datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-06 00:37:09
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-06 00:34:34
trending_score
float64
0
40
card
large_stringlengths
31
1.01M
qanta-challenge/advcal-llm-cache-old
qanta-challenge
2025-06-04T05:10:29Z
1,293
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-11T16:19:52Z
null
--- dataset_info: features: - name: key dtype: string - name: model dtype: string - name: system dtype: string - name: prompt dtype: string - name: response_format struct: - name: properties struct: - name: answer struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: answers struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: confidence struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: explanation struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: final_answer struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: final_confidence struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: final_explanation struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: justification struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: question_length struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: reasoning_space struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: required sequence: string - name: title dtype: string - name: type dtype: string - name: temperature dtype: float64 - name: response dtype: string splits: - name: train num_bytes: 250140394 num_examples: 78001 download_size: 30815430 dataset_size: 250140394 configs: - config_name: default data_files: - split: train path: data/train-* ---
qanta-challenge/advcal-llm-cache
qanta-challenge
2025-06-04T05:10:29Z
1,293
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-11T16:19:52Z
null
--- dataset_info: features: - name: key dtype: string - name: model dtype: string - name: system dtype: string - name: prompt dtype: string - name: response_format struct: - name: properties struct: - name: answer struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: answers struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: confidence struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: explanation struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: final_answer struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: final_confidence struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: final_explanation struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: justification struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: question_length struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: reasoning_space struct: - name: description dtype: string - name: title dtype: string - name: type dtype: string - name: required sequence: string - name: title dtype: string - name: type dtype: string - name: temperature dtype: float64 - name: response dtype: string splits: - name: train num_bytes: 250140394 num_examples: 78001 download_size: 30815430 dataset_size: 250140394 configs: - config_name: default data_files: - split: train path: data/train-* ---
fongks/APOFront
fongks
2025-06-04T04:59:42Z
147
3
[ "license:cc-by-4.0", "region:us" ]
[]
2025-05-27T23:15:31Z
null
--- license: cc-by-4.0 --- # Dataset Card for APO Front for Symbolic Regression <!-- Provide a quick summary of the dataset. --> Dataset accompanying the paper "Pareto-Optimal Fronts for Benchmarking Symbolic Regression Algorithms". ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> Symbolic Regression (SR) is the task of finding the best closed-form expression that describes the relationship between variables in a dataset. Traditionally, SR algorithms select the best expression based on prediction performance (i.e., R-squared score). However, it is also important that the eventual expressions produced by SR algorithms are short in order to maintain the key strength of SR -- producing explainable white box models. In this context, SR algorithms can be evaluated by measuring the extent to which the expressions discovered are Pareto-optimal, in the sense of having the best R-squared score for the achieved expression size. However, this evaluation is most commonly done based on relative performance, in the sense that an SR algorithm is judged on whether it Pareto-dominates other SR algorithms selected in the analysis. In this paper, we explore absolute Pareto-optimal solutions instead, which have the optimal tradeoff between the multiple SR objectives (i.e., R-squared and expression size) by conducting an empirical investigation that exhaustively searches expressions with selected sizes. Specifically, we find an absolute Pareto-optimal (APO) front of expressions for real-world datasets from SRBench using an algorithm that exhaustively searches K-expressions from gene expression programming to conveniently control the length of expressions. Additionally, we utilize a range of numerical optimization methods for SR and analyze the performance differences to evaluate the choice of the commonly used Broyden–Fletcher–Goldfarb–Shanno (BFGS) numerical optimization method in most state-of-the-art SR algorithms. We extract, for every real-world dataset, an APO front of expressions that can serve as a universe baseline for SR algorithms that informs researchers of the best achievable performance for selected sizes (Folder Extracted_APO_Fronts). We also contribute raw data for every expression evaluated, its corresponding optimized numerical parameters and its performance for real-world datasets in SRBench (APOv3.zip and APOv4.zip). - **Curated by:** Kei Sen Fong (National University of Singapore) - **License:** cc-by-4.0 ### Direct Use <!-- This section describes suitable use cases for the dataset. --> APO fronts, obtained from using several random seeds and various numerical optimization methods, are directly availble in Extracted_APO_Fronts folder as csv files. The file names follow the following format: "{dataset_name}\_{Method}\_{head_length}\_{random_state}_summary.csv". For more metrics and complexity measures, please see "APO_MoreMetricsWithCode.zip". To be used in conjunction with Symbolic Regression benchmark results on real-world datasets. For example, an available benchmark result from NeurIPS 2021 is at https://github.com/cavalab/srbench [1]. Data in the folder Extracted_APO_Fronts extracts the APO fronts from the folders APOv3 and APOv4. Use the raw data in APOv3 and APOv4 for the optimized numerical parameters and R-squared score for ALL expressions evaluated in our work (not just the APO front). [1] La Cava, W., Orzechowski, P., Burlacu, B., de França, F. O., Virgolin, M., Jin, Y., Kommenda, M., & Moore, J. H. (2021). Contemporary Symbolic Regression Methods and their Relative Performance. Neurips Track on Datasets and Benchmarks. arXiv, neurips.cc ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> Data in the folder Extracted_APO_Fronts extracts the APO fronts from the files APOv3 and APOv4. Use the raw data in APOv3 and APOv4 for the optimized numerical parameters and R-squared score for ALL expressions evaluated in our work (not just the the APO front). With reference to Algorithm in the paper, the file names follow the following format: "{dataset_name}\_{Method}\_{head_length}\_{random_state}.csv". All data files are in csv format with main 7 columns (depending on the file type, there may be additional columns): 1. EquationLength: Length of the equation 2. EquationStructure: Structure of the equation without numerical parameters, xdata refers to the real-world dataset and x refers to EquationParameters 3. EquationLambda: Structure of the equation without numerical parameters in code form, xdata refers to the real-world dataset and x refers to EquationParameters 4. EquationParameters: Numerical parameters optimized by the numerical optimization method chosen 5. NumericalIterations: Number of iterations taken by the numerical optimization method chosen 6. MSE: Mean squared error of the equation 7. R2: R-squared score of the equation ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> Contains data for an APO front for 34 real-world datasets used in SRBench. These APO fronts serve as a useful baseline for benchmarking and informs SR researchers about the efficiency and limits of state-of-the-art SR algorithms. ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> Code used to generate the raw data files from APOv3 and APOv4 are found in the Code folder. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> Kei Sen Fong. The computational work for this article was (partially) performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg). ## Dataset Card Contact Kei Sen Fong (fongkeisen@u.nus.edu)
ko-vlm/K-LLaVA-W
ko-vlm
2025-06-04T04:30:22Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:30:11Z
null
--- dataset_info: features: - name: images dtype: image - name: conversations list: - name: content dtype: string - name: role dtype: string - name: category dtype: string splits: - name: test num_bytes: 20063061.0 num_examples: 60 download_size: 8322916 dataset_size: 20063061.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
ChavyvAkvar/synthetic-trades-BTC-batch-33
ChavyvAkvar
2025-06-04T04:28:17Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:27:19Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450626 num_examples: 1000 download_size: 924503851 dataset_size: 923450626 configs: - config_name: default data_files: - split: train path: data/train-* ---
Allen-UQ/cora_2_hop_nei_aug
Allen-UQ
2025-06-04T04:21:35Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:21:15Z
null
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: dataset dtype: string - name: split dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 8067719 num_examples: 1133 - name: validation num_bytes: 26585828 num_examples: 3727 - name: test num_bytes: 109633444 num_examples: 15277 download_size: 71028871 dataset_size: 144286991 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
ChavyvAkvar/synthetic-trades-ADA-batch-6
ChavyvAkvar
2025-06-04T04:04:54Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:03:49Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923454456 num_examples: 1000 download_size: 924461804 dataset_size: 923454456 configs: - config_name: default data_files: - split: train path: data/train-* ---
hr16/ViVoicePP
hr16
2025-06-04T03:52:34Z
915
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:text", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-12T13:49:54Z
null
--- license: apache-2.0 ---
ljnlonoljpiljm/stockimage-1.5M-scored-high-similarity
ljnlonoljpiljm
2025-06-04T03:34:35Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:50:26Z
null
--- dataset_info: features: - name: id dtype: string - name: image dtype: image - name: text dtype: string - name: similarity dtype: float64 splits: - name: train num_bytes: 22490818813.355957 num_examples: 575394 download_size: 22354991127 dataset_size: 22490818813.355957 configs: - config_name: default data_files: - split: train path: data/train-* ---
prerit2k/eval_act_bench01_21_2
prerit2k
2025-06-04T03:15:40Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-04T03:15:36Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_solo", "total_episodes": 1, "total_frames": 841, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.images.cam_main": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
smirki/postview-commons
smirki
2025-06-04T02:58:48Z
0
0
[ "license:fair-noncommercial-research-license", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:58:25Z
null
--- license: fair-noncommercial-research-license ---
ChavyvAkvar/synthetic-trades-BNB-batch-28
ChavyvAkvar
2025-06-04T02:53:43Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:52:42Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450272 num_examples: 1000 download_size: 924468373 dataset_size: 923450272 configs: - config_name: default data_files: - split: train path: data/train-* ---
ztony0712/motion_prediction
ztony0712
2025-06-04T02:52:29Z
54
0
[ "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T06:15:07Z
null
--- dataset_info: features: - name: Name dtype: string - name: Scenario dtype: image - name: Rating dtype: float64 - name: Deviation dtype: float64 - name: Percentile dtype: float64 splits: - name: val num_bytes: 647194235.422 num_examples: 4409 download_size: 707151942 dataset_size: 647194235.422 configs: - config_name: default data_files: - split: val path: data/train-* license: apache-2.0 language: - en pretty_name: Motion Prediction size_categories: - 1K<n<10K --- # Visualization of Motion Prediction Task Cases Samples Check dataset samples visualization by viewing Dataset Viewer. The sampling procedure is guided by the Elo distribution introduced in our method. Original dataset is validation split of Waymo Open Motion Dataset (WOMD). samples/origin: 4409/ 44097 # License This repository is licensed under the Apache License 2.0
GarrieD/toy_in_pot_v2_simple
GarrieD
2025-06-04T02:47:56Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-04T01:45:42Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # toy_in_pot_v2_simple **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
deariejheng/example_dataset
deariejheng
2025-06-04T01:39:59Z
0
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-04T01:39:56Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # example_dataset **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
OpenSound/CapSpeech-SEDB
OpenSound
2025-06-04T01:39:24Z
51
0
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.02863", "region:us" ]
[]
2025-05-11T00:47:59Z
null
