp3` files stored in the `audio/` folder. --- ## 🌟 In Honor of the Voices Behind the Revolution This dataset would not exist without the tireless, fearless voices of **PVTV Myanmar** — 🎙️ the journalists who speak truth, ✍️ the editors who shape it, 📢 and the citizens who carry it forward. They speak not from studios, but from shadows, not for fame, but for freedom. Their words echo through uncertainty, yet land on ears yearning for light. > **This dataset is only a shadow of their work — > the real heroes are the ones who dare to speak when silence is safer.** To the PVTV media team and all those risking safety to tell the truth: **Your voice is our history. Your courage is our future.** 🇲🇲🕊️ *Long live the Spring Revolution.* --- ## 🔌 How to Load in Python ```python from datasets import load_dataset, Audio ds = load_dataset("freococo/raw_1hr_myanmar_asr_audio") ds = ds.cast_column("file_name", Audio()) ds[0] ``` ## 📚 Citation If you use this dataset in your research or product, please cite it: ``` @dataset{freococo_myanmar_asr_2025, title = {Raw 1-Hour Myanmar ASR Audio Dataset}, author = {freococo}, year = {2025}, url = {https://huggingface.co/datasets/freococo/raw_1hr_myanmar_asr_audio}, note = {Curated from PVTV Myanmar public media, licensed under MIT} } ```
javierbarbaesparcia/spanish_legal_ner_non_annotated
javierbarbaesparcia
2025-06-03T07:50:44Z
59
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:argilla", "region:us", "rlfh", "argilla", "human-feedback" ]
[]
2025-05-11T20:07:18Z
null
--- tags: - rlfh - argilla - human-feedback --- # Dataset Card for spanish_legal_ner_non_annotated This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets). ## Using this dataset with Argilla To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.Dataset.from_hub("javierbarbaesparcia/spanish_legal_ner_non_annotated", settings="auto") ``` This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation. ## Using this dataset with `datasets` To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset("javierbarbaesparcia/spanish_legal_ner_non_annotated") ``` This will only load the records of the dataset, but not the Argilla settings. ## Dataset Structure This dataset repo contains: * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`. * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla. * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`. The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**. ### Fields The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset. | Field Name | Title | Type | Required | | ---------- | ----- | ---- | -------- | | law_cont | law_cont | text | True | ### Questions The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking. | Question Name | Title | Type | Required | Description | Values/Labels | | ------------- | ----- | ---- | -------- | ----------- | ------------- | | label | label | span | True | N/A | ['PERSON', 'ORG', 'LOC', 'DATE', 'REF'] | | label_multi | label_multi | multi_label_selection | True | N/A | ['RIGHT', 'DUTY', 'SANC'] | <!-- check length of metadata properties --> ### Metadata The **metadata** is a dictionary that can be used to provide additional information about the dataset record. | Metadata Name | Title | Type | Values | Visible for Annotators | | ------------- | ----- | ---- | ------ | ---------------------- | | fecha_actualizacion | Update date | terms | - | True | | identificador | Identifier | terms | - | True | | ambito | Domain | terms | - | True | | departamento | Department | terms | - | True | | rango | Type of legislation | terms | - | True | | fecha_disposicion | Provision date | terms | - | True | | numero_oficial | Official number | terms | - | True | | titulo | Title | terms | - | True | | diario | Paper | terms | - | True | | fecha_publicacion | Publication date | terms | - | True | | diario_numero | Paper number | terms | - | True | | fecha_vigencia | Validity date | terms | - | True | | estatus_derogacion | Update date | terms | - | True | | fecha_derogacion | Repeal date | terms | - | True | | estatus_anulacion | Cancellation state | terms | - | True | | vigencia_agotada | Validity runned out | terms | - | True | | estado_consolidacion | Consolidation state | terms | - | True | | url_eli | Link | terms | - | True | | url_html_consolidada | Html link | terms | - | True | ### Data Splits The dataset contains a single split, which is `train`. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation guidelines These are some guidelines. #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
pch11/final01
pch11
2025-06-03T07:50:43Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T07:15:37Z
null
--- license: apache-2.0 dataset_info: features: - name: file_name dtype: string - name: image dtype: image - name: caption_sdxl dtype: string splits: - name: train num_bytes: 7011818.0 num_examples: 47 download_size: 7008247 dataset_size: 7011818.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
HusseinBashir/jelle
HusseinBashir
2025-06-03T07:41:33Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T07:39:21Z
null
--- dataset_info: features: - name: text dtype: string - name: audio dtype: audio splits: - name: train num_bytes: 130238452.0 num_examples: 1000 download_size: 101795874 dataset_size: 130238452.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
OnnieNLP/InformationExtractionQA
OnnieNLP
2025-06-03T07:36:25Z
150
0
[ "task_categories:question-answering", "language:ro", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-05-15T18:54:34Z
null
--- task_categories: - question-answering language: - ro ---
dbaeka/indeed-ca-scraping-fin
dbaeka
2025-06-03T07:31:39Z
35
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-13T07:16:06Z
null
--- dataset_info: features: - name: id dtype: int64 - name: job_id dtype: string - name: job_title dtype: string - name: company dtype: string - name: location dtype: string - name: url dtype: string - name: pay dtype: string - name: job_type dtype: string - name: shift_and_schedule dtype: string - name: benefits dtype: string - name: description dtype: string - name: description_html dtype: string - name: match_score dtype: int64 - name: match_reason dtype: string - name: date_scraped dtype: string - name: likelihood_score dtype: int64 - name: last_synced dtype: string - name: date_updated dtype: string splits: - name: train num_bytes: 15904548 num_examples: 1156 download_size: 7414904 dataset_size: 15904548 configs: - config_name: default data_files: - split: train path: data/train-* ---
ioveeagle/s1K-1.1_mistral_tokenized_alpaca_format
ioveeagle
2025-06-03T07:29:07Z
64
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-26T08:49:49Z
null
--- dataset_info: features: - name: solution dtype: string - name: question dtype: string - name: cot_type dtype: string - name: source_type dtype: string - name: metadata dtype: string - name: gemini_thinking_trajectory dtype: string - name: gemini_attempt dtype: string - name: deepseek_thinking_trajectory dtype: string - name: deepseek_attempt dtype: string - name: gemini_grade dtype: string - name: gemini_grade_reason dtype: string - name: deepseek_grade dtype: string - name: deepseek_grade_reason dtype: string - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 78107869 num_examples: 1000 download_size: 36679177 dataset_size: 78107869 configs: - config_name: default data_files: - split: train path: data/train-* ---
winston1214/VENUS-5K
winston1214
2025-06-03T07:21:45Z
755
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2506.00958", "region:us" ]
[]
2025-04-16T04:28:55Z
null