--- dataset_info: features: - name: audio_path dtype: string - name: text dtype: string - name: source dtype: string - name: speech_duration dtype: float32 - name: pitch dtype: string - name: age dtype: string - name: gender dtype: string - name: speaking_rate dtype: string - name: speech_monotony dtype: string - name: caption dtype: string - name: intrinsic_tags sequence: string - name: situational_tags sequence: string - name: basic_tags sequence: string - name: all_tags sequence: string - name: accent dtype: string - name: noise dtype: string splits: - name: train num_bytes: 271725 num_examples: 500 download_size: 108674 dataset_size: 271725 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-nc-4.0 --- # CapSpeech-SEDB SFT dataset used for the paper: ***CapSpeech: Enabling Downstream Applications in Style-Captioned Text-to-Speech*** This dataset is used for the CapTTS-SE task. Please refer to [CapSpeech](https://huggingface.co/datasets/OpenSound/CapSpeech) for the whole dataset. ## Overview 🔥 CapSpeech is a new benchmark designed for style-captioned TTS (**CapTTS**) tasks, including style-captioned text-to-speech synthesis with sound effects (**CapTTS-SE**), accent-captioned TTS (**AccCapTTS**), emotion-captioned TTS (**EmoCapTTS**) and text-to-speech synthesis for chat agent (**AgentTTS**). CapSpeech comprises over **10 million machine-annotated** audio-caption pairs and nearly **0.36 million human-annotated** audio-caption pairs. **3 new speech datasets** are specifically designed for the CapTTS-SE and AgentTTS tasks to enhance the benchmark’s coverage of real-world scenarios. ![Overview](https://raw.githubusercontent.com/WangHelin1997/CapSpeech-demo/main/static/images/present.jpg) ## License ⚠️ All resources are under the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. ## Citation If you use this dataset, the models or the repository, please cite our work as follows: ```bibtex @misc{wang2025capspeechenablingdownstreamapplications, title={CapSpeech: Enabling Downstream Applications in Style-Captioned Text-to-Speech}, author={Helin Wang and Jiarui Hai and Dading Chong and Karan Thakkar and Tiantian Feng and Dongchao Yang and Junhyeok Lee and Laureano Moro Velazquez and Jesus Villalba and Zengyi Qin and Shrikanth Narayanan and Mounya Elhiali and Najim Dehak}, year={2025}, eprint={2506.02863}, archivePrefix={arXiv}, primaryClass={eess.AS}, url={https://arxiv.org/abs/2506.02863}, } ```
mmqm/m196k-v2
mmqm
2025-06-04T01:31:12Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T01:20:03Z
null
--- dataset_info: features: - name: question dtype: string - name: options dtype: string - name: answer_idx dtype: int64 - name: source dtype: string - name: metadata dtype: string - name: prompt dtype: string - name: answer_letter dtype: string - name: answer_string dtype: string splits: - name: train num_bytes: 272272328 num_examples: 196657 download_size: 153708159 dataset_size: 272272328 configs: - config_name: default data_files: - split: train path: data/train-* ---
yangfengzzz/so101_test10
yangfengzzz
2025-06-04T01:30:34Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-04T01:29:24Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 10, "total_frames": 8733, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
EvoGym/robots
EvoGym
2025-06-04T01:20:40Z
0
0
[ "task_categories:robotics", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2201.09863", "region:us", "robotics", "soft-robotics", "voxel-robot", "reinforcement learning" ]
[ "robotics" ]
2025-06-04T00:04:39Z
null
--- dataset_info: features: - name: uid dtype: string - name: body sequence: sequence: int64 - name: connections sequence: sequence: int64 - name: reward dtype: float64 - name: env_name dtype: string - name: generated_by dtype: string splits: - name: train num_bytes: 62889336 num_examples: 90563 download_size: 6965556 dataset_size: 62889336 configs: - config_name: default data_files: - split: train path: data/train-* tags: - robotics - soft-robotics - voxel-robot - reinforcement learning size_categories: - 10K<n<100K license: cc-by-nc-4.0 task_categories: - robotics --- Evolution Gym is a large-scale benchmark for co-optimizing the design and control of soft robots. It provides a lightweight soft-body simulator wrapped with a gym-like interface for developing learning algorithms. EvoGym also includes a suite of 32 locomotion and manipulation tasks, detailed on our [website](https://evolutiongym.github.io/all-tasks). Task suite evaluations are described in our [NeurIPS 2021 paper](https://arxiv.org/pdf/2201.09863). <img src="https://github.com/EvolutionGym/evogym/raw/main/images/teaser-low-res.gif" alt="teaser" style="width: 50%; display: block; margin: auto;" /> In this dataset, we open-source 90k+ annotated robot structures from the EvoGym paper. The fields of each robot in the dataset are as follows: - `uid` *(str)*: Unique identifier for the robot - `body` *(int64 np.ndarray)*: 2D array indicating the voxels that make up the robot - `connections` *(int64 np.ndarray)*: 2D array indicating how the robot's voxels are connected. In this dataset, all robots are fully-connected, meaning that all adjacent voxels are connected - `reward` *(float)*: reward achieved by the robot's policy - `env_name` *(str)*: Name of the EvoGym environment (task) the robot was trained on - `generated_by` *("Genetic Algorithm" | "Bayesian Optimization" | "CPPN-NEAT")*: Algorithm used to generate the robot If you find this dataset helpful to your research, please cite our paper: ``` @article{bhatia2021evolution, title={Evolution gym: A large-scale benchmark for evolving soft robots}, author={Bhatia, Jagdeep and Jackson, Holly and Tian, Yunsheng and Xu, Jie and Matusik, Wojciech}, journal={Advances in Neural Information Processing Systems}, volume={34}, year={2021} } ```
zijian2022/vis4
zijian2022
2025-06-04T00:58:34Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-04T00:58:28Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 20, "total_frames": 4780, "total_tasks": 1, "total_videos": 40, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
patcdaniel/phytoplankton-test-dataset-360k
patcdaniel
2025-06-04T00:57:57Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T00:51:20Z
null
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': Akashiwo '1': Akashiwo_dividing '2': Alexandrium '3': Amylax_Gonyaulax_Protoceratium '4': Asterionellopsis '5': Asteromphalus '6': Bad_blurred '7': Bad_mixed_phyto '8': Bad_setae '9': Centric '10': Centric_fuzzy '11': Ceratium_furca '12': Ceratium_lineatum '13': Chaetoceros '14': Ciliate_cutoff '15': Ciliate_large_2 '16': Ciliate_other_morpho_1 '17': Clusterflagellate_morpho_1 '18': Clusterflagellate_morpho_2 '19': Cryptophyte '20': Cylindrotheca_Nitzschia '21': Detonula_Cerataulina_Lauderia '22': Detritus '23': Detritus_infection '24': Dictyocha '25': Dinoflagellate_morpho_1 '26': Dinoflagellate_morpho_2 '27': Dinophysis '28': Ditylum '29': Entomoneis '30': Eucampia '31': Euglenoid '32': Flagellate_morpho_1 '33': Flagellate_morpho_3 '34': Flagellate_nano_1 '35': Flagellate_nano_2 '36': Fragilariopsis '37': Guinardia_Dactyliosolen '38': Gymnodinium '39': Gymnodinium_dividing '40': Gyrodinium '41': Gyrosigma '42': Hemiaulus '43': Hemiselmis '44': Heterocapsa_morpho_1 '45': Heterocapsa_morpho_2 '46': Heterosigma_akashiwo '47': Laboea '48': Leptocylindrus '49': Margalefidinium '50': Mesodinium '51': Nano_cluster '52': Nano_p_white '53': Odontella '54': Pennate_med '55': Pennate_short '56': Peridinium '57': Phaeocystis '58': Pleurosigma '59': Prorocentrum_narrow '60': Prorocentrum_narrow_dividing '61': Prorocentrum_wide '62': Pseudo-nitzschia '63': Pseudo-nitzschia_singlet '64': Pyramimonas '65': Rhizosolenia '66': Scrippsiella '67': Skeleonema '68': Skeletonema '69': Spiky_packman_elogated '70': Spiky_pacman_circular '71': Stombidinium_morpho_1 '72': Strombidium_morpho_2 '73': Thalassionema '74': Thalassiosira '75': Tiarina '76': Tontonia '77': Torodinium '78': Tropidoneis '79': Unknown_morpho_1 '80': Vicicitus - name: label_name dtype: string splits: - name: train num_bytes: 8392092237.1 num_examples: 364675 download_size: 4781582716 dataset_size: 8392092237.1 configs: - config_name: default data_files: - split: train path: data/train-* ---
Scottie201/text_files_with_embeddings
Scottie201
2025-06-04T00:44:30Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T00:43:47Z
null
--- dataset_info: features: - name: content dtype: string - name: filename dtype: string - name: relative_path dtype: string - name: full_path dtype: string - name: num_words dtype: int32 - name: source dtype: string - name: embeddings sequence: float64 splits: - name: train num_bytes: 1764879411 num_examples: 6104 - name: validation num_bytes: 90528520 num_examples: 1527 download_size: 161716276 dataset_size: 1855407931 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
AdityaMayukhSom/HMS
AdityaMayukhSom
2025-06-04T00:42:16Z
40
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-01T22:57:20Z
null
--- dataset_info: features: - name: PII dtype: string - name: ArticleAbstract dtype: string - name: CorrectHighlight dtype: string - name: HallucinatedHighlight dtype: string splits: - name: TRAIN num_bytes: 39645837 num_examples: 17101 - name: VALIDATION num_bytes: 4425482 num_examples: 1985 - name: TEST num_bytes: 4059881 num_examples: 1840 download_size: 27646455 dataset_size: 48131200 configs: - config_name: default data_files: - split: TRAIN path: data/TRAIN-* - split: VALIDATION path: data/VALIDATION-* - split: TEST path: data/TEST-* ---
ChavyvAkvar/synthetic-trades-BNB-batch-22
ChavyvAkvar
2025-06-04T00:31:57Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T00:30:51Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450173 num_examples: 1000 download_size: 924491588 dataset_size: 923450173 configs: - config_name: default data_files: - split: train path: data/train-* ---
AthenaAgent42/jee_papers_subset
AthenaAgent42
2025-06-04T00:21:18Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T00:21:16Z
null
--- dataset_info: features: - name: index dtype: int64 - name: id dtype: string - name: subject dtype: string - name: chapter dtype: string - name: topic dtype: string - name: question dtype: string - name: options dtype: string - name: correct_option dtype: string - name: correct_answer dtype: string - name: explanation dtype: string - name: Type dtype: string - name: paper_id dtype: string - name: option1 dtype: string - name: option2 dtype: string - name: option3 dtype: string - name: option4 dtype: string - name: __index_level_0__ dtype: int64 - name: pass_rate dtype: int64 - name: pass16_correct_count dtype: int64 splits: - name: train num_bytes: 806186 num_examples: 476 download_size: 319482 dataset_size: 806186 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-XRP-batch-47
ChavyvAkvar
2025-06-04T00:08:24Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T00:07:22Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923447810 num_examples: 1000 download_size: 924481628 dataset_size: 923447810 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-BNB-batch-21
ChavyvAkvar
2025-06-04T00:03:49Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T00:02:51Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450790 num_examples: 1000 download_size: 924490325 dataset_size: 923450790 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-BTC-batch-21
ChavyvAkvar
2025-06-03T23:48:52Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:47:56Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450867 num_examples: 1000 download_size: 924481067 dataset_size: 923450867 configs: - config_name: default data_files: - split: train path: data/train-* ---
Rexhaif/wmt22-24
Rexhaif
2025-06-03T23:26:18Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:24:34Z
null
--- dataset_info: features: - name: lp dtype: string - name: src dtype: string - name: ref dtype: string - name: hyp dtype: string - name: system dtype: string - name: score dtype: float64 - name: score_name dtype: string - name: example_id dtype: string - name: source dtype: string splits: - name: train num_bytes: 224627496 num_examples: 378505 download_size: 39437195 dataset_size: 224627496 configs: - config_name: default data_files: - split: train path: data/train-* ---
mmcarpi/carolina-150M-bertimbau
mmcarpi
2025-06-03T23:23:07Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:16:23Z
null
--- dataset_info: features: - name: meta dtype: string - name: text dtype: string - name: input_ids sequence: int32 - name: length dtype: int64 splits: - name: corpus num_bytes: 7801019756.599199 num_examples: 723582 download_size: 975029044 dataset_size: 7801019756.599199 configs: - config_name: default data_files: - split: corpus path: data/corpus-* ---
zhengbang0707/hh_train
zhengbang0707
2025-06-03T23:17:19Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:16:52Z
null
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: reject list: - name: content dtype: string - name: role dtype: string - name: chosen_token sequence: int64 - name: reject_token sequence: int64 - name: chosen_mask sequence: int64 - name: reject_mask sequence: int64 - name: num_turn dtype: int64 splits: - name: train num_bytes: 10548295974 num_examples: 156466 download_size: 289072151 dataset_size: 10548295974 configs: - config_name: default data_files: - split: train path: data/train-* ---
TAUR-dev/SIE_EVAL__testing_full_run2__rl__results
TAUR-dev
2025-06-03T23:11:31Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:11:30Z
null
--- dataset_info: features: - name: task dtype: string - name: alias dtype: string - name: exact_match,none dtype: float64 - name: exact_match_stderr,none dtype: string - name: extracted_answers,none dtype: int64 - name: extracted_answers_stderr,none dtype: string splits: - name: train num_bytes: 316 num_examples: 5 download_size: 3022 dataset_size: 316 configs: - config_name: default data_files: - split: train path: data/train-* ---
matthewchung74/apa-1_0y-5min-bars
matthewchung74
2025-06-03T23:11:29Z
0
0
[ "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:11:27Z
null
--- dataset_info: features: - name: symbol dtype: string - name: timestamp dtype: string - name: open dtype: float64 - name: high dtype: float64 - name: low dtype: float64 - name: close dtype: float64 - name: volume dtype: float64 - name: trade_count dtype: float64 - name: vwap dtype: float64 configs: - config_name: default data_files: - split: train path: data/apa_1_0_years_5min.csv download_size: 1578814 dataset_size: 19732 --- # APA 5-Minute Stock Data (1.0 Years) This dataset contains 1.0 years of APA stock market data downloaded from Alpaca Markets. ## Dataset Description - **Symbol**: APA - **Duration**: 1.0 years - **Timeframe**: 5-minute bars - **Market Hours**: 9:30 AM - 4:00 PM EST only - **Data Source**: Alpaca Markets API - **Last Updated**: 2025-06-03 ## Features - `symbol`: Stock symbol (always "APA") - `timestamp`: Timestamp in Eastern Time (EST/EDT) - `open`: Opening price for the 5-minute period - `high`: Highest price during the 5-minute period - `low`: Lowest price during the 5-minute period - `close`: Closing price for the 5-minute period - `volume`: Number of shares traded - `trade_count`: Number of individual trades - `vwap`: Volume Weighted Average Price ## Data Quality - Only includes data during regular market hours (9:30 AM - 4:00 PM EST) - Excludes weekends and holidays when markets are closed - Approximately 19,732 records covering ~1.0 years of trading data ## Usage ```python from datasets import load_dataset dataset = load_dataset("matthewchung74/apa-1_0y-5min-bars") df = dataset['train'].to_pandas() ``` ## Price Statistics - **Price Range**: $13.58 - $33.41 - **Average Volume**: 86,049 - **Date Range**: 2024-06-03 09:30:00-04:00 to 2025-06-03 16:00:00-04:00 ## License This dataset is provided under the MIT license. The underlying market data is sourced from Alpaca Markets.
DatologyAI/wikipedia-de-6k_sample
DatologyAI
2025-06-03T23:11:02Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T23:10:58Z
null
--- dataset_info: features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21983213.937647525 num_examples: 6500 download_size: 13406335 dataset_size: 21983213.937647525 configs: - config_name: default data_files: - split: train path: data/train-* ---
Rexhaif/wmt22-23
Rexhaif
2025-06-03T23:10:02Z
53
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-23T15:13:15Z
null
--- dataset_info: features: - name: lp dtype: string - name: src dtype: string - name: ref dtype: string - name: hyp dtype: string - name: system dtype: string - name: score dtype: float64 - name: score_name dtype: string - name: example_id dtype: string - name: source dtype: string splits: - name: train num_bytes: 136090001 num_examples: 273027 download_size: 24620149 dataset_size: 136090001 configs: - config_name: default data_files: - split: train path: data/train-* ---
CO-Bench/FrontierCO
CO-Bench
2025-06-03T23:03:01Z
2,456
4
[ "task_categories:text-generation", "license:apache-2.0", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "code" ]
[ "text-generation" ]
2025-05-16T04:02:55Z
null
--- license: apache-2.0 task_categories: - text-generation tags: - code --- # FrontierCO: Benchmark Dataset for Frontier Combinatorial Optimization ## Overview **FrontierCO** is a curated benchmark suite for evaluating ML-based solvers on large-scale and real-world **Combinatorial Optimization (CO)** problems. The benchmark spans **8 classical CO problems** across **5 application domains**, providing both training and evaluation instances specifically designed to test the frontier of ML and LLM capabilities in solving NP-hard problems. code for evaluating agent https://github.com/sunnweiwei/CO-Bench?tab=readme-ov-file#evaluation-on-frontierco code for running classifical solver, generate training data, evaluating neural solver: https://github.com/sunnweiwei/FrontierCO Evaluation Code: https://github.com/sunnweiwei/FrontierCO --- ## Dataset Structure Each subdirectory corresponds to a specific CO task: ``` FrontierCO/ ├── CFLP/ │ ├── easy_test_instances/ │ ├── hard_test_instances/ │ ├── valid_instances/ │ └── config.py ├── CPMP/ ├── CVRP/ ├── FJSP/ ├── MIS/ ├── MDS/ ├── STP/ ├── TSP/ └── ... ``` Each task folder contains: * `easy_test_instances/`: Benchmark instances that are solvable by SOTA human-designed solvers. * `hard_test_instances/`: Instances that remain computationally intensive or lack known optimal solutions. * `valid_instances/` *(if applicable)*: Additional instances for validation or development. * `config.py`: Metadata about instance format, solver settings, and reference solutions. --- ## Tasks Covered The benchmark currently includes the following problems: * **MIS** – Maximum Independent Set * **MDS** – Minimum Dominating Set * **TSP** – Traveling Salesman Problem * **CVRP** – Capacitated Vehicle Routing Problem * **CFLP** – Capacitated Facility Location Problem * **CPMP** – Capacitated p-Median Problem * **FJSP** – Flexible Job-shop Scheduling Problem * **STP** – Steiner Tree Problem Each task includes: * Easy and hard test sets with varying difficulty and practical relevance * Training and validation instances where applicable, generated using problem-specific generators * Reference results for classical and ML-based solvers --- ## Data Sources Instances are sourced from a mix of: * Public repositories (e.g., [TSPLib](http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/), [CVRPLib](http://vrp.galgos.inf.puc-rio.br/)) * DIMACS and PACE Challenges * Synthetic instance generators used in prior ML and optimization research * Manual curation from recent SOTA solver evaluation benchmarks For tasks lacking open benchmarks, we include high-quality synthetic instances aligned with real-world difficulty distributions. --- ## Usage To use this dataset, clone the repository and select the task of interest. Each `config.py` file documents the format and how to parse or evaluate the instances. ```bash git clone https://huggingface.co/datasets/CO-Bench/FrontierCO cd FrontierCO/CFLP ``` Load a data instance ```python from config import load_data instance = load_data('easy_test_instances/i1000_1.plc') print(instance) ``` Generate a solution ```python # Your solution generation code goes here. # For example: solution = my_solver_func(**instance) ``` ### Evaluate a solution ```python from config import eval_func score = eval_func(**instance, **solution) print("Evaluation score:", score) ``` --- ## Citation If you use **FrontierCO** in your research or applications, please cite the following paper: ```bibtex @misc{feng2025comprehensive, title={A Comprehensive Evaluation of Contemporary ML-Based Solvers for Combinatorial Optimization}, author={Shengyu Feng and Weiwei Sun and Shanda Li and Ameet Talwalkar and Yiming Yang}, year={2025}, } ``` --- ## License This dataset is released under the MIT License. Refer to `LICENSE` file for details. ---
APTO-Project/patents_7_univ_distill
APTO-Project
2025-06-03T22:53:58Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T22:53:42Z
null
--- dataset_info: features: - name: system_prompt dtype: string - name: user_prompt dtype: string - name: sentiment_prompt dtype: string - name: model_name dtype: string - name: think dtype: string - name: patent dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1175115142 num_examples: 163608 download_size: 444553164 dataset_size: 1175115142 configs: - config_name: default data_files: - split: train path: data/train-* ---
jiuyal2/eval_so100_marker
jiuyal2
2025-06-03T22:46:00Z
130
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-29T22:20:43Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 607, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.so100": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.iphone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
psg777/gluepickup102
psg777
2025-06-03T22:34:25Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-03T22:33:50Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.2", "robot_type": "so101", "total_episodes": 50, "total_frames": 35802, "total_tasks": 1, "total_videos": 150, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.base": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.gripper": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.bird": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
bicat123/testdata1-part2
bicat123
2025-06-03T22:34:21Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T19:09:49Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: IDDetect dtype: string - name: IDTraking dtype: int64 - name: image dtype: image splits: - name: train num_bytes: 110788039.11 num_examples: 1337 download_size: 0 dataset_size: 110788039.11 --- # Dataset Card for "testdata1-part2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
VinceEPFL/mmlu_filtered_subset
VinceEPFL
2025-06-03T22:30:19Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T22:30:17Z
null
--- dataset_info: features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: string splits: - name: test num_bytes: 706243.2889901723 num_examples: 1432 download_size: 317765 dataset_size: 706243.2889901723 configs: - config_name: default data_files: - split: test path: data/test-* ---
cezarsolo/so100_test
cezarsolo
2025-06-03T22:24:25Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-03T22:04:54Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1756, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
med-vlrm/med-vlm-pmc_vqa
med-vlrm
2025-06-03T22:23:14Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T21:37:29Z
null
--- dataset_info: features: - name: images sequence: image - name: question dtype: string - name: options struct: - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer_label dtype: string - name: answer dtype: string - name: dataset_name dtype: string - name: hash dtype: string - name: dataset_index dtype: int32 splits: - name: train num_bytes: 23386348703.695 num_examples: 176917 download_size: 17407256175 dataset_size: 23386348703.695 configs: - config_name: default data_files: - split: train path: data/train-* ---
wick1d/Personalized_Safety_Data
wick1d
2025-06-03T22:20:02Z
189
2
[ "task_categories:question-answering", "task_categories:text-classification", "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.18882", "region:us" ]
[ "question-answering", "text-classification", "text2text-generation" ]
2025-05-22T19:32:28Z
null
--- license: mit task_categories: - question-answering - text-classification - text2text-generation language: - en pretty_name: Personalied Safety Data for LLMs size_categories: - 10K<n<100K --- # 📦 Personalized Risk and Dilemma Dataset for LLM Safety Research ## 📝 Dataset Summary This is the **first dataset designed to support research on personalized risk and emotional vulnerability in the context of Large Language Models (LLMs)**. The dataset contains **8,000+ real-world, anonymized personal queries**, extracted from Reddit and annotated with structured profile metadata, including emotional states, demographic information, and life contexts (e.g., health, relationship, education, etc.). It enables in-depth study of how LLMs should respond safely, empathetically, and contextually to users under psychological or socioeconomic distress. --- ## 🔍 Key Features - 🧠 **First personalized risk dataset** for LLM safety and alignment - 🧩 Rich structured context: mental state, emotion, age, gender, etc. - ⚠️ Ideal for studying LLM behavior under **vulnerable or sensitive inputs** - ✅ Fully **anonymized**: no Reddit usernames, post content, URLs, or titles --- ## 📂 Dataset Fields | Field | Description | |----------------------|--------------------------------------------------------------| | `query` | A user-submitted personal question or concern | | `scenario` | Situation context (e.g., life, health, relationship) | | `age`, `gender` | Demographic info (when available) | | `education_level` | Educational background | | `economic_status` | Financial condition | | `health_status` | Physical or medical condition | | `mental_health_status`, `emotional_state` | User-expressed mental and emotional state | | `source` | Always `"real"` to indicate authenticity | --- ## 🎯 Use Cases This dataset is ideal for: - ✅ Text-to-text generation of supportive responses - ✅ Emotion or scenario classification - ✅ Risk-sensitive LLM fine-tuning and safety analysis - ✅ Evaluating empathy and alignment in AI models --- ## 🔒 Ethical & Legal Notice This dataset is derived from public Reddit content and processed for **non-commercial, research-only** use. - All identifying elements (e.g., URLs, usernames, full post texts) have been removed - Dataset is compliant with Reddit’s [User Agreement](https://www.redditinc.com/policies/user-agreement) - Please **do not use** for content reconstruction, commercial applications, or profiling --- ## 📚 Citation > ```bibtex > @article{wu2025personalized, > title={Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach}, > author={Wu, Yuchen and Sun, Edward and Zhu, Kaijie and Lian, Jianxun and Hernandez-Orallo, Jose and Caliskan, Aylin and Wang, Jindong}, > journal={arXiv preprint arXiv:2505.18882}, > year={2025} > } > ### Disclaimer This dataset is derived from publicly available Reddit content and is intended strictly for **research and educational purposes**. All entries have been stripped of direct user content and identifying information, including post URLs and full post texts. Please note: - The original content remains the intellectual property of the respective Reddit users. - This dataset **does not** include any Reddit usernames, links, or verbatim post bodies. - The dataset should **not** be used for any commercial purposes or user profiling. - If you are a content owner and have concerns, please contact us to remove specific data. By using this dataset, you agree to use it in accordance with Reddit’s [User Agreement](https://www.redditinc.com/policies/user-agreement) and Hugging Face’s [Data Use Policy](https://huggingface.co/docs/hub/security#data-use).
cloudy-sfu/Manuka-honey
cloudy-sfu
2025-06-03T22:06:14Z
103
0
[ "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:document", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T03:00:02Z
null
--- license: cc0-1.0 --- This dataset records Manuka honey prices in New Zealand of the following brands and retailers. Included brands: - Egmont - Arataki - Manuka doctor Included retailers: - Woolworths - New World - Egmont gift shop - Arataki honey - Manuka doctor The meanings of the columns in the dataset are as follows. | Name | Data type | Unit | Description | | -------------- | --------- | ---- | ------------------------------------------------------------ | | date | text | | The data is collected approximately 10:00 of this date in [Pacific/Auckland](https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#AUCKLAND) time zone. | | brand | text | | The company who produce the pack. | | retailer | text | | The store where the pack is selling. | | weight | int | g | Weight of the pack. | | UMF | float | | See [UMF organization](https://www.umf.org.nz/unique-manuka-factor/). | | MGO | float | | See [UMF organization](https://www.umf.org.nz/unique-manuka-factor/). | | price | float | NZD | Price per pack. | | marginal_price | float | NZD | Terms and conditions applied price. For examples, if the store promotes bundles, "any 2 for \$5", while the first item is \$3, the price is $3 and the marginal price is \$2.5. | The current price report figures the price per kilogram over MGO currently.