--- dataset_info: features: - name: channel_id dtype: string - name: video_id dtype: string - name: segment_id dtype: int32 - name: duration dtype: string - name: fps dtype: int32 - name: conversation sequence: - name: utterance_id dtype: int32 - name: speaker dtype: int32 - name: text dtype: string - name: start_time dtype: float32 - name: end_time dtype: float32 - name: words sequence: - name: word dtype: string - name: start_time dtype: float32 - name: end_time dtype: float32 - name: facial_expression sequence: - name: utt_id dtype: string - name: frame dtype: string - name: features sequence: float32 - name: body_language sequence: - name: utt_id dtype: string - name: frame dtype: string - name: features sequence: float32 - name: harmful_utterance_id sequence: int32 - name: speaker_bbox list: - name: bbox sequence: int64 - name: frame_id dtype: int64 splits: - name: train num_bytes: 70203413441 num_examples: 3923 - name: test num_bytes: 18253160963 num_examples: 996 download_size: 84263010100 dataset_size: 88456574404 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- ## Dataset Card for VENUS ### Dataset Summary Data from: Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues ``` @article{Kim2025speaking, title={Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues}, author={Youngmin Kim, Jiwan Chung, Jisoo Kim, Sunghyun Le, Sangkyu Lee, Junhyeok Ki, Cheoljong Yang, Youngjae Yu}, journal={arXiv preprint arXiv:2506.00958}, year={2025}, archivePrefix={arXiv}, eprint={2506.00958}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2506.00958} } We provide a multimodal large-scale video dataset based on nonverbal communication. Please cite our work if you find our data helpful. (**We will update citation format.**) ### Dataset Statistic | Split | Channels | Videos | Segments (10 min) | Frames (Nonverbal annotations) | Utterances | Words | |:---------------:|:--------:|:---------:|:-------:|:-------:|:----------:|:----------:| | Train |41 | 1,210 | 3,923 | ~ | ~ | | | Test | 10 | 331 | 996 | ~ | ~ | | ### Language English ### Other Version - **VENUS-1K**: <a href='https://huggingface.co/datasets/winston1214/VENUS-1K'>This link</a> - **VENUS-10K**: <a href=''>This link</a> - **VENUS-50K**: <a href=''>This link</a> - **VENUS-100K** (Full): <a href=''>This link</a> ### Data Structure Here's an overview of our dataset structure: ``` { 'channel_id': str, # YouTube channel ID 'video_id': str, # Video ID 'segment_id': int, # Segment ID within the video 'duration': str, # Total segment duration (e.g., '00:11:00 ~ 00:21:00') 'fps': int, # Frames per second 'conversation': [ # Conversation information (consisting of multiple utterances) { 'utterance_id': int, # Utterance ID 'speaker': int, # Speaker ID (represented as an integer) 'text': str, # Full utterance text 'start_time': float, # Start time of the utterance (in seconds) 'end_time': float, # End time of the utterance (in seconds) 'words': [ # Word-level information { 'word': str, # The word itself 'start_time': float, # Word-level start time 'end_time': float, # Word-level end time } ] } ], 'facial_expression': [ # Facial expression features { 'utt_id': str, # ID of the utterance this expression is aligned to 'frame': str, # Frame identifier 'features': [float], # Facial feature vector (153-dimensional) } ], 'body_language': [ # Body language features { 'utt_id': str, # ID of the utterance this body language is aligned to 'frame': str, # Frame identifier 'features': [float], # Body movement feature vector (179-dimensional) } ], 'harmful_utterance_id': [int], # List of utterance IDs identified as harmful } ``` ### Data Instances See above ### Data Fields See above ### Data Splits Data splits can be accessed as: ```python from datasets import load_dataset train_dataset = load_dataset("winston1214/VENUS-5K", split = "train") test_dataset = load_dataset("winston1214/VENUS-5K", split = "test") ``` ### Curation Rationale Full details are in the paper. ### Source Data We retrieve natural videos from YouTube and annotate the FLAME and SMPL-X parameters from EMOCAv2 and OSX. ### Initial Data Collection Full details are in the paper. ### Annotations Full details are in the paper. ### Annotation Process Full details are in the paper. ### Who are the annotators? We used an automatic annotation method, and the primary annotator was Youngmin Kim, the first author of the paper. For any questions regarding the dataset, please contact <a href='winston1214@yonsei.ac.kr'>e-mail</a> ### Considerations for Using the Data This dataset (VENUS) consists of 3D annotations of human subjects and text extracted from conversations in the videos. Please note that the dialogues are sourced from online videos and may include informal or culturally nuanced expressions. Use of this dataset should be done with care, especially in applications involving human-facing interactions. ### Licensing Information The annotations we provide are licensed under CC-BY-4.0.
winston1214/VENUS-1K
winston1214
2025-06-03T07:20:52Z
366
1
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2506.00958", "region:us" ]
[]
2025-04-14T12:58:53Z
null
--- dataset_info: features: - name: channel_id dtype: string - name: video_id dtype: string - name: segment_id dtype: int32 - name: duration dtype: string - name: fps dtype: int32 - name: conversation sequence: - name: utterance_id dtype: int32 - name: speaker dtype: int32 - name: text dtype: string - name: start_time dtype: float32 - name: end_time dtype: float32 - name: words sequence: - name: word dtype: string - name: start_time dtype: float32 - name: end_time dtype: float32 - name: facial_expression sequence: - name: utt_id dtype: string - name: frame dtype: string - name: features sequence: float32 - name: body_language sequence: - name: utt_id dtype: string - name: frame dtype: string - name: features sequence: float32 - name: harmful_utterance_id sequence: int32 - name: speaker_bbox list: - name: bbox sequence: int64 - name: frame_id dtype: int64 splits: - name: train num_bytes: 13538714571 num_examples: 800 - name: test num_bytes: 3766543145 num_examples: 200 download_size: 16484082115 dataset_size: 17305257716 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- ## Dataset Card for VENUS ### Dataset Summary Data from: Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues ``` @article{Kim2025speaking, title={Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues}, author={Youngmin Kim, Jiwan Chung, Jisoo Kim, Sunghyun Le, Sangkyu Lee, Junhyeok Ki, Cheoljong Yang, Youngjae Yu}, journal={arXiv preprint arXiv:2506.00958}, year={2025}, archivePrefix={arXiv}, eprint={2506.00958}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2506.00958} } ``` We provide a multimodal large-scale video dataset based on nonverbal communication. Please cite our work if you find our data helpful. (**We will update citation format.**) ### Dataset Statistic | Split | Channels | Videos | Segments (10 min) | Frames (Nonverbal annotations) | Utterances | Words | |:---------------:|:--------:|:---------:|:-------:|:-------:|:----------:|:----------:| | Train | 12 | 293 | 800 | ~ | ~ | % | | Test | 4 | 113 | 200 | ~ | ~ | % | ### Language English ### Other Version - **VENUS-5K**: <a href=''>This link</a> - **VENUS-10K**: <a href=''>This link</a> - **VENUS-50K**: <a href=''>This link</a> - **VENUS-100K** (Full): <a href=''>This link</a> ### Data Structure Here's an overview of our dataset structure: ``` { 'channel_id': str, # YouTube channel ID 'video_id': str, # Video ID 'segment_id': int, # Segment ID within the video 'duration': str, # Total segment duration (e.g., '00:11:00 ~ 00:21:00') 'fps': int, # Frames per second 'conversation': [ # Conversation information (consisting of multiple utterances) { 'utterance_id': int, # Utterance ID 'speaker': int, # Speaker ID (represented as an integer) 'text': str, # Full utterance text 'start_time': float, # Start time of the utterance (in seconds) 'end_time': float, # End time of the utterance (in seconds) 'words': [ # Word-level information { 'word': str, # The word itself 'start_time': float, # Word-level start time 'end_time': float, # Word-level end time } ] } ], 'facial_expression': [ # Facial expression features { 'utt_id': str, # ID of the utterance this expression is aligned to 'frame': str, # Frame identifier 'features': [float], # Facial feature vector (153-dimensional) } ], 'body_language': [ # Body language features { 'utt_id': str, # ID of the utterance this body language is aligned to 'frame': str, # Frame identifier 'features': [float], # Body movement feature vector (179-dimensional) } ], 'harmful_utterance_id': [int], # List of utterance IDs identified as harmful } ``` ### Data Instances See above ### Data Fields See above ### Data Splits Data splits can be accessed as: ```python from datasets import load_dataset train_dataset = load_dataset("winston1214/VENUS-1K", split = "train") test_dataset = load_dataset("winston1214/VENUS-1K", split = "test") ``` ### Curation Rationale Full details are in the paper. ### Source Data We retrieve natural videos from YouTube and annotate the FLAME and SMPL-X parameters from EMOCAv2 and OSX. ### Initial Data Collection Full details are in the paper. ### Annotations Full details are in the paper. ### Annotation Process Full details are in the paper. ### Who are the annotators? We used an automatic annotation method, and the primary annotator was Youngmin Kim, the first author of the paper. For any questions regarding the dataset, please contact <a href='winston1214@yonsei.ac.kr'>e-mail</a> ### Considerations for Using the Data This dataset (VENUS) consists of 3D annotations of human subjects and text extracted from conversations in the videos. Please note that the dialogues are sourced from online videos and may include informal or culturally nuanced expressions. Use of this dataset should be done with care, especially in applications involving human-facing interactions. ### Licensing Information The annotations we provide are licensed under CC-BY-4.0.