ChavyvAkvar/synthetic-trades-BTC-batch-16
ChavyvAkvar
2025-06-03T21:45:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T21:44:01Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450625 num_examples: 1000 download_size: 924492054 dataset_size: 923450625 configs: - config_name: default data_files: - split: train path: data/train-* ---
EmaRimoldi/RAG_dataset_test
EmaRimoldi
2025-06-03T21:41:52Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T21:36:47Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 2360558706 num_examples: 4133298 download_size: 1292282806 dataset_size: 2360558706 configs: - config_name: default data_files: - split: train path: data/train-* ---
hatemestinbejaia/mmarco_collection_splade_vector
hatemestinbejaia
2025-06-03T21:33:38Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:46:53Z
null
--- dataset_info: features: - name: id dtype: int32 - name: sparse_vectors sequence: bool splits: - name: collection num_bytes: 70805318584 num_examples: 8841823 download_size: 5333493077 dataset_size: 70805318584 configs: - config_name: default data_files: - split: collection path: data/collection-* ---
jsbeaudry/human-creole-text-speech
jsbeaudry
2025-06-03T21:20:03Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T21:17:48Z
null
--- dataset_info: features: - name: fileName dtype: string - name: audio dtype: audio: sampling_rate: 24000 - name: text dtype: string - name: normalized_text dtype: string - name: speaker_id dtype: string - name: createdAt dtype: string - name: fileSizeBytes dtype: int64 - name: status dtype: string splits: - name: train num_bytes: 35896048.0 num_examples: 322 download_size: 35878067 dataset_size: 35896048.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
willx0909/iv_bag_try
willx0909
2025-06-03T21:17:58Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "libero", "easo", "rlds" ]
[ "robotics" ]
2025-06-03T20:56:47Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - libero - easo - rlds configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "easo", "total_episodes": 20, "total_frames": 5314, "total_tasks": 2, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 50, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.joint_angles": { "dtype": "float32", "shape": [ 7 ] }, "observation.eef_pose": { "dtype": "float32", "shape": [ 6 ] }, "observation.target_eef_pose": { "dtype": "float32", "shape": [ 6 ] }, "actions": { "dtype": "float32", "shape": [ 8 ] }, "observation.images.forward_diagonal_camera_right": { "dtype": "image", "shape": [ 240, 424, 3 ] }, "observation.images.hand_camera_right": { "dtype": "image", "shape": [ 240, 424, 3 ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ChavyvAkvar/synthetic-trades-XRP-batch-32
ChavyvAkvar
2025-06-03T21:11:00Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T21:09:59Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923448078 num_examples: 1000 download_size: 924485696 dataset_size: 923448078 configs: - config_name: default data_files: - split: train path: data/train-* ---
LinaSad/sft_data_100k
LinaSad
2025-06-03T20:54:22Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T20:40:31Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 1237330978 num_examples: 100000 download_size: 547714204 dataset_size: 1237330978 configs: - config_name: default data_files: - split: train path: data/train-* ---
nguyenkhanh87/UMLCode-DeepSeek-32B-Reasoning-RAW
nguyenkhanh87
2025-06-03T20:51:41Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T20:51:32Z
null
--- dataset_info: features: - name: input dtype: string - name: reasoning dtype: string - name: uml_code dtype: string splits: - name: train num_bytes: 14711770 num_examples: 2998 download_size: 5239105 dataset_size: 14711770 configs: - config_name: default data_files: - split: train path: data/train-* ---
brygotti/unified-0.8M
brygotti
2025-06-03T20:45:55Z
48
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-01T21:29:35Z
null
--- dataset_info: features: - name: dataset dtype: string - name: question dtype: string - name: choices sequence: string - name: question_type dtype: string - name: answer dtype: string - name: explanation dtype: string - name: prompt dtype: string - name: completion dtype: string - name: relevance_text dtype: string - name: relevance_nlp4educ dtype: float32 - name: relevance_mmlu dtype: float32 - name: relevance_othereval dtype: float32 splits: - name: train num_bytes: 3331201564 num_examples: 816351 download_size: 1560088775 dataset_size: 3331201564 configs: - config_name: default data_files: - split: train path: data/train-* ---
futurehouse/answer-or-not-dataset-OPCW-1-2-reworded
futurehouse
2025-06-03T20:42:19Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:44:19Z
null
--- dataset_info: features: - name: id dtype: string - name: problem dtype: string - name: solution dtype: string - name: ideal dtype: string - name: problem_type dtype: string - name: thought dtype: string - name: unformatted dtype: string splits: - name: train num_bytes: 434465 num_examples: 604 download_size: 116278 dataset_size: 434465 configs: - config_name: default data_files: - split: train path: data/train-* ---
prerit2k/eval_act_bench01_21_1
prerit2k
2025-06-03T20:41:29Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-03T20:41:25Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_solo", "total_episodes": 1, "total_frames": 838, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.images.cam_main": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
french-datasets/bio-datasets_e3c
french-datasets
2025-06-03T20:40:34Z
0
0
[ "language:spa", "language:eus", "language:fra", "language:eng", "language:ita", "region:us" ]
[]
2025-06-03T20:39:29Z
null
--- language: - spa - eus - fra - eng - ita viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [bio-datasets/e3c](https://huggingface.co/datasets/bio-datasets/e3c).
allenai/PRISM
allenai
2025-06-03T20:40:21Z
23
0
[ "task_categories:robotics", "language:en", "license:mit", "size_categories:100K<n<1M", "format:csv", "modality:text", "modality:3d", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "robotics", "grasp-prediction", "task-oriented-grasping", "manipulation", "3d", "image", "text" ]
[ "robotics" ]
2025-06-02T18:15:50Z
null
--- license: mit task_categories: - robotics language: - en tags: - robotics - grasp-prediction - task-oriented-grasping - manipulation - 3d - image - text size_categories: - 100K<n<1M configs: - config_name: default data_files: - split: train path: train.csv - split: test path: test.csv --- # PRISM Purpose-driven Robotic Interaction in Scene Manipulation (PRISM) is a large-scale synthetic dataset for Task-Oriented Grasping featuring cluttered environments and diverse, realistic task descriptions. We use 2365 object instances from ShapeNet-Sem along with stable grasps from ACRONYM to compose 10,000 unique and diverse scenes. Within each scene we capture 10 views, within which there are multiple tasks to be performed. This results in 379k task-grasp samples in total. The dataset card contains the tasks and corresponding descriptions for the train/test datasets. The RGB images, point clouds, segmentation maps, etc. are available in the included "data files", which are in the `.tar` files in `PRISM-train` and `PRISM-test`, which can be retrieved as required for each data sample. ## Data Files Each `.tar` file contains multiple `<scene_id>.hdf5` files, each with the following structure: ``` view_<i>/ rgb: RGB image as (H,W,3) array xyz: Back-projected point-cloud (from RGB-D view) as (H,W,3) array of XYZ points seg: Segmentation map as (H,W) array where each pixel is index of object name in object_names object_names: List of object names visible in view normals (optional): Point-cloud normals as (H,W,3) array view_pose: Camera pose in world frame as (4,4) array cam_params: Camera intrinsics matrix as (3,3) array obs_<j>/ grasp_pose: Grasp pose in camera frame as (4,4) array grasp_point: Point being grasped in camera frame as (3,) array grasp_point_px: Point being grasped projected onto image plane as (2,) array annot: YAML-formatted object with the following keys: ["annotation_id", "grasp_description", "object_description", "object_category", "object_id", "grasp_id"] ``` ### Reading Data Files Here's an example of how to extract the required information from the data files to create a `datasets.Dataset` of image, task, and corresponding point, as was used to train [GraspMolmo](https://github.com/abhaybd/GraspMolmo). ```python import os import datasets import huggingface_hub as hf_hub import h5py from PIL import Image import numpy as np def point_to_xml(grasp_pt: np.ndarray): if grasp_pt.ndim == 2: assert grasp_pt.shape == (1, 2) grasp_pt = grasp_pt[0] assert grasp_pt.shape == (2,) point_desc = "Where to grasp the object" return f"<point x=\"{grasp_pt[0]*100:.1f}\" y=\"{grasp_pt[1]*100:.1f}\" alt=\"{point_desc}\">{point_desc}</point>" def map_sample(file_loc_map: dict[str, str], ex: dict): h5_path = file_loc_map[ex["scene_path"]] with h5py.File(h5_path, "r") as f: img = Image.fromarray(f[ex["view_id"]]["rgb"][:]) grasp_pt_px = f[ex["view_id"]][ex["obs_id"]]["grasp_point_px"][:] grasp_pt_px = grasp_pt_px / np.array([img.width, img.height]) task = ex["task"] prompt = f"Point to the grasp that would accomplish the following task: {task}" point_xml = point_to_xml(grasp_pt_px) response = f"In order to accomplish the task \"{task}\", the optimal grasp is described as follows: \"{ex['matching_grasp_desc']}\".\n\n{point_xml}" return dict( image=img, prompt=prompt, text=response, style="pointing" ) def build_pointing_dataset(split: str, num_proc: int = 10) -> datasets.Dataset: hf_fs = hf_hub.HfFileSystem() chunks = hf_fs.ls(f"datasets/allenai/PRISM/PRISM-{split}", detail=False) urls = [] for chunk in chunks: path = chunk[len("datasets/allenai/PRISM/"):] urls.append(hf_hub.hf_hub_url(repo_id="allenai/PRISM", filename=path, repo_type="dataset")) dl_manager = datasets.DownloadManager(dataset_name="allenai/PRISM", record_checksums=False) paths = dl_manager.download_and_extract(urls) file_loc_map = {} for path in paths: path = str(path) for file in os.listdir(path): file_loc_map[file] = os.path.join(path, file) metadata_ds = datasets.load_dataset("allenai/PRISM", split=split) dataset = metadata_ds.map(lambda ex: map_sample(file_loc_map, ex), num_proc=num_proc) return dataset if __name__ == "__main__": build_pointing_dataset("train") build_pointing_dataset("test") ```
french-datasets/L3-IA-2025_Questions2
french-datasets
2025-06-03T20:37:24Z
0
0
[ "language:fra", "region:us" ]
[]
2025-06-03T20:36:20Z
null
--- language: - fra viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [L3-IA-2025/Questions2](https://huggingface.co/datasets/L3-IA-2025/Questions2).
orcn/v3.2-sqr-img
orcn
2025-06-03T20:13:25Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T20:12:15Z
null
--- dataset_info: features: - name: image1 dtype: image - name: image2 dtype: image - name: image3 dtype: image - name: image4 dtype: image - name: image5 dtype: image - name: image6 dtype: image - name: image7 dtype: image - name: image8 dtype: image - name: image9 dtype: image - name: image10 dtype: image - name: image11 dtype: image - name: image12 dtype: image - name: image13 dtype: image - name: image14 dtype: image - name: image15 dtype: image - name: image16 dtype: image - name: image17 dtype: image - name: image18 dtype: image - name: image19 dtype: image - name: image20 dtype: image - name: image21 dtype: image - name: image22 dtype: image - name: image23 dtype: image - name: image24 dtype: image - name: image25 dtype: image splits: - name: train num_bytes: 109518543.0 num_examples: 500 download_size: 109024852 dataset_size: 109518543.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
daqc/ibero-characters-es
daqc
2025-06-03T20:11:49Z
0
0
[ "task_categories:video-text-to-text", "task_categories:text-generation", "language:es", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "history", "mitología", "storytelling" ]
[ "video-text-to-text", "text-generation" ]
2025-06-03T19:13:09Z
null
--- dataset_info: features: - name: image dtype: image - name: nombre dtype: string - name: pais dtype: string - name: descripcion dtype: string - name: historia dtype: string - name: id dtype: string - name: url_fuentes sequence: string splits: - name: train num_bytes: 1389510 num_examples: 573 download_size: 1219977 dataset_size: 1389510 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 task_categories: - video-text-to-text - text-generation language: - es tags: - history - mitología - storytelling size_categories: - n<1K --- # Conjunto de datos de personajes de mitos y leyendas iberoamericanos. > ⚠️ Este dataset se encuentra en desarrollo activo. Se planea expandir significativamente el número de registros y mejorar la cobertura de imágenes. ## 📚 Descripción Dataset de personajes míticos y legendarios de Iberoamérica, diseñado para preservar y promover el patrimonio cultural a través de la inteligencia artificial. ## 🌟 Motivación e Impacto - 📱 **Preservación Digital**: Conservación del patrimonio cultural iberoamericano - 🤖 **IA Cultural**: Base para modelos culturalmente sensibles - 📖 **Educación**: Recurso para estudios culturales - 🌍 **Accesibilidad**: Democratización de mitos y leyendas ### 📝 Formato de Entrada ```json { "image": "ruta/a/imagen.webp", "nombre": "Nombre del Personaje", "pais": "País de Origen", "descripcion": "Descripción detallada del personaje", "historia": "Historia de origen bajo contexto cultural e histórico", "id": "identificador_unico", "url_fuentes": "https://fuente.com" } ``` ### 📈 Distribución Actual ```json { "total_personajes": 573, "personajes_con_imagen": 18, "personajes_con_null": 555, "paises_representados": 22 } ``` ## 🔄 Proceso de Generación 1. **Recopilación** Extracción manual de fuentes publicas en internet. 2. **Estandarización** Estructuración en formato JSONL 3. **Validación** Revisión manual de entradas y fuentes. ## 💻 Código y Contribución - Este dataset forma parte del proyecto: [Iberotales](https://github.com/mcdaqc/Iberotales/) - 🤝 Contribuciones: Issues y Pull Requests bienvenidos ## F. Citación ``` @misc{ibero-characters-es, title = {Dataset of characters from Ibero-American myths and legends.}, author = {David Quispe}, month = {June}, year = {2025}, url = {https://huggingface.co/datasets/somosnlp-hackathon-2025/ibero-characters-es/} } ``` --- <p align="center"> <em>Este proyecto fue parte de la hackathon de Somos NLP 2025.</em><br> <img src="https://raw.githubusercontent.com/mcdaqc/Iberotales/refs/heads/main/img/logo.png" alt="Somos NLP 2025" width="80" /> </p>
orcn/v3.2-tri-image
orcn
2025-06-03T20:07:10Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T20:06:21Z
null
--- dataset_info: features: - name: image1 dtype: image - name: image2 dtype: image - name: image3 dtype: image - name: image4 dtype: image - name: image5 dtype: image - name: image6 dtype: image - name: image7 dtype: image - name: image8 dtype: image - name: image9 dtype: image - name: image10 dtype: image - name: image11 dtype: image - name: image12 dtype: image - name: image13 dtype: image - name: image14 dtype: image - name: image15 dtype: image - name: image16 dtype: image - name: image17 dtype: image - name: image18 dtype: image - name: image19 dtype: image - name: image20 dtype: image - name: image21 dtype: image - name: image22 dtype: image - name: image23 dtype: image - name: image24 dtype: image - name: image25 dtype: image splits: - name: train num_bytes: 80358257.0 num_examples: 500 download_size: 80004859 dataset_size: 80358257.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
rshoff/lerobot
rshoff
2025-06-03T20:03:53Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-03T19:51:05Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 1699, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.pole": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Blueeeeee/FND_KDD2020_Embeddings
Blueeeeee
2025-06-03T20:02:17Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T20:02:06Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: bert_embeddings sequence: float32 splits: - name: train num_bytes: 31576295 num_examples: 4487 - name: test num_bytes: 3612369 num_examples: 499 download_size: 30960369 dataset_size: 35188664 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
berczig/ocr-10k-qa
berczig
2025-06-03T20:02:08Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:54:29Z
null
--- dataset_info: features: - name: pdf_id dtype: string - name: metadata struct: - name: dataset dtype: string - name: file_path dtype: string - name: math_filter_classification struct: - name: elementary dtype: int64 - name: has_exercises dtype: bool - name: highschool dtype: int64 - name: highschool_competition dtype: int64 - name: research dtype: int64 - name: university dtype: int64 - name: university_competition dtype: int64 - name: paper_score dtype: float64 - name: qa_json_pair list: - name: 'No' dtype: string - name: answer dtype: string - name: category dtype: string - name: problem dtype: string - name: solution dtype: string - name: formatting_error_count dtype: string - name: answer_count dtype: string - name: solution_count dtype: string - name: classification_stats struct: - name: other dtype: int64 splits: - name: train num_bytes: 5384 num_examples: 3 download_size: 10543 dataset_size: 5384 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-XRP-batch-26
ChavyvAkvar
2025-06-03T19:58:13Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T19:57:11Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923447965 num_examples: 1000 download_size: 924486370 dataset_size: 923447965 configs: - config_name: default data_files: - split: train path: data/train-* ---
prerit2k/Bench01-21
prerit2k
2025-06-03T19:48:45Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "first collection" ]
[ "robotics" ]
2025-06-03T19:48:42Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - first collection configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_solo", "total_episodes": 1, "total_frames": 896, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.images.cam_main": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ConseggioLigure/zenamt-document-level
ConseggioLigure
2025-06-03T19:46:30Z
63
0
[ "task_categories:translation", "multilinguality:multilingual", "source_datasets:original", "language:lij", "language:it", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation" ]
2025-04-25T07:29:05Z
null
--- license: cc-by-4.0 size_categories: - 1K<n<10K source_datasets: - original task_categories: - translation pretty_name: ZenaMT (document-level) multilinguality: multilingual language: - lij - it - en dataset_info: features: - name: lij dtype: large_string - name: ita dtype: large_string - name: eng dtype: large_string - name: source dtype: large_string - name: level dtype: large_string splits: - name: train num_bytes: 4396355 num_examples: 10046 - name: validation num_bytes: 14176 num_examples: 79 - name: test num_bytes: 12485 num_examples: 71 download_size: 2527594 dataset_size: 4423016 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # ZenaMT corpus (document-level) This is an Italian – Ligurian (Genoese) parallel corpus covering a number of domains of cultural relevance to Ligurian speakers. Parts of the corpus also contain aligned English translations, available in the column `eng`. Whenever an English translation is not available, the corresponding column is set to `null`. This is the **document-level** version of the corpus. Source elements which were available in document form were retained as full documents, rather than being sentence split, and are marked `level: document`. Some source data -- such as example sentences from our dictionary -- only existed as sentences and are marked `level: sentence`. If you are training a translation model only on sentences, you may be interested in the [sentence-level version of the corpus](https://huggingface.co/datasets/ConseggioLigure/zenamt-sentence-level) which contains the exact same data, but split at the sentence level. **Note:** This is a living corpus. It will receive updates as the sources it draws from keep growing. ## Sources | Subcorpus | Domain | |---------------|--------| | `dictionary` | Example sentences from our [Italian-Genoese dictionary](https://conseggio-ligure.org/en/dictionary/deize/) and other study materials. | | `news` | News from our weekly Ligurian news website [O Zinâ](https://www.ozina.org) | | `proverbs` | Traditional Ligurian proverbs. | | `literature` | Essays on the history of Ligurian literature. | | `dialogues` | Scripted dialogues which capture colloquial usage of the language. | | `web` | Data from several websites managed by our association. | | `stories` | Short stories. | | `entities` | Parallel sentences covering Ligurian toponyms and other culturally-relevant named entities. | | `weather` | User-contributed weather forecasts. | ## Attribution If you use this corpus in your own work, please cite the following paper: ```bibtex @inproceedings{haberland-etal-2024-italian, title = "{I}talian-{L}igurian Machine Translation in Its Cultural Context", author = "Haberland, Christopher R. and Maillard, Jean and Lusito, Stefano", booktitle = "Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024", year = "2024", url = "https://aclanthology.org/2024.sigul-1.21", } ```