AhinsaAI/Ahinsa-nli-triplet
AhinsaAI
2025-06-03T07:08:49Z
0
0
[ "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T07:03:58Z
null
--- license: cc-by-nc-4.0 --- Great! Based on your clarification, here is an updated and **specific** `README.md` for your project focused on **fine-tuning `sentence-transformers/multilingual-mpnet-base-v2` for Hindi** using triplet loss: --- # 🇮🇳 Hindi Semantic Similarity Dataset for Multilingual MPNet Fine-tuning ## 🧠 Project Overview This project focuses on **fine-tuning the `sentence-transformers/multilingual-mpnet-base-v2` model** using Hindi-language sentence triplets. The objective is to create a robust Hindi sentence embedding model capable of semantic similarity, clustering, and retrieval tasks. --- ## 🗂 Dataset Structure The dataset is structured as **triplets** suitable for **triplet loss**: | Column | Description | | ---------- | ------------------------------------------------------------ | | `anchor` | A Hindi sentence (reference) | | `positive` | A semantically similar sentence to the anchor | | `negative` | A semantically different or contradictory sentence to anchor | ### 🔍 Sample: ```csv anchor,positive,negative "एक बुजुर्ग आदमी बर्गर तल रहा है।","एक आदमी ग्रिल पर बर्गर बना रहा है।","एक बूढ़ा आदमी कच्चा बर्गर खा रहा है।" ``` --- ## 🧪 Data Splits The cleaned dataset is split into: * `export/train.csv` – 80% * `export/dev.csv` – 10% * `export/test.csv` – 10% Each file follows the same structure (`anchor`, `positive`, `negative`). --- ## 🤖 Model & Training ### 🏷 Base Model: * [`sentence-transformers/multilingual-mpnet-base-v2`](https://huggingface.co/sentence-transformers/multilingual-mpnet-base-v2) * Supports 50+ languages, including **Hindi** ### 🧪 Objective: * **Triplet Loss** fine-tuning using sentence-transformers framework * Input triplets: `(anchor, positive, negative)` * Output: embeddings that place `anchor` closer to `positive` than to `negative` ### 🛠 Training Framework: * [Sentence-Transformers](https://www.sbert.net/) * Triplet loss with a margin (default: 0.5) * Evaluation with cosine similarity and embedding ranking --- ## 📦 How to Load You can load the dataset with Hugging Face: ```python from datasets import load_dataset dataset = load_dataset('csv', data_files={ 'train': 'export/train.csv', 'validation': 'export/dev.csv', 'test': 'export/test.csv' }) ``` Or directly with pandas: ```python import pandas as pd train = pd.read_csv("export/train.csv") ``` --- ## 💡 Use Cases * Hindi semantic search * Paraphrase mining and deduplication * Hindi text clustering * Text-based retrieval systems --- ## ⚠️ Limitations * Relatively small dataset size; more data will improve performance. * Sentence triplets are heuristic or manually generated, not crowdsourced. * May not cover complex linguistic phenomena or dialectal variations. --- ## 📚 Citation ``` @dataset{, title = {Hindi Triplet Dataset for Multilingual MPNet Fine-tuning}, author = {Your Name}, year = {2025}, url = {https://github.com/yourusername/hindi-triplet-mpnet} } ``` --- ## 📬 Contact For questions, contributions, or feedback, contact: 📧 `your.email@example.com` 🐙 GitHub: [@yourusername](https://github.com/yourusername) ---
jingmingcn/PPI_dataset
jingmingcn
2025-06-03T07:08:05Z
66
0
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T13:34:46Z
null
--- license: apache-2.0 configs: - config_name: clinvar data_files: "clinvar.csv" - config_name: clinvar_sample data_files: "clinvar_sample_10000.csv" - config_name: gnomad data_files: "gnomad.csv" - config_name: ukb data_files: "ukb.csv" - config_name: proteome data_files: "proteome.csv" ---
InfiniAILab/Kinetics-generations
InfiniAILab
2025-06-03T07:05:12Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-03T06:57:25Z
null
--- license: apache-2.0 ---
metchee/sticker-queries
metchee
2025-06-03T06:36:45Z
74
0
[ "task_categories:text-generation", "language:zh", "language:en", "license:mit", "arxiv:2506.01668", "region:us" ]
[ "text-generation" ]
2025-05-31T08:59:32Z
null
--- license: mit task_categories: - text-generation language: - zh - en --- # StickerQueries 🧷🗨️ **StickerQueries** is a multilingual dataset for sticker query generation and retrieval. It features human-annotated query-sticker pairs that capture the expressive, emotional, and cultural semantics embedded in stickers. ## Dataset Structure - `stickers_queries_zh_released.csv`: Chinese sticker annotations. - `stickers_queries_en_released.csv`: English sticker annotations. - `stickers/`: Sticker images in `.gif`, `.png`, or `.webm` formats. Each row in the CSV files includes: - `sticker_id`: The file path to the corresponding sticker image. - `labeled_queries`: A comma-separated list of sticker queries representing the intended emotion, tone, or expression. ## Annotation Process - Each annotation was reviewed by at least **two people**. - In total, **42 English** and **18 Chinese** annotators contributed, with **over 60 hours** spent ensuring high-quality and diverse expressions. ## Looking for a sticker query generator? - 🈶 **Chinese Model**: [Sticker Query Generator ZH](https://huggingface.co/metchee/sticker-query-generator-zh) - 🇬🇧 **English Model**: [Sticker Query Generator EN](https://huggingface.co/metchee/sticker-query-generator-en) ## Large-scale Sticker Dataset Explore the broader dataset: [U-Sticker](https://huggingface.co/datasets/metchee/u-sticker) --- ## Citation If you use StickerQueries in your work, please cite us as: ```bibtex @misc{chee2025smallstickersbigmeanings, title={Small Stickers, Big Meanings: A Multilingual Sticker Semantic Understanding Dataset with a Gamified Approach}, author={Heng Er Metilda Chee and Jiayin Wang and Zhiqiang Guo and Weizhi Ma and Min Zhang}, year={2025}, eprint={2506.01668}, archivePrefix={arXiv}, primaryClass={cs.MM}, url={https://arxiv.org/abs/2506.01668}, } ```
8wali8/example_dataset
8wali8
2025-06-03T06:31:08Z
0
0
[ "task_categories:robotics", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-03T02:07:17Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # example_dataset **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
Thanarit/Thai-Voice-S1-S10-Test
Thanarit
2025-06-03T06:25:21Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T06:24:23Z
null
--- dataset_info: features: - name: ID dtype: string - name: speaker_id dtype: string - name: Language dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: transcript dtype: string - name: length dtype: float32 - name: dataset_name dtype: string - name: confidence_score dtype: float64 splits: - name: train num_examples: 20 download_size: 0 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train/*.parquet --- # Thanarit/Thai-Voice Combined Thai audio dataset from multiple sources ## Dataset Details - **Total samples**: 20 - **Total duration**: 0.02 hours - **Language**: Thai (th) - **Audio format**: 16kHz mono WAV - **Volume normalization**: -20dB ## Sources Processed 1 datasets in streaming mode ## Source Datasets 1. **GigaSpeech2**: Large-scale multilingual speech corpus ## Usage ```python from datasets import load_dataset # Load with streaming to avoid downloading everything dataset = load_dataset("Thanarit/Thai-Voice-S1-S10-Test", streaming=True) # Iterate through samples for sample in dataset['train']: print(sample['ID'], sample['transcript'][:50]) # Process audio: sample['audio'] break ``` ## Schema - `ID`: Unique identifier (S1, S2, S3, ...) - `speaker_id`: Speaker identifier (SPK_00001, SPK_00002, ...) - `Language`: Language code (always "th" for Thai) - `audio`: Audio data with 16kHz sampling rate - `transcript`: Text transcript of the audio - `length`: Duration in seconds - `dataset_name`: Source dataset name (e.g., "GigaSpeech2", "ProcessedVoiceTH", "MozillaCommonVoice") - `confidence_score`: Confidence score of the transcript (0.0-1.0) - 1.0: Original transcript from source dataset - <1.0: STT-generated transcript - 0.0: Fallback transcript (e.g., [NO_TRANSCRIPT]) ## Processing Details This dataset was created using streaming processing to handle large-scale data without requiring full downloads. Audio has been standardized to 16kHz mono with -20dB volume normalization.