canaan000/lerobot
canaan000
2025-06-03T19:02:36Z
0
0
[ "language:en", "license:unknown", "region:us", "art" ]
[]
2025-06-03T19:01:26Z
null
--- license: unknown language: - en tags: - art ---
Duyynh/gigaspeech2_test_with_noise
Duyynh
2025-06-03T18:51:02Z
26
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-02T16:37:09Z
null
--- license: apache-2.0 ---
psg777/pickuptest2031
psg777
2025-06-03T18:41:44Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-03T18:41:38Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.2", "robot_type": "so100", "total_episodes": 8, "total_frames": 2186, "total_tasks": 1, "total_videos": 24, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:8" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.bird": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
andrewdalpino/CAFA5
andrewdalpino
2025-06-03T18:39:43Z
258
1
[ "task_categories:text-classification", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "proteomics", "protein", "gene-ontology" ]
[ "text-classification" ]
2025-05-12T20:58:50Z
null
--- dataset_info: - config_name: all features: - name: id dtype: string - name: sequence dtype: string - name: length dtype: int64 - name: terms sequence: string - name: terms_embedding sequence: float64 - name: taxon_id dtype: string - name: stratum_id dtype: class_label: names: '0': '0' '1': '1' '2': '10' '3': '11' '4': '12' '5': '13' '6': '14' '7': '15' '8': '16' '9': '17' '10': '18' '11': '19' '12': '2' '13': '20' '14': '21' '15': '22' '16': '23' '17': '24' '18': '25' '19': '26' '20': '27' '21': '28' '22': '29' '23': '3' '24': '30' '25': '31' '26': '32' '27': '33' '28': '34' '29': '35' '30': '36' '31': '37' '32': '38' '33': '39' '34': '4' '35': '40' '36': '41' '37': '42' '38': '43' '39': '44' '40': '45' '41': '46' '42': '47' '43': '48' '44': '49' '45': '5' '46': '50' '47': '51' '48': '52' '49': '53' '50': '54' '51': '55' '52': '56' '53': '57' '54': '58' '55': '59' '56': '6' '57': '60' '58': '61' '59': '62' '60': '63' '61': '64' '62': '65' '63': '66' '64': '67' '65': '68' '66': '69' '67': '7' '68': '70' '69': '71' '70': '72' '71': '73' '72': '74' '73': '75' '74': '76' '75': '77' '76': '78' '77': '79' '78': '8' '79': '80' '80': '81' '81': '82' '82': '83' '83': '84' '84': '85' '85': '86' '86': '87' '87': '88' '88': '89' '89': '9' '90': '90' '91': '91' '92': '92' '93': '93' '94': '94' '95': '95' '96': '96' '97': '97' '98': '98' '99': '99' splits: - name: train num_bytes: 193626393.11677656 num_examples: 128021 - name: test num_bytes: 21514715.88322343 num_examples: 14225 download_size: 154163126 dataset_size: 215141109.0 - config_name: bp features: - name: id dtype: string - name: sequence dtype: string - name: length dtype: int64 - name: terms sequence: string - name: terms_embedding sequence: float64 - name: taxon_id dtype: string - name: stratum_id dtype: class_label: names: '0': '0' '1': '1' '2': '10' '3': '11' '4': '12' '5': '13' '6': '14' '7': '15' '8': '16' '9': '17' '10': '18' '11': '19' '12': '2' '13': '20' '14': '21' '15': '22' '16': '23' '17': '24' '18': '25' '19': '26' '20': '27' '21': '28' '22': '29' '23': '3' '24': '30' '25': '31' '26': '32' '27': '33' '28': '34' '29': '35' '30': '36' '31': '37' '32': '38' '33': '39' '34': '4' '35': '40' '36': '41' '37': '42' '38': '43' '39': '44' '40': '45' '41': '46' '42': '47' '43': '48' '44': '49' '45': '5' '46': '50' '47': '51' '48': '52' '49': '53' '50': '54' '51': '55' '52': '56' '53': '57' '54': '58' '55': '59' '56': '6' '57': '60' '58': '61' '59': '62' '60': '63' '61': '64' '62': '65' '63': '66' '64': '67' '65': '68' '66': '69' '67': '7' '68': '70' '69': '71' '70': '72' '71': '73' '72': '74' '73': '75' '74': '76' '75': '77' '76': '78' '77': '79' '78': '8' '79': '80' '80': '81' '81': '82' '82': '83' '83': '84' '84': '85' '85': '86' '86': '87' '87': '88' '88': '89' '89': '9' '90': '90' '91': '91' '92': '92' '93': '93' '94': '94' '95': '95' '96': '96' '97': '97' '98': '98' '99': '99' splits: - name: train num_bytes: 129187926.9 num_examples: 82989 - name: test num_bytes: 14354214.1 num_examples: 9221 download_size: 107191842 dataset_size: 143542141.0 - config_name: cc features: - name: id dtype: string - name: sequence dtype: string - name: length dtype: int64 - name: terms sequence: string - name: terms_embedding sequence: float64 - name: taxon_id dtype: string - name: stratum_id dtype: class_label: names: '0': '0' '1': '1' '2': '10' '3': '11' '4': '12' '5': '13' '6': '14' '7': '15' '8': '16' '9': '17' '10': '18' '11': '19' '12': '2' '13': '20' '14': '21' '15': '22' '16': '23' '17': '24' '18': '25' '19': '26' '20': '27' '21': '28' '22': '29' '23': '3' '24': '30' '25': '31' '26': '32' '27': '33' '28': '34' '29': '35' '30': '36' '31': '37' '32': '38' '33': '39' '34': '4' '35': '40' '36': '41' '37': '42' '38': '43' '39': '44' '40': '45' '41': '46' '42': '47' '43': '48' '44': '49' '45': '5' '46': '50' '47': '51' '48': '52' '49': '53' '50': '54' '51': '55' '52': '56' '53': '57' '54': '58' '55': '59' '56': '6' '57': '60' '58': '61' '59': '62' '60': '63' '61': '64' '62': '65' '63': '66' '64': '67' '65': '68' '66': '69' '67': '7' '68': '70' '69': '71' '70': '72' '71': '73' '72': '74' '73': '75' '74': '76' '75': '77' '76': '78' '77': '79' '78': '8' '79': '80' '80': '81' '81': '82' '82': '83' '83': '84' '84': '85' '85': '86' '86': '87' '87': '88' '88': '89' '89': '9' '90': '90' '91': '91' '92': '92' '93': '93' '94': '94' '95': '95' '96': '96' '97': '97' '98': '98' '99': '99' splits: - name: train num_bytes: 76889746.48893577 num_examples: 83620 - name: test num_bytes: 8544122.511064233 num_examples: 9292 download_size: 64110332 dataset_size: 85433869.0 - config_name: mf features: - name: id dtype: string - name: sequence dtype: string - name: length dtype: int64 - name: terms sequence: string - name: terms_embedding sequence: float64 - name: taxon_id dtype: string - name: stratum_id dtype: class_label: names: '0': '0' '1': '1' '2': '10' '3': '11' '4': '12' '5': '13' '6': '14' '7': '15' '8': '16' '9': '17' '10': '18' '11': '19' '12': '2' '13': '20' '14': '21' '15': '22' '16': '23' '17': '24' '18': '25' '19': '26' '20': '27' '21': '28' '22': '29' '23': '3' '24': '30' '25': '31' '26': '32' '27': '33' '28': '34' '29': '35' '30': '36' '31': '37' '32': '38' '33': '39' '34': '4' '35': '40' '36': '41' '37': '42' '38': '43' '39': '44' '40': '45' '41': '46' '42': '47' '43': '48' '44': '49' '45': '5' '46': '50' '47': '51' '48': '52' '49': '53' '50': '54' '51': '55' '52': '56' '53': '57' '54': '58' '55': '59' '56': '6' '57': '60' '58': '61' '59': '62' '60': '63' '61': '64' '62': '65' '63': '66' '64': '67' '65': '68' '66': '69' '67': '7' '68': '70' '69': '71' '70': '72' '71': '73' '72': '74' '73': '75' '74': '76' '75': '77' '76': '78' '77': '79' '78': '8' '79': '80' '80': '81' '81': '82' '82': '83' '83': '84' '84': '85' '85': '86' '86': '87' '87': '88' '88': '89' '89': '9' '90': '90' '91': '91' '92': '92' '93': '93' '94': '94' '95': '95' '96': '96' '97': '97' '98': '98' '99': '99' splits: - name: train num_bytes: 69470217.72236988 num_examples: 70773 - name: test num_bytes: 7719240.277630123 num_examples: 7864 download_size: 63311313 dataset_size: 77189458.0 configs: - config_name: all data_files: - split: train path: all/train-* - split: test path: all/test-* - config_name: bp data_files: - split: train path: bp/train-* - split: test path: bp/test-* - config_name: cc data_files: - split: train path: cc/train-* - split: test path: cc/test-* - config_name: mf data_files: - split: train path: mf/train-* - split: test path: mf/test-* license: apache-2.0 task_categories: - text-classification tags: - proteomics - protein - gene-ontology pretty_name: CAFA 5 size_categories: - 100K<n<1M --- # CAFA 5 This is the [CAFA 5](https://www.kaggle.com/competitions/cafa-5-protein-function-prediction) dataset of 142k protein sequences annotated with their gene ontology (GO) terms. The samples are divided into three subsets each containing a set of GO terms that are associated with one of the three subgraphs of the gene ontology - Molecular Function, Biological Process, and Cellular Component. In addition, we provide a stratified train/test split that utilizes term embeddings to distribute term labels equally. The term embeddings are included in the dataset and can be used to stratify custom splits or to search for sequences with similar gene ontologies. The code to export this dataset can be found [here](https://github.com/andrewdalpino/CAFA5). ## Subsets The [CAFA 5](https://huggingface.co/datasets/andrewdalpino/CAFA5) dataset is available on HuggingFace Hub and can be loaded using the HuggingFace [Datasets](https://huggingface.co/docs/datasets) library. The dataset is divided into three subsets according to the GO terms that the sequences are annotated with. - `all` - All annotations - `mf` - Only molecular function terms - `cc` - Only celluar component terms - `bp` - Only biological process terms To load the default CAFA 5 dataset with all function annotations you can use the example below. ```python from datasets import load_dataset dataset = load_dataset("andrewdalpino/CAFA5") ``` To load a subset of the CAFA 5 dataset use the example below. ```python dataset = load_dataset("andrewdalpino/CAFA5", "mf") ``` ## Splits We provide a 90/10 `train` and `test` split for your convenience. The subsets were determined using a stratified approach which assigns cluster numbers to sequences based on their terms embeddings. We've included the stratum IDs so that you can generate additional custom stratified splits as shown in the example below. ```python from datasets import load_dataset dataset = load_dataset("andrewdalpino/CAFA5", split="train") dataset = dataset.class_encode_column("stratum_id") dataset = dataset.train_test_split(test_size=0.2, stratify_by_column="stratum_id") ``` ## Filtering You can also filter the samples of the dataset like in the example below. ```python dataset = dataset.filter(lambda sample: sample["length"] <= 2048) ``` ## Tokenizing Some tasks may require you to tokenize the amino acid sequences. In this example, we loop through the samples and add a `tokens` column to store the tokenized sequences. ```python def tokenize(sample: dict): list[int]: tokens = tokenizer.tokenize(sample["sequence"]) sample["tokens"] = tokens return sample dataset = dataset.map(tokenize, remove_columns="sequence") ``` ## Original Dataset Iddo Friedberg, Predrag Radivojac, Clara De Paolis, Damiano Piovesan, Parnal Joshi, Walter Reade, and Addison Howard. CAFA 5 Protein Function Prediction. https://kaggle.com/competitions/cafa-5-protein-function-prediction, 2023. Kaggle.