CUAIStudents/Main-Dataset
CUAIStudents
2025-06-03T06:23:31Z
94
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T21:05:49Z
null
--- dataset_info: features: - name: clean dtype: string splits: - name: train num_bytes: 2072326764 num_examples: 4158107 - name: test num_bytes: 14034145 num_examples: 29059 - name: valid num_bytes: 25016951 num_examples: 51765 download_size: 965862057 dataset_size: 2111377860 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: valid path: data/valid-* ---
jinkhye/v5_markdown_mix
jinkhye
2025-06-03T06:17:39Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T02:58:36Z
null
--- dataset_info: features: - name: messages list: - name: role dtype: string - name: content dtype: string - name: images list: image splits: - name: train num_bytes: 1136622364.968 num_examples: 2504 download_size: 448708791 dataset_size: 1136622364.968 configs: - config_name: default data_files: - split: train path: data/train-* ---
willcb/V3-wordle-test
willcb
2025-06-03T06:16:39Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T06:16:38Z
null
--- dataset_info: features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: completion list: - name: content dtype: string - name: role dtype: string - name: answer dtype: string - name: reward dtype: float64 - name: task dtype: string splits: - name: train num_bytes: 69107.5 num_examples: 10 download_size: 20842 dataset_size: 69107.5 configs: - config_name: default data_files: - split: train path: data/train-* ---
yangfengzzz/so101_test
yangfengzzz
2025-06-03T06:11:07Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-03T06:10:43Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 1746, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
tinisoft/indicvoices-tamil-valid-subset
tinisoft
2025-06-03T06:08:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T06:07:59Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: duration dtype: float64 - name: lang dtype: string - name: samples dtype: int64 - name: verbatim dtype: string - name: normalized dtype: string - name: speaker_id dtype: string - name: scenario dtype: string - name: task_name dtype: string - name: gender dtype: string - name: age_group dtype: string - name: job_type dtype: string - name: qualification dtype: string - name: area dtype: string - name: district dtype: string - name: state dtype: string - name: occupation dtype: string - name: verification_report dtype: string - name: unsanitized_verbatim dtype: string - name: unsanitized_normalized dtype: string splits: - name: train num_bytes: 162451871.2 num_examples: 800 - name: validation num_bytes: 40612967.8 num_examples: 200 download_size: 197132715 dataset_size: 203064839.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
Hitchwiki/dumpster_diving_spots
Hitchwiki
2025-06-03T06:04:47Z
3
1
[ "language:en", "language:de", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "modality:geospatial", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "geospatial" ]
[]
2025-06-01T17:42:43Z
null
--- dataset_info: features: - name: Latitude dtype: float64 - name: Longitude dtype: float64 - name: dumpster_created dtype: string - name: voting dtype: string - name: comment dtype: string - name: voting_created dtype: string - name: name dtype: string splits: - name: 2025.06.03 num_bytes: 1001 num_examples: 5 download_size: 4558 dataset_size: 1001 configs: - config_name: default data_files: - split: 2025.06.03 path: data/2025.06.03-* language: - en - de tags: - geospatial --- Community-collected dumpster diving spots and their ratings from https://www.dumpstermap.org (or better https://dumpstermap.herokuapp.com/dumpsters). Updated monthly using https://huggingface.co/spaces/Hitchwiki/fetch-dumpstermap. --- # For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/datasets-cards {{ card_data }} --- # Dataset Card for {{ pretty_name | default("Dataset Name", true) }} <!-- Provide a quick summary of the dataset. --> {{ dataset_summary | default("", true) }} ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> {{ dataset_description | default("", true) }} - **Curated by:** {{ curators | default("[More Information Needed]", true)}} - **Funded by [optional]:** {{ funded_by | default("[More Information Needed]", true)}} - **Shared by [optional]:** {{ shared_by | default("[More Information Needed]", true)}} - **Language(s) (NLP):** {{ language | default("[More Information Needed]", true)}} - **License:** {{ license | default("[More Information Needed]", true)}} ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** {{ repo | default("[More Information Needed]", true)}} - **Paper [optional]:** {{ paper | default("[More Information Needed]", true)}} - **Demo [optional]:** {{ demo | default("[More Information Needed]", true)}} ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> {{ direct_use | default("[More Information Needed]", true)}} ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> {{ out_of_scope_use | default("[More Information Needed]", true)}} ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> {{ dataset_structure | default("[More Information Needed]", true)}} ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> {{ curation_rationale_section | default("[More Information Needed]", true)}} ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> {{ data_collection_and_processing_section | default("[More Information Needed]", true)}} #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> {{ source_data_producers_section | default("[More Information Needed]", true)}} ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> {{ annotation_process_section | default("[More Information Needed]", true)}} #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> {{ who_are_annotators_section | default("[More Information Needed]", true)}} #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> {{ personal_and_sensitive_information | default("[More Information Needed]", true)}} ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> {{ bias_risks_limitations | default("[More Information Needed]", true)}} ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> {{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}} ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** {{ citation_bibtex | default("[More Information Needed]", true)}} **APA:** {{ citation_apa | default("[More Information Needed]", true)}} ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> {{ glossary | default("[More Information Needed]", true)}} ## More Information [optional] {{ more_information | default("[More Information Needed]", true)}} ## Dataset Card Authors [optional] {{ dataset_card_authors | default("[More Information Needed]", true)}} ## Dataset Card Contact {{ dataset_card_contact | default("[More Information Needed]", true)}}
kanishka/babylm2-clean-spacy_no-multi-adj-strict
kanishka
2025-06-03T06:01:32Z
0
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T06:01:22Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 516559880 num_examples: 11802970 - name: validation num_bytes: 58115371 num_examples: 1227839 download_size: 339072290 dataset_size: 574675251 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
ragunath-ravi/YouTube-VideoArchive-Queue-Volume1
ragunath-ravi
2025-06-03T05:57:17Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T05:57:13Z
null
--- dataset_info: features: - name: video_id dtype: string - name: url dtype: string - name: title dtype: string - name: uploader dtype: string - name: upload_date dtype: string - name: duration dtype: int64 - name: view_count dtype: int64 - name: like_count dtype: int64 - name: description dtype: string - name: categories dtype: string - name: tags dtype: string - name: thumbnail dtype: string - name: downloaded_at dtype: string - name: volume dtype: int64 - name: video_file dtype: string - name: audio_file dtype: string - name: has_video dtype: bool - name: has_audio dtype: bool splits: - name: train num_bytes: 39179 num_examples: 21 download_size: 38923 dataset_size: 39179 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "YouTube-VideoArchive-Queue-Volume1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jiseop11892/gung
jiseop11892
2025-06-03T05:35:38Z
0
0
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T05:35:08Z
null
--- license: mit dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: input dtype: string splits: - name: train num_bytes: 112998 num_examples: 127 download_size: 68370 dataset_size: 112998 configs: - config_name: default data_files: - split: train path: data/train-* ---
h3llohihi/lao-asr-thesis-dataset
h3llohihi
2025-06-03T05:13:18Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:25:29Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: duration dtype: float32 - name: speaker_id dtype: string - name: accent dtype: string - name: gender dtype: string - name: sentence_id dtype: string splits: - name: train num_bytes: 1262919087.688 num_examples: 3848 - name: validation num_bytes: 184987455.0 num_examples: 499 - name: test num_bytes: 353702444.2 num_examples: 1200 - name: dev num_bytes: 26699086.0 num_examples: 80 download_size: 1786334131 dataset_size: 1828308072.888 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - split: dev path: data/dev-* ---
hatch-sc/so100_test_v3
hatch-sc
2025-06-03T05:09:51Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-03T05:08:52Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1786, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
David-Chen-DynamoFL/longctx-inj-2500-compliant-internal-documents-prompt-injection-for-long-context-may22-10000-5494
David-Chen-DynamoFL
2025-06-03T04:57:43Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T04:57:35Z
null
--- dataset_info: features: - name: text dtype: string - name: injection_text dtype: string - name: position_bucket dtype: int64 - name: insert_at_char dtype: int64 - name: insert_fraction dtype: float64 - name: long_context_idx dtype: int64 - name: injection_idx dtype: int64 splits: - name: train num_bytes: 296816677 num_examples: 10000 download_size: 108058956 dataset_size: 296816677 configs: - config_name: default data_files: - split: train path: data/train-* ---
Thanarit/Thai-Voice-Test-Speaker-Fix
Thanarit
2025-06-03T04:49:35Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T04:48:43Z
null
--- dataset_info: features: - name: ID dtype: string - name: speaker_id dtype: string - name: Language dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: transcript dtype: string - name: length dtype: float32 - name: dataset_name dtype: string - name: confidence_score dtype: float64 splits: - name: train num_examples: 20 download_size: 0 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train/*.parquet --- # Thanarit/Thai-Voice Combined Thai audio dataset from multiple sources ## Dataset Details - **Total samples**: 20 - **Total duration**: 0.02 hours - **Language**: Thai (th) - **Audio format**: 16kHz mono WAV - **Volume normalization**: -20dB ## Sources Processed 1 datasets in streaming mode ## Source Datasets 1. **GigaSpeech2**: Large-scale multilingual speech corpus ## Usage ```python from datasets import load_dataset # Load with streaming to avoid downloading everything dataset = load_dataset("Thanarit/Thai-Voice-Test-Speaker-Fix", streaming=True) # Iterate through samples for sample in dataset['train']: print(sample['ID'], sample['transcript'][:50]) # Process audio: sample['audio'] break ``` ## Schema - `ID`: Unique identifier (S1, S2, S3, ...) - `speaker_id`: Speaker identifier (SPK_00001, SPK_00002, ...) - `Language`: Language code (always "th" for Thai) - `audio`: Audio data with 16kHz sampling rate - `transcript`: Text transcript of the audio - `length`: Duration in seconds - `dataset_name`: Source dataset name (e.g., "GigaSpeech2", "ProcessedVoiceTH", "MozillaCommonVoice") - `confidence_score`: Confidence score of the transcript (0.0-1.0) - 1.0: Original transcript from source dataset - <1.0: STT-generated transcript - 0.0: Fallback transcript (e.g., [NO_TRANSCRIPT]) ## Processing Details This dataset was created using streaming processing to handle large-scale data without requiring full downloads. Audio has been standardized to 16kHz mono with -20dB volume normalization.
AlignCoder/Data4AlignCoder
AlignCoder
2025-06-03T04:42:08Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-03T04:35:42Z
null
--- license: apache-2.0 ---
cat-claws/trial
cat-claws
2025-06-03T04:40:34Z
983
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T14:01:17Z
null
--- dataset_info: - config_name: 01-simclr-train features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 115010021.0 num_examples: 50000 download_size: 119141133 dataset_size: 115010021.0 - config_name: 01-some-train features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 115063524.0 num_examples: 50000 download_size: 119191831 dataset_size: 115063524.0 - config_name: 01-some-train-logistic features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 115158757.0 num_examples: 50000 download_size: 119298218 dataset_size: 115158757.0 - config_name: resnet18-ad2-1 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 127551564.0 num_examples: 50000 download_size: 132324086 dataset_size: 127551564.0 - config_name: resnet18-ad2-3 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 116539015.0 num_examples: 50000 download_size: 120706833 dataset_size: 116539015.0 - config_name: resnet18-ad2-3-1 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 119061740.0 num_examples: 50000 download_size: 123509854 dataset_size: 119061740.0 - config_name: resnet18-ad2-3-2 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 119499725.0 num_examples: 50000 download_size: 124059316 dataset_size: 119499725.0 - config_name: resnet18-ad2-3-3 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 120428457.0 num_examples: 50000 download_size: 125053566 dataset_size: 120428457.0 - config_name: resnet18-ad2-3-4 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 118487076.0 num_examples: 50000 download_size: 122619326 dataset_size: 118487076.0 - config_name: resnet18-ad2-3-5 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 118035839.0 num_examples: 50000 download_size: 122385186 dataset_size: 118035839.0 - config_name: resnet18-ad2-3-6 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 119294931.0 num_examples: 50000 download_size: 123779321 dataset_size: 119294931.0 - config_name: resnet18-ad2-3-7sgd features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 116700604.0 num_examples: 50000 download_size: 120859494 dataset_size: 116700604.0 - config_name: resnet18-eps-4-iclr23 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 114497260.0 num_examples: 50000 download_size: 118548892 dataset_size: 114497260.0 - config_name: resnet18-erm features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 115159802.0 num_examples: 50000 download_size: 119309499 dataset_size: 115159802.0 - config_name: resnet18-erm-normalise features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 123028492.0 num_examples: 50000 download_size: 127716123 dataset_size: 123028492.0 - config_name: resnet18-retrain features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 119088361.0 num_examples: 50000 download_size: 123597988 dataset_size: 119088361.0 - config_name: resnet18-retrain-1 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 121989386.0 num_examples: 50000 download_size: 126676508 dataset_size: 121989386.0 - config_name: resnet18-retrain-2 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 122410729.0 num_examples: 50000 download_size: 127124679 dataset_size: 122410729.0 - config_name: resnet18-retrain-3 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 120728027.0 num_examples: 50000 download_size: 125359985 dataset_size: 120728027.0 - config_name: resnet18-some-train-85 features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 115357061.0 num_examples: 50000 download_size: 119516504 dataset_size: 115357061.0 - config_name: wideresnet28-erm-normalise features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 123374597.0 num_examples: 50000 download_size: 128085356 dataset_size: 123374597.0 configs: - config_name: 01-simclr-train data_files: - split: train path: 01-simclr-train/train-* - config_name: 01-some-train data_files: - split: train path: 01-some-train/train-* - config_name: 01-some-train-logistic data_files: - split: train path: 01-some-train-logistic/train-* - config_name: resnet18-ad2-1 data_files: - split: train path: resnet18-ad2-1/train-* - config_name: resnet18-ad2-3 data_files: - split: train path: resnet18-ad2-3/train-* - config_name: resnet18-ad2-3-1 data_files: - split: train path: resnet18-ad2-3-1/train-* - config_name: resnet18-ad2-3-2 data_files: - split: train path: resnet18-ad2-3-2/train-* - config_name: resnet18-ad2-3-3 data_files: - split: train path: resnet18-ad2-3-3/train-* - config_name: resnet18-ad2-3-4 data_files: - split: train path: resnet18-ad2-3-4/train-* - config_name: resnet18-ad2-3-5 data_files: - split: train path: resnet18-ad2-3-5/train-* - config_name: resnet18-ad2-3-6 data_files: - split: train path: resnet18-ad2-3-6/train-* - config_name: resnet18-ad2-3-7sgd data_files: - split: train path: resnet18-ad2-3-7sgd/train-* - config_name: resnet18-eps-4-iclr23 data_files: - split: train path: resnet18-eps-4-iclr23/train-* - config_name: resnet18-erm data_files: - split: train path: resnet18-erm/train-* - config_name: resnet18-erm-normalise data_files: - split: train path: resnet18-erm-normalise/train-* - config_name: resnet18-retrain data_files: - split: train path: resnet18-retrain/train-* - config_name: resnet18-retrain-1 data_files: - split: train path: resnet18-retrain-1/train-* - config_name: resnet18-retrain-2 data_files: - split: train path: resnet18-retrain-2/train-* - config_name: resnet18-retrain-3 data_files: - split: train path: resnet18-retrain-3/train-* - config_name: resnet18-some-train-85 data_files: - split: train path: resnet18-some-train-85/train-* - config_name: wideresnet28-erm-normalise data_files: - split: train path: wideresnet28-erm-normalise/train-* ---
blue01223/math_splits
blue01223
2025-06-03T04:28:04Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T04:18:41Z