ChavyvAkvar/synthetic-trades-BNB-batch-8
ChavyvAkvar
2025-06-03T18:38:51Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:37:53Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450564 num_examples: 1000 download_size: 924491710 dataset_size: 923450564 configs: - config_name: default data_files: - split: train path: data/train-* ---
Franklin0/ReasonGen-R1-SFT-230k
Franklin0
2025-06-03T18:37:31Z
101
0
[ "task_categories:text-to-image", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.24875", "region:us" ]
[ "text-to-image" ]
2025-05-27T02:07:00Z
null
--- license: cc-by-4.0 task_categories: - text-to-image configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: type dtype: string - name: brief_caption dtype: string - name: raw_prompt dtype: string - name: sft_prompt dtype: string - name: detailed_caption dtype: string - name: image dtype: string - name: pth dtype: string - name: id dtype: string - name: aesthetic dtype: float32 - name: width dtype: int32 - name: hash dtype: string - name: augmented_prompts struct: - name: short_caption dtype: string - name: paraphrases sequence: string - name: tags sequence: string - name: varied_captions sequence: string - name: object_prompts sequence: string - name: augmented_cots struct: - name: step_by_step dtype: string - name: object_centric sequence: string - name: tags sequence: string - name: region_descriptions sequence: string splits: - name: train num_bytes: 64962413152 num_examples: 234681 download_size: 64231774685 dataset_size: 64962413152 --- SFT Dataset for the paper: ["ReasonGen-R1: Cot for Autoregressive Image generation models through SFT and RL"](https://huggingface.co/papers/2505.24875). Website: https://aka.ms/reasongen Code: https://github.com/Franklin-Zhang0/Image-RL Arxiv: https://arxiv.org/abs/2505.24875
neginr/phi_24K_qwq_6K
neginr
2025-06-03T18:34:20Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:33:02Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 1692722617.642405 num_examples: 30000 download_size: 813744124 dataset_size: 1692722617.642405 configs: - config_name: default data_files: - split: train path: data/train-* ---
yoona-J/ASR_Wav2Vec_Preprocess_Peripheral_Neuropathy_Dataset
yoona-J
2025-06-03T18:11:11Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:07:13Z
null
--- dataset_info: features: - name: input_values sequence: float32 - name: labels sequence: int64 splits: - name: train num_bytes: 4248737624.0 num_examples: 18679 - name: valid num_bytes: 239472624.0 num_examples: 1040 - name: test num_bytes: 234697040.0 num_examples: 1036 download_size: 4570203659 dataset_size: 4722907288.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test path: data/test-* ---
logicalqubit/QA-RRC-DISTRIC-IT-Dataset
logicalqubit
2025-06-03T18:10:34Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:10:32Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 573243 num_examples: 2260 download_size: 197275 dataset_size: 573243 configs: - config_name: default data_files: - split: train path: data/train-* ---
eliasfiz/french-audio-text-pairs
eliasfiz
2025-06-03T18:02:47Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T18:02:39Z
null
--- dataset_info: features: - name: text dtype: string - name: audio dtype: audio splits: - name: train num_bytes: 128869769.0 num_examples: 94 download_size: 126404138 dataset_size: 128869769.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
voidful/earica_ms
voidful
2025-06-03T18:02:46Z
2
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-01T01:55:49Z
null
--- dataset_info: features: - name: question dtype: string - name: reasoning dtype: string - name: answer dtype: string - name: audio dtype: audio - name: index dtype: int64 - name: raw_yaml dtype: string splits: - name: train num_bytes: 2239015.0 num_examples: 4 download_size: 554534 dataset_size: 2239015.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
emrecn/testDataset
emrecn
2025-06-03T17:00:20Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:23:12Z
null
--- dataset_info: features: - name: text dtype: string - name: image dtype: image splits: - name: train num_bytes: 9715304.0 num_examples: 877 download_size: 9622417 dataset_size: 9715304.0 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "testDataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
arnaultsta/MNLP_M3_wikipedia_camel_chunked_300_rest
arnaultsta
2025-06-03T16:59:17Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:56:57Z
null
--- dataset_info: features: - name: question dtype: string - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 123651985 num_examples: 98790 download_size: 67656747 dataset_size: 123651985 configs: - config_name: default data_files: - split: train path: data/train-* ---
un1c0rnio/eval_act_so101_box_pencil3_140000
un1c0rnio
2025-06-03T16:41:34Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-03T16:41:10Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 9, "total_frames": 13523, "total_tasks": 1, "total_videos": 18, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:9" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.base": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.extside": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
tingshiuanlai/motherese-prosody-data
tingshiuanlai
2025-06-03T16:39:23Z
118
0
[ "license:cc-by-4.0", "region:us", "prosody", "speech-features", "librispeech" ]
[]
2025-05-25T21:22:08Z
null
--- license: cc-by-4.0 tags: - prosody - speech-features - librispeech --- # Prosody Features for train-clean-100 This repository contains a pickled `ProsodyFeatureExtractor` object trained on the LibriSpeech `train-clean-100` and `dev-clean` subset. ## Contents - Word-level prosodic features - F0, energy, duration, pause, prominence - Extracted using CELEX-based stress localization ## Format - `.pkl` file — can be loaded using `pickle.load(open(..., "rb"))` - Compatible with JSON serialization
mmosoriov/sampleMMOV2_so100_pick_place
mmosoriov
2025-06-03T16:36:40Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-03T16:36:30Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 1, "total_frames": 1193, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ChavyvAkvar/synthetic-trades-XRP-batch-8
ChavyvAkvar
2025-06-03T16:35:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:34:04Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923448468 num_examples: 1000 download_size: 924423237 dataset_size: 923448468 configs: - config_name: default data_files: - split: train path: data/train-* ---
cobordism/LC_RL_easy
cobordism
2025-06-03T16:30:50Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:30:48Z
null
--- dataset_info: features: - name: image dtype: image - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 14884949.0 num_examples: 1000 download_size: 14291740 dataset_size: 14884949.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
AitorDL/MNLP_DPO_Math
AitorDL
2025-06-03T16:28:31Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:28:28Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 10312166 num_examples: 5398 download_size: 4506138 dataset_size: 10312166 configs: - config_name: default data_files: - split: train path: data/train-* ---
ryota-komatsu/libritts-r-mhubert-2000units
ryota-komatsu
2025-06-03T16:17:09Z
21
0
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-01T11:00:52Z
null
--- license: cc-by-4.0 dataset_info: features: - name: id dtype: string - name: units sequence: int32 - name: transcript dtype: string - name: spectrogram dtype: array2_d: shape: - null - 80 dtype: float32 splits: - name: train num_bytes: 32534599975 num_examples: 354729 - name: dev num_bytes: 526275690 num_examples: 5736 download_size: 32580521122 dataset_size: 33060875665 configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* ---
ChavyvAkvar/synthetic-trades-XRP-batch-6
ChavyvAkvar
2025-06-03T16:15:58Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:15:06Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923448192 num_examples: 1000 download_size: 924486040 dataset_size: 923448192 configs: - config_name: default data_files: - split: train path: data/train-* ---
QuanHoangNgoc/cmp_dataset_train
QuanHoangNgoc
2025-06-03T16:14:42Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:38:45Z
null
--- dataset_info: features: - name: text dtype: string - name: audio_file dtype: string - name: audio_array16 sequence: float32 splits: - name: train num_bytes: 18767276449 num_examples: 15023 download_size: 18765515647 dataset_size: 18767276449 configs: - config_name: default data_files: - split: train path: data/train-* ---
lukebarousse/data_jobs
lukebarousse
2025-06-03T16:13:27Z
10,138
42
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-03-21T01:33:05Z
null
--- license: apache-2.0 --- # 🧠 data_jobs Dataset A dataset of real-world data analytics job postings from 2023, collected and processed by Luke Barousse. ## Background I've been collecting data on data job postings since 2022. I've been using a bot to scrape the data from Google, which come from a variety of sources. You can find the full dataset at my app [datanerd.tech](https://datanerd.tech). > [Serpapi](https://serpapi.com/) has kindly supported my work by providing me access to their API. Tell them I sent you and get 20% off paid plans. ## 📘 Data Dictionary | Column Name | Description | Type | Source | |-------------------------|-----------------------------------------------------------------------------|--------------|------------------| | `job_title_short` | Cleaned/standardized job title using BERT model (10-class classification) | Calculated | From `job_title` | | `job_title` | Full original job title as scraped | Raw | Scraped | | `job_location` | Location string shown in job posting | Raw | Scraped | | `job_via` | Platform the job was posted on (e.g., LinkedIn, Jobijoba) | Raw | Scraped | | `job_schedule_type` | Type of schedule (Full-time, Part-time, Contractor, etc.) | Raw | Scraped | | `job_work_from_home` | Whether the job is remote (`true`/`false`) | Boolean | Parsed | | `search_location` | Location used by the bot to generate search queries | Generated | Bot logic | | `job_posted_date` | Date and time when job was posted | Raw | Scraped | | `job_no_degree_mention` | Whether the posting explicitly mentions no degree is required | Boolean | Parsed | | `job_health_insurance` | Whether the job mentions health insurance | Boolean | Parsed | | `job_country` | Country extracted from job location | Calculated | Parsed | | `salary_rate` | Indicates if salary is annual or hourly | Raw | Scraped | | `salary_year_avg` | Average yearly salary (calculated from salary ranges when available) | Calculated | Derived | | `salary_hour_avg` | Average hourly salary (same logic as yearly) | Calculated | Derived | | `company_name` | Company name listed in job posting | Raw | Scraped | | `job_skills` | List of relevant skills extracted from job posting using PySpark | Parsed List | NLP Extracted | | `job_type_skills` | Dictionary mapping skill types (e.g., 'cloud', 'libraries') to skill sets | Parsed Dict | NLP Extracted |
ChavyvAkvar/synthetic-trades-BTC-batch-3
ChavyvAkvar
2025-06-03T16:11:24Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:10:21Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450698 num_examples: 1000 download_size: 924474743 dataset_size: 923450698 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-XRP-batch-5
ChavyvAkvar
2025-06-03T16:04:59Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:04:01Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923448042 num_examples: 1000 download_size: 924453904 dataset_size: 923448042 configs: - config_name: default data_files: - split: train path: data/train-* ---
RikSaint/neck_surface_vibration_dataset
RikSaint
2025-06-03T16:03:04Z
0
0
[ "language:en", "license:apache-2.0", "region:us" ]
[]
2025-06-03T15:57:04Z
null
--- license: apache-2.0 language: - en pretty_name: O ---
anonloftune/insurance-30-sft
anonloftune
2025-06-03T16:02:45Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T16:02:41Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 14864388 num_examples: 16370 - name: validation num_bytes: 1713240 num_examples: 1980 download_size: 5913674 dataset_size: 16577628 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
mmmanuel/stackexchange_dpo_stem
mmmanuel
2025-06-03T16:01:59Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:41:26Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: small num_bytes: 36036813 num_examples: 9794 download_size: 20266001 dataset_size: 36036813 configs: - config_name: default data_files: - split: small path: data/small-* ---
zwa73/SoulTide-ImageData-Dataset
zwa73
2025-06-03T15:44:49Z
475
0
[ "license:cc0-1.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-05T08:20:46Z
null