null
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: generation1 dtype: string splits: - name: split_0 num_bytes: 101481462 num_examples: 6209 - name: split_1 num_bytes: 96316459 num_examples: 6209 - name: split_2 num_bytes: 100568237 num_examples: 6209 - name: split_3 num_bytes: 114766966 num_examples: 6209 - name: split_4 num_bytes: 118059166 num_examples: 6208 - name: split_5 num_bytes: 118073198 num_examples: 6208 - name: split_6 num_bytes: 66327312 num_examples: 6208 - name: split_7 num_bytes: 87800818 num_examples: 6208 download_size: 350526359 dataset_size: 803393618 configs: - config_name: default data_files: - split: split_0 path: data/split_0-* - split: split_1 path: data/split_1-* - split: split_2 path: data/split_2-* - split: split_3 path: data/split_3-* - split: split_4 path: data/split_4-* - split: split_5 path: data/split_5-* - split: split_6 path: data/split_6-* - split: split_7 path: data/split_7-* ---
ai4bharat/Indic-Rag-Suite
ai4bharat
2025-06-03T04:24:07Z
468
0
[ "task_categories:question-answering", "task_categories:text-generation", "multilinguality:multilingual", "source_datasets:original", "language:as", "language:bn", "language:en", "language:gu", "language:hi", "language:ks", "language:mai", "language:ml", "language:mni", "language:mr", "language:ne", "language:or", "language:pa", "language:sat", "language:ta", "language:te", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2506.01615", "region:us", "indian-languages", "multilingual", "indic", "qa-dataset" ]
[ "question-answering", "text-generation" ]
2025-06-01T20:02:09Z
null
--- license: mit task_categories: - question-answering - text-generation language: - as - bn - en - gu - hi - ks - mai - ml - mni - mr - ne - or - pa - sat - ta - te multilinguality: multilingual size_categories: - 100K<n<1M source_datasets: - original tags: - indian-languages - multilingual - indic - qa-dataset pretty_name: "Multilingual Indic RAG Suite" configs: - config_name: as default: false description: "Assamese language subset" - config_name: bn default: false description: "Bengali language subset" - config_name: en default: false description: "English language subset" - config_name: gu default: false description: "Gujarati language subset" - config_name: hi default: false description: "Hindi language subset" - config_name: ks default: false description: "Kashmiri language subset" - config_name: mai default: false description: "Maithili language subset" - config_name: ml default: false description: "Malayalam language subset" - config_name: mni default: false description: "Manipuri language subset" - config_name: mr default: false description: "Marathi language subset" - config_name: ne default: false description: "Nepali language subset" - config_name: or default: false description: "Odia language subset" - config_name: pa default: false description: "Punjabi language subset" - config_name: sat default: false description: "Santali language subset" - config_name: ta default: false description: "Tamil language subset" - config_name: te default: false description: "Telugu language subset" --- # 🌏 Multilingual Indic RAG Suite ## 🚀 Quick Start - Load Individual Languages (RECOMMENDED) ```python from datasets import load_dataset # Load ONLY Hindi data (fast and efficient!) hindi_data = load_dataset("ai4bharat/Indic-Rag-Suite", name="hi") print(f"Hindi samples: {len(hindi_data['train'])}") # Load ONLY Bengali data bengali_data = load_dataset("ai4bharat/Indic-Rag-Suite", name="bn") print(f"Bengali samples: {len(bengali_data['train'])}") # Access the data directly for example in hindi_data['train'][:3]: print(f"Q: {example['question']}") print(f"A: {example['answer']}") ``` ## 📊 Available Languages (16 total) | Code | Language | Load Command | |------|----------|--------------| | `as` | Assamese | `load_dataset('ai4bharat/Indic-Rag-Suite', name='as')` | | `bn` | Bengali | `load_dataset('ai4bharat/Indic-Rag-Suite', name='bn')` | | `en` | English | `load_dataset('ai4bharat/Indic-Rag-Suite', name='en')` | | `gu` | Gujarati | `load_dataset('ai4bharat/Indic-Rag-Suite', name='gu')` | | `hi` | Hindi | `load_dataset('ai4bharat/Indic-Rag-Suite', name='hi')` | | `ks` | Kashmiri | `load_dataset('ai4bharat/Indic-Rag-Suite', name='ks')` | | `mai` | Maithili | `load_dataset('ai4bharat/Indic-Rag-Suite', name='mai')` | | `ml` | Malayalam | `load_dataset('ai4bharat/Indic-Rag-Suite', name='ml')` | | `mni` | Manipuri | `load_dataset('ai4bharat/Indic-Rag-Suite', name='mni')` | | `mr` | Marathi | `load_dataset('ai4bharat/Indic-Rag-Suite', name='mr')` | | `ne` | Nepali | `load_dataset('ai4bharat/Indic-Rag-Suite', name='ne')` | | `or` | Odia | `load_dataset('ai4bharat/Indic-Rag-Suite', name='or')` | | `pa` | Punjabi | `load_dataset('ai4bharat/Indic-Rag-Suite', name='pa')` | | `sat` | Santali | `load_dataset('ai4bharat/Indic-Rag-Suite', name='sat')` | | `ta` | Tamil | `load_dataset('ai4bharat/Indic-Rag-Suite', name='ta')` | | `te` | Telugu | `load_dataset('ai4bharat/Indic-Rag-Suite', name='te')` | ## 💡 Usage Examples ### Single Language Loading (Fastest) ```python from datasets import load_dataset # Method 1: Direct loading dataset = load_dataset("ai4bharat/Indic-Rag-Suite", name="hi") # Only Hindi train_data = dataset['train'] # Method 2: With streaming for large files dataset = load_dataset("ai4bharat/Indic-Rag-Suite", name="hi", streaming=True) for example in dataset['train']: print(example['question']) break ``` ### Multiple Languages ```python # Load specific languages you need languages = ['hi', 'bn', 'ta', 'en'] datasets = {} for lang in languages: datasets[lang] = load_dataset("ai4bharat/Indic-Rag-Suite", name=lang) print(f"{lang}: {len(datasets[lang]['train'])} samples") ``` ### Data Processing ```python # Load and process dataset = load_dataset("ai4bharat/Indic-Rag-Suite", name="hi") train_data = dataset['train'] # Convert to pandas for analysis import pandas as pd df = train_data.to_pandas() print(df.head()) # Filter by criteria long_questions = train_data.filter(lambda x: len(x['question']) > 100) ``` ## 📋 Dataset Structure ```python { "text": "Question: भारत की राजधानी क्या है? | Answer: भारत की राजधानी नई दिल्ली है। | Reasoning: संविधान के अनुसार...", "language": "hi", "question": "भारत की राजधानी क्या है?", "answer": "भारत की राजधानी नई दिल्ली है।", "reasoning": "संविधान और प्रशासनिक तथ्यों के आधार पर...", "paragraph": "विकिपीडिया से संदर्भ पैराग्राफ...", "title": "भारत", "wiki_id": "14533", "url": "https://hi.wikipedia.org/wiki/भारत", "source_lang": "hi", "meta": "{\"model_name\": \"Meta-Llama-3.3-70B-Instruct\", ...}" } ``` ## ⚡ Performance & Tips - **Always use `name` parameter**: Loads only specified language - **Access train split**: Use `dataset['train']` to get the data - **Use streaming**: `streaming=True` for memory efficiency - **Partial loading**: `split="train[:1000]"` for testing - **Batch processing**: Use `.map()` for efficient processing ## 🎯 Use Cases - 🤖 **RAG Systems**: Retrieval-augmented generation - ❓ **QA Training**: Question-answering model training - 🔄 **Cross-lingual**: Transfer learning research - 📚 **Language Models**: Fine-tuning multilingual models ## 📖 Citation If you use IndicMSMARCO in your research, please cite: ```bibtex @dataset{indic_msmarco_2024, title={IndicRAGSuite: LargeScale Datasets and a Benchmark for Indian Language RAG Systems}, author={Pasunuti Prasanjith,Prathmesh B More,Anoop Kunchukuttan, Raj Dabre}, year={2025}, {journal = {arXiv preprint arXiv:2506.01615}, url={https://huggingface.co/datasets/ai4bharat/IndicMSMARCO} } ``` --- *Optimized for individual language loading • Built for multilingual NLP*
YongqiLi/PCogAlignBench
YongqiLi
2025-06-03T03:45:15Z
123
0
[ "license:cc-by-4.0", "modality:image", "arxiv:2506.00930", "region:us" ]
[]
2025-05-31T02:22:11Z
null
--- configs: - config_name: default data_files: - split: HCMAS_train path: "version_v4/HCMAS-train.json" - split: HCMAS_test path: "version_v4/HCMAS-test.json" - split: HCSHR_train path: "version_v4/HCSHR-train.json" - split: HCSHR_test path: "version_v4/HCSHR-test.json" license: cc-by-4.0 --- # Aligning VLM Assistants with Personalized Situated Cognition (ACL 2025 main) [![GitHub Stars](https://img.shields.io/github/stars/your-username/PCogAlign?style=social)](https://github.com/liyongqi2002/PCogAlign) [![Hugging Face Dataset](https://img.shields.io/badge/dataset-PCogAlignBench-blue)](https://huggingface.co/datasets/YongqiLi/PCogAlignBench) [![arXiv](https://img.shields.io/badge/arXiv-2506.00930-orange)](https://arxiv.org/abs/2506.00930) This repository contains the constructed benchmark in our ACL 2025 main paper **"Aligning VLM Assistants with Personalized Situated Cognition"**. > ⚠️ This project is for academic research only and not intended for commercial use. ## Abstract Vision-language models (VLMs) aligned with general human objectives, such as being harmless and hallucination-free, have become valuable assistants of humans in managing visual tasks. However, people with diversified backgrounds have different cognition even in the same situation. Consequently, they may have personalized expectations for VLM assistants. This highlights the urgent need to align VLM assistants with personalized situated cognition for real-world assistance. To study this problem, we first simplify it by characterizing individuals based on the sociological concept of Role-Set. Then, we propose to evaluate the individuals' actions to examine whether the personalized alignment is achieved. Further, we construct a benchmark named PCogAlignBench, which includes 18k instances and 20 individuals with different Role-Sets. Finally, we present a framework called PCogAlign, which constructs a cognition-aware and action-based reward model for personalized alignment. Experimental results and human evaluations demonstrate the reliability of the PCogAlignBench and the effectiveness of our proposed PCogAlign. ## 🙌 Acknowledgments All datasets and models used are obtained through legal and ethical means. For detailed ethical considerations, please refer to our paper's Ethics Statement section. ## 📬 Contact For any questions or feedback, feel free to reach out to us at [liyongqi@whu.edu.cn]. --- ✨ Thank you for your interest in PCogAlign! Stay tuned for more updates.
danganhdat/mhardolov-exams
danganhdat
2025-06-03T03:41:19Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:33:45Z
null
--- dataset_info: features: - name: id dtype: string - name: language dtype: string - name: subject dtype: string - name: grade dtype: int64 - name: question dtype: string - name: choices sequence: string - name: answer_key dtype: string - name: answer dtype: string splits: - name: train num_bytes: 965308 num_examples: 1955 - name: test num_bytes: 234050 num_examples: 488 download_size: 529107 dataset_size: 1199358 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- > **Note**: I do not **own** this dataset. All credit goes to the original authors. > If you use this dataset, please cite the original paper: https://aclanthology.org/2020.emnlp-main.438/ > Please see the original dataset and project at: https://github.com/mhardalov/exams-qa > The original dataset on Hugging Face: https://huggingface.co/datasets/mhardalov/exams
xwzagan/fortune-telling
xwzagan
2025-06-03T03:37:11Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:36:49Z
null
--- dataset_info: features: - name: Question dtype: string - name: Response dtype: string - name: Complex_CoT dtype: string splits: - name: train num_bytes: 672845 num_examples: 207 download_size: 448452 dataset_size: 672845 configs: - config_name: default data_files: - split: train path: data/train-* ---
Trajes123Tip/DatasetTrajesTipicosParaguayos
Trajes123Tip
2025-06-03T03:35:31Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-03T03:32:30Z
null
--- license: apache-2.0 ---
linrany/aime_2024_rep3
linrany
2025-06-03T03:32:17Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:32:11Z
null
--- dataset_info: features: - name: id dtype: int64 - name: origin_question dtype: string - name: correct_answer dtype: string splits: - name: train num_bytes: 31800 num_examples: 90 download_size: 10439 dataset_size: 31800 configs: - config_name: default data_files: - split: train path: data/train-* ---
xwzagan/web-security-distill
xwzagan
2025-06-03T03:30:21Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:30:13Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: cot dtype: string splits: - name: train num_bytes: 28402008 num_examples: 2876 download_size: 15372994 dataset_size: 28402008 configs: - config_name: default data_files: - split: train path: data/train-* ---
CohenQu/deepscalar_RL_hard_1_verl
CohenQu
2025-06-03T03:21:42Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:21:40Z
null
--- dataset_info: features: - name: data_source dtype: 'null' - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: extra_info struct: - name: index dtype: int64 - name: no_hint_prompt dtype: bool - name: problem dtype: string - name: split dtype: string splits: - name: train num_bytes: 1567875 num_examples: 3000 - name: test num_bytes: 191369 num_examples: 300 download_size: 151914 dataset_size: 1759244 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
CohenQu/deepscalar_RL_hard_100_verl
CohenQu
2025-06-03T03:21:33Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:21:32Z
null
--- dataset_info: features: - name: data_source dtype: 'null' - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: extra_info struct: - name: index dtype: int64 - name: no_hint_prompt dtype: bool - name: problem dtype: string - name: split dtype: string splits: - name: train num_bytes: 1711845 num_examples: 3000 - name: test num_bytes: 191369 num_examples: 300 download_size: 626494 dataset_size: 1903214 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
r1v3r/auto1_results
r1v3r
2025-06-03T03:10:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:10:20Z
null
--- dataset_info: features: - name: repo dtype: string - name: pull_number dtype: int64 - name: instance_id dtype: string - name: issue_numbers sequence: string - name: base_commit dtype: string - name: patch dtype: string - name: test_patch dtype: string - name: problem_statement dtype: string - name: hints_text dtype: string - name: created_at dtype: string - name: version dtype: string - name: updated_at dtype: string - name: environment_setup_commit dtype: string - name: FAIL_TO_PASS sequence: string - name: PASS_TO_PASS sequence: string - name: FAIL_TO_FAIL sequence: string - name: PASS_TO_FAIL sequence: 'null' - name: source_dir dtype: string splits: - name: train num_bytes: 3815683 num_examples: 76 download_size: 847655 dataset_size: 3815683 configs: - config_name: default data_files: - split: train path: data/train-* ---
yejunliang23/3D-Alpaca
yejunliang23
2025-06-03T03:08:40Z
6
1
[ "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.01853", "region:us", "Multimodal-Large-Language-Model,mesh-generation" ]
[ "text2text-generation" ]
2025-05-29T11:09:27Z
null
--- license: mit library_name: transformers pipeline_tag: image-to-3d tags: - Multimodal-Large-Language-Model,mesh-generation task_categories: - text2text-generation language: - en size_categories: - 10K<n<100K --- # ShapeLLM-Omni: A Native Multimodal LLM for 3D Generation and Understanding [**Paper**](https://arxiv.org/abs/2506.01853) | [**Project Page**](https://jamesyjl.github.io/ShapeLLM/) | [**Code**](https://github.com/JAMESYJL/ShapeLLM-Omni/) A subset from the 3D-Alpaca dataset of ShapeLLM-Omni: a native multimodal LLM for 3D generation and understanding [Junliang Ye*](https://jamesyjl.github.io/), [Zhengyi Wang*](https://thuwzy.github.io/), [Ruowen Zhao*](https://zhaorw02.github.io/), [Shenghao Xie](), [Jun Zhu](https://ml.cs.tsinghua.edu.cn/~jun/index.shtml) <p align="center"> <img src="assets/dataset.png"/> </p> Recently, the powerful text-to-image capabilities of GPT-4o have led to growing appreciation for native multimodal large language models. However, its multimodal capabilities remain confined to images and text. Yet beyond images, the ability to understand and generate 3D content is equally crucial. To address this gap, we propose ShapeLLM-Omni—a native 3D large language model capable of understanding and generating 3D assets and text in any sequence. First, we train a 3D vector-quantized variational autoencoder (VQ-VAE), which maps 3D objects into a discrete latent space to achieve efficient and accurate shape representation and reconstruction. Building upon the 3D-aware discrete tokens, we innovatively construct a large-scale continuous training dataset named 3D-Alpaca, encompassing generation, comprehension, and editing, thus providing rich resources for future research and training. Finally, by performing instruction-based training of the Qwen-2.5-vl-7B-Instruct model on the 3D-Alpaca dataset. Our work provides an effective attempt at extending multimodal models with basic 3D capabilities, which contributes to future research in 3D-native AI. <p align="center"> <img src="assets/head.jpg"/> </p> ## Dataset Structure ``` # 3D-Alpaca ./ ├── image_data.tar.gz │ ├── 0 │ │ ├── original.png │ │ └── after_edited.png │ ├── 1 │ ├── 2 │ ├── [...] │ ├── 62042 │ └── prompt_list.pt: {0:{"prompt":...,"editing_prompt":...},...} └─── edit_data.json ```
youjiang97/test_dataset11
youjiang97
2025-06-03T03:05:48Z
44
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-05-30T06:28:45Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # test_dataset11 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
OpenDriveLab/MTGS
OpenDriveLab
2025-06-03T03:04:38Z
139
2
[ "license:cc-by-nc-sa-4.0", "arxiv:2503.12552", "region:us" ]
[]
2025-05-27T05:20:37Z
null
--- license: cc-by-nc-sa-4.0 --- # MTGS: Multi-Traversal Gaussian Splatting The data and checkpoints used in the paper *MTGS: Multi-Traversal Gaussian Splatting* (https://arxiv.org/abs/2503.12552). The official code is released at https://github.com/OpenDriveLab/MTGS. ✒️ Tianyu Li\*, Yihang Qiu\*, Zhenhua Wu\*, Carl Lindström, Peng Su, Matthias Nießner, Hongyang Li 📧 Primary Contact: Tianyu Li (tianyu@opendrivelab.com) 💼 Joint effort by **Shanghai Innovation Institute (SII)** and **OpenDriveLab at The University of Hong Kong**.
BestWishYsh/OpenS2V-Eval
BestWishYsh
2025-06-03T02:47:45Z
427
2
[ "task_categories:text-to-video", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.20292", "region:us", "subject-to-video", "text-to-video", "image-to-video", "video-generation", "large-scale", "benchmark", "evaluation" ]
[ "text-to-video" ]
2025-05-14T14:30:05Z
null
--- language: - en license: apache-2.0 size_categories: - 1M<n<10M task_categories: - text-to-video tags: - subject-to-video - text-to-video - image-to-video - video-generation - large-scale - benchmark - evaluation configs: - config_name: default data_files: - split: open_domain path: Open-Domain_Eval.json - split: human_domain path: Human-Domain_Eval.json - split: single_domain path: Single-Domain_Eval.json --- <div align=center> <img src="https://github.com/PKU-YuanGroup/OpenS2V-Nexus/blob/main/__assets__/OpenS2V-Nexus_logo.png?raw=true" width="300px"> </div> <h2 align="center"> <a href="https://pku-yuangroup.github.io/OpenS2V-Nexus/">OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update. </h5> ## ✨ Summary **OpenS2V-Eval** introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics: **NexusScore**, **NaturalScore**, **GmeScore** to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. This benchmark is presented in the paper: [OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation](https://huggingface.co/papers/2505.20292) ## Evaluate Your Own Models For instructions on evaluating your customized model using OpenS2V-Eval, please refer to [this guide](https://github.com/PKU-YuanGroup/OpenS2V-Nexus/tree/main/eval). ## Get Videos Generated by Different S2V models For details on the videos generated by various S2V models, please refer to [this link](https://huggingface.co/datasets/BestWishYsh/OpenS2V-Eval/tree/main/Results). ## Description - **Repository:** [Code](https://github.com/PKU-YuanGroup/OpenS2V-Nexus), [Page](https://pku-yuangroup.github.io/OpenS2V-Nexus/), [Dataset](https://huggingface.co/datasets/BestWishYsh/OpenS2V-5M), [Benchmark](https://huggingface.co/datasets/BestWishYsh/OpenS2V-Eval) - **Paper:** [https://huggingface.co/papers/2505.20292](https://huggingface.co/papers/2505.20292) - **Point of Contact:** [Shenghai Yuan](shyuan-cs@hotmail.com) ## Citation If you find our paper and code useful in your research, please consider giving a star and citation. ```BibTeX @article{yuan2025opens2v, title={OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation}, author={Yuan, Shenghai and He, Xianyi and Deng, Yufan and Ye, Yang and Huang, Jinfa and Lin, Bin and Luo, Jiebo and Yuan, Li}, journal={arXiv preprint arXiv:2505.20292}, year={2025} } ```
mothnaZl/seq_dis_T0.0-Qwen2.5-7B-best_of_n-VLLM-Skywork-o1-Open-PRM-Qwen-2.5-7B-completions
mothnaZl
2025-06-03T02:42:21Z
2
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T08:16:56Z
null
--- dataset_info: config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 - name: pass@n dtype: float64 - name: div_avg dtype: float64 - name: div_sum dtype: float64 - name: div_mean dtype: float64 - name: Unigrams dtype: float64 - name: Bigrams dtype: float64 - name: Trigrams dtype: float64 - name: Fourgrams dtype: float64 - name: pass_tag sequence: 'null' - name: BM25 dtype: int64 - name: pred_entropy dtype: float64 splits: - name: train num_bytes: 928 num_examples: 8 download_size: 7155 dataset_size: 928 configs: - config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals data_files: - split: train path: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals/train-* ---
mothnaZl/seq_dis_T0.6-Qwen2.5-7B-best_of_n-VLLM-Skywork-o1-Open-PRM-Qwen-2.5-7B-completions
mothnaZl
2025-06-03T02:41:33Z
86
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-13T08:08:11Z
null
--- dataset_info: config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 - name: pass@n dtype: float64 - name: div_avg dtype: float64 - name: div_sum dtype: float64 - name: div_mean dtype: float64 - name: Unigrams dtype: float64 - name: Bigrams dtype: float64 - name: Trigrams dtype: float64 - name: Fourgrams dtype: float64 - name: pass_tag sequence: 'null' - name: BM25 dtype: int64 - name: pred_entropy dtype: float64 splits: - name: train num_bytes: 928 num_examples: 8 download_size: 7123 dataset_size: 928 configs: - config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals data_files: - split: train path: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals/train-* ---
mothnaZl/seq_dis_T0.8-Qwen2.5-7B-best_of_n-VLLM-Skywork-o1-Open-PRM-Qwen-2.5-7B-completions
mothnaZl
2025-06-03T02:36:05Z
62
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T20:20:59Z
null
--- dataset_info: config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 - name: pass@n dtype: float64 - name: div_avg dtype: float64 - name: div_sum dtype: float64 - name: div_mean dtype: float64 - name: Unigrams dtype: float64 - name: Bigrams dtype: float64 - name: Trigrams dtype: float64 - name: Fourgrams dtype: float64 - name: pass_tag sequence: 'null' - name: BM25 dtype: int64 - name: pred_entropy dtype: float64 splits: - name: train num_bytes: 928 num_examples: 8 download_size: 7156 dataset_size: 928 configs: - config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals data_files: - split: train path: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals/train-* ---
withpi/aiewf_workshop_data_no_md_json
withpi
2025-06-03T02:34:50Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T02:34:48Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: Rating dtype: string - name: Raw meeting transcript dtype: string - name: Extracted output dtype: string splits: - name: train num_bytes: 550889 num_examples: 126 download_size: 183662 dataset_size: 550889 --- # Dataset Card for "aiewf_workshop_data_no_md_json" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)