--- configs: - config_name: Akaset data_files: - split: categorized path: - "character/Akaset/categorized/**/*.png" - "character/Akaset/categorized/**/*.jpg" - "character/Akaset/categorized/metadata.csv" - split: processed path: - "character/Akaset/processed/**/*.png" - "character/Akaset/processed/metadata.csv" - config_name: Alisa data_files: - split: categorized path: - "character/Alisa/categorized/**/*.png" - "character/Alisa/categorized/**/*.jpg" - "character/Alisa/categorized/metadata.csv" - split: processed path: - "character/Alisa/processed/**/*.png" - "character/Alisa/processed/metadata.csv" - config_name: AmaneInori data_files: - split: categorized path: - "character/AmaneInori/categorized/**/*.png" - "character/AmaneInori/categorized/**/*.jpg" - "character/AmaneInori/categorized/metadata.csv" - split: processed path: - "character/AmaneInori/processed/**/*.png" - "character/AmaneInori/processed/metadata.csv" - config_name: Andrea data_files: - split: categorized path: - "character/Andrea/categorized/**/*.png" - "character/Andrea/categorized/**/*.jpg" - "character/Andrea/categorized/metadata.csv" - split: processed path: - "character/Andrea/processed/**/*.png" - "character/Andrea/processed/metadata.csv" - config_name: Antonina data_files: - split: categorized path: - "character/Antonina/categorized/**/*.png" - "character/Antonina/categorized/**/*.jpg" - "character/Antonina/categorized/metadata.csv" - split: processed path: - "character/Antonina/processed/**/*.png" - "character/Antonina/processed/metadata.csv" - config_name: Aoling data_files: - split: categorized path: - "character/Aoling/categorized/**/*.png" - "character/Aoling/categorized/**/*.jpg" - "character/Aoling/categorized/metadata.csv" - split: processed path: - "character/Aoling/processed/**/*.png" - "character/Aoling/processed/metadata.csv" - config_name: Asuna data_files: - split: categorized path: - "character/Asuna/categorized/**/*.png" - "character/Asuna/categorized/**/*.jpg" - "character/Asuna/categorized/metadata.csv" - split: processed path: - "character/Asuna/processed/**/*.png" - "character/Asuna/processed/metadata.csv" - config_name: Aurora data_files: - split: categorized path: - "character/Aurora/categorized/**/*.png" - "character/Aurora/categorized/**/*.jpg" - "character/Aurora/categorized/metadata.csv" - split: processed path: - "character/Aurora/processed/**/*.png" - "character/Aurora/processed/metadata.csv" - config_name: Benten data_files: - split: categorized path: - "character/Benten/categorized/**/*.png" - "character/Benten/categorized/**/*.jpg" - "character/Benten/categorized/metadata.csv" - split: processed path: - "character/Benten/processed/**/*.png" - "character/Benten/processed/metadata.csv" - config_name: Cecilia data_files: - split: categorized path: - "character/Cecilia/categorized/**/*.png" - "character/Cecilia/categorized/**/*.jpg" - "character/Cecilia/categorized/metadata.csv" - split: processed path: - "character/Cecilia/processed/**/*.png" - "character/Cecilia/processed/metadata.csv" - config_name: Clarice data_files: - split: categorized path: - "character/Clarice/categorized/**/*.png" - "character/Clarice/categorized/**/*.jpg" - "character/Clarice/categorized/metadata.csv" - split: processed path: - "character/Clarice/processed/**/*.png" - "character/Clarice/processed/metadata.csv" - config_name: Clotho data_files: - split: categorized path: - "character/Clotho/categorized/**/*.png" - "character/Clotho/categorized/**/*.jpg" - "character/Clotho/categorized/metadata.csv" - split: processed path: - "character/Clotho/processed/**/*.png" - "character/Clotho/processed/metadata.csv" - config_name: Colcher data_files: - split: categorized path: - "character/Colcher/categorized/**/*.png" - "character/Colcher/categorized/**/*.jpg" - "character/Colcher/categorized/metadata.csv" - split: processed path: - "character/Colcher/processed/**/*.png" - "character/Colcher/processed/metadata.csv" - config_name: Dolores data_files: - split: categorized path: - "character/Dolores/categorized/**/*.png" - "character/Dolores/categorized/**/*.jpg" - "character/Dolores/categorized/metadata.csv" - split: processed path: - "character/Dolores/processed/**/*.png" - "character/Dolores/processed/metadata.csv" - config_name: Dora data_files: - split: categorized path: - "character/Dora/categorized/**/*.png" - "character/Dora/categorized/**/*.jpg" - "character/Dora/categorized/metadata.csv" - split: processed path: - "character/Dora/processed/**/*.png" - "character/Dora/processed/metadata.csv" - config_name: Dreizehn data_files: - split: categorized path: - "character/Dreizehn/categorized/**/*.png" - "character/Dreizehn/categorized/**/*.jpg" - "character/Dreizehn/categorized/metadata.csv" - split: processed path: - "character/Dreizehn/processed/**/*.png" - "character/Dreizehn/processed/metadata.csv" - config_name: Ennis data_files: - split: categorized path: - "character/Ennis/categorized/**/*.png" - "character/Ennis/categorized/**/*.jpg" - "character/Ennis/categorized/metadata.csv" - split: processed path: - "character/Ennis/processed/**/*.png" - "character/Ennis/processed/metadata.csv" - config_name: Erinnern data_files: - split: categorized path: - "character/Erinnern/categorized/**/*.png" - "character/Erinnern/categorized/**/*.jpg" - "character/Erinnern/categorized/metadata.csv" - split: processed path: - "character/Erinnern/processed/**/*.png" - "character/Erinnern/processed/metadata.csv" - config_name: EtsukazuMiko data_files: - split: categorized path: - "character/EtsukazuMiko/categorized/**/*.png" - "character/EtsukazuMiko/categorized/**/*.jpg" - "character/EtsukazuMiko/categorized/metadata.csv" - split: processed path: - "character/EtsukazuMiko/processed/**/*.png" - "character/EtsukazuMiko/processed/metadata.csv" - config_name: Freesia data_files: - split: categorized path: - "character/Freesia/categorized/**/*.png" - "character/Freesia/categorized/**/*.jpg" - "character/Freesia/categorized/metadata.csv" - split: processed path: - "character/Freesia/processed/**/*.png" - "character/Freesia/processed/metadata.csv" - config_name: Gawana data_files: - split: categorized path: - "character/Gawana/categorized/**/*.png" - "character/Gawana/categorized/**/*.jpg" - "character/Gawana/categorized/metadata.csv" - split: processed path: - "character/Gawana/processed/**/*.png" - "character/Gawana/processed/metadata.csv" - config_name: HagakureRuri data_files: - split: categorized path: - "character/HagakureRuri/categorized/**/*.png" - "character/HagakureRuri/categorized/**/*.jpg" - "character/HagakureRuri/categorized/metadata.csv" - split: processed path: - "character/HagakureRuri/processed/**/*.png" - "character/HagakureRuri/processed/metadata.csv" - config_name: Haliva data_files: - split: categorized path: - "character/Haliva/categorized/**/*.png" - "character/Haliva/categorized/**/*.jpg" - "character/Haliva/categorized/metadata.csv" - split: processed path: - "character/Haliva/processed/**/*.png" - "character/Haliva/processed/metadata.csv" - config_name: HazukiYuki data_files: - split: categorized path: - "character/HazukiYuki/categorized/**/*.png" - "character/HazukiYuki/categorized/**/*.jpg" - "character/HazukiYuki/categorized/metadata.csv" - split: processed path: - "character/HazukiYuki/processed/**/*.png" - "character/HazukiYuki/processed/metadata.csv" - config_name: HeLing data_files: - split: categorized path: - "character/HeLing/categorized/**/*.png" - "character/HeLing/categorized/**/*.jpg" - "character/HeLing/categorized/metadata.csv" - split: processed path: - "character/HeLing/processed/**/*.png" - "character/HeLing/processed/metadata.csv" - config_name: Ithil data_files: - split: categorized path: - "character/Ithil/categorized/**/*.png" - "character/Ithil/categorized/**/*.jpg" - "character/Ithil/categorized/metadata.csv" - split: processed path: - "character/Ithil/processed/**/*.png" - "character/Ithil/processed/metadata.csv" - config_name: JoanofArcLoire data_files: - split: categorized path: - "character/JoanofArcLoire/categorized/**/*.png" - "character/JoanofArcLoire/categorized/**/*.jpg" - "character/JoanofArcLoire/categorized/metadata.csv" - split: processed path: - "character/JoanofArcLoire/processed/**/*.png" - "character/JoanofArcLoire/processed/metadata.csv" - config_name: Juewa data_files: - split: categorized path: - "character/Juewa/categorized/**/*.png" - "character/Juewa/categorized/**/*.jpg" - "character/Juewa/categorized/metadata.csv" - split: processed path: - "character/Juewa/processed/**/*.png" - "character/Juewa/processed/metadata.csv" - config_name: LightCloud data_files: - split: categorized path: - "character/LightCloud/categorized/**/*.png" - "character/LightCloud/categorized/**/*.jpg" - "character/LightCloud/categorized/metadata.csv" - split: processed path: - "character/LightCloud/processed/**/*.png" - "character/LightCloud/processed/metadata.csv" - config_name: Lilyiro data_files: - split: categorized path: - "character/Lilyiro/categorized/**/*.png" - "character/Lilyiro/categorized/**/*.jpg" - "character/Lilyiro/categorized/metadata.csv" - split: processed path: - "character/Lilyiro/processed/**/*.png" - "character/Lilyiro/processed/metadata.csv" - config_name: Louisa data_files: - split: categorized path: - "character/Louisa/categorized/**/*.png" - "character/Louisa/categorized/**/*.jpg" - "character/Louisa/categorized/metadata.csv" - split: processed path: - "character/Louisa/processed/**/*.png" - "character/Louisa/processed/metadata.csv" - config_name: Micha data_files: - split: categorized path: - "character/Micha/categorized/**/*.png" - "character/Micha/categorized/**/*.jpg" - "character/Micha/categorized/metadata.csv" - split: processed path: - "character/Micha/processed/**/*.png" - "character/Micha/processed/metadata.csv" - config_name: Minerdwen data_files: - split: categorized path: - "character/Minerdwen/categorized/**/*.png" - "character/Minerdwen/categorized/**/*.jpg" - "character/Minerdwen/categorized/metadata.csv" - split: processed path: - "character/Minerdwen/processed/**/*.png" - "character/Minerdwen/processed/metadata.csv" - config_name: Mist data_files: - split: categorized path: - "character/Mist/categorized/**/*.png" - "character/Mist/categorized/**/*.jpg" - "character/Mist/categorized/metadata.csv" - split: processed path: - "character/Mist/processed/**/*.png" - "character/Mist/processed/metadata.csv" - config_name: NankungLin data_files: - split: categorized path: - "character/NankungLin/categorized/**/*.png" - "character/NankungLin/categorized/**/*.jpg" - "character/NankungLin/categorized/metadata.csv" - split: processed path: - "character/NankungLin/processed/**/*.png" - "character/NankungLin/processed/metadata.csv" - config_name: Netsuki data_files: - split: categorized path: - "character/Netsuki/categorized/**/*.png" - "character/Netsuki/categorized/**/*.jpg" - "character/Netsuki/categorized/metadata.csv" - split: processed path: - "character/Netsuki/processed/**/*.png" - "character/Netsuki/processed/metadata.csv" - config_name: NicoletteLamel data_files: - split: categorized path: - "character/NicoletteLamel/categorized/**/*.png" - "character/NicoletteLamel/categorized/**/*.jpg" - "character/NicoletteLamel/categorized/metadata.csv" - split: processed path: - "character/NicoletteLamel/processed/**/*.png" - "character/NicoletteLamel/processed/metadata.csv" - config_name: Philodoxy data_files: - split: categorized path: - "character/Philodoxy/categorized/**/*.png" - "character/Philodoxy/categorized/**/*.jpg" - "character/Philodoxy/categorized/metadata.csv" - split: processed path: - "character/Philodoxy/processed/**/*.png" - "character/Philodoxy/processed/metadata.csv" - config_name: QingHao data_files: - split: categorized path: - "character/QingHao/categorized/**/*.png" - "character/QingHao/categorized/**/*.jpg" - "character/QingHao/categorized/metadata.csv" - split: processed path: - "character/QingHao/processed/**/*.png" - "character/QingHao/processed/metadata.csv" - config_name: QuLing data_files: - split: categorized path: - "character/QuLing/categorized/**/*.png" - "character/QuLing/categorized/**/*.jpg" - "character/QuLing/categorized/metadata.csv" - split: processed path: - "character/QuLing/processed/**/*.png" - "character/QuLing/processed/metadata.csv" - config_name: RubyRose data_files: - split: categorized path: - "character/RubyRose/categorized/**/*.png" - "character/RubyRose/categorized/**/*.jpg" - "character/RubyRose/categorized/metadata.csv" - split: processed path: - "character/RubyRose/processed/**/*.png" - "character/RubyRose/processed/metadata.csv" - config_name: SakuyaMako data_files: - split: categorized path: - "character/SakuyaMako/categorized/**/*.png" - "character/SakuyaMako/categorized/**/*.jpg" - "character/SakuyaMako/categorized/metadata.csv" - split: processed path: - "character/SakuyaMako/processed/**/*.png" - "character/SakuyaMako/processed/metadata.csv" - config_name: Satya data_files: - split: categorized path: - "character/Satya/categorized/**/*.png" - "character/Satya/categorized/**/*.jpg" - "character/Satya/categorized/metadata.csv" - split: processed path: - "character/Satya/processed/**/*.png" - "character/Satya/processed/metadata.csv" - config_name: Silenus data_files: - split: categorized path: - "character/Silenus/categorized/**/*.png" - "character/Silenus/categorized/**/*.jpg" - "character/Silenus/categorized/metadata.csv" - split: processed path: - "character/Silenus/processed/**/*.png" - "character/Silenus/processed/metadata.csv" - config_name: Truda data_files: - split: categorized path: - "character/Truda/categorized/**/*.png" - "character/Truda/categorized/**/*.jpg" - "character/Truda/categorized/metadata.csv" - split: processed path: - "character/Truda/processed/**/*.png" - "character/Truda/processed/metadata.csv" - config_name: TsukinoMiyo data_files: - split: categorized path: - "character/TsukinoMiyo/categorized/**/*.png" - "character/TsukinoMiyo/categorized/**/*.jpg" - "character/TsukinoMiyo/categorized/metadata.csv" - split: processed path: - "character/TsukinoMiyo/processed/**/*.png" - "character/TsukinoMiyo/processed/metadata.csv" - config_name: Virgina data_files: - split: categorized path: - "character/Virgina/categorized/**/*.png" - "character/Virgina/categorized/**/*.jpg" - "character/Virgina/categorized/metadata.csv" - split: processed path: - "character/Virgina/processed/**/*.png" - "character/Virgina/processed/metadata.csv" license: cc0-1.0 --- character ____[char] ______resource - 原始资源 ________rotate - 旋转变体资源 ________alpha_bg - 透明背景的资源 ________white_bg - 从透明背景添加黑色背景的资源 ________black_bg - 从透明背景添加白色背景的资源 ________unused - 不使用的资源 ________ready - 准备使用但还未分类的资源 ______categorized - 分类完成的资源 ______processed - 完成预处理的资源 ______training_set - 以 [训练次数_概念] 命名的训练集 搭配此管理器来生成所需的训练集: https://github.com/Sosarciel/SoulTide-ImageData-Manager
apurvaga/go-browse-wa
apurvaga
2025-06-03T15:30:37Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:30:03Z
null
--- dataset_info: features: - name: step_idx dtype: int64 - name: step_data struct: - name: prompt list: - name: role dtype: string - name: content dtype: string - name: completion list: - name: role dtype: string - name: content dtype: string - name: traj_reward dtype: float64 - name: next_step_idx dtype: int64 - name: traj_length dtype: int64 - name: step_number dtype: int64 splits: - name: train num_bytes: 4062141934 num_examples: 164533 download_size: 848108687 dataset_size: 4062141934 configs: - config_name: default data_files: - split: train path: data/train-* ---
amaurypllx/MNLP_test_dataset
amaurypllx
2025-06-03T15:22:46Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T15:22:44Z
null
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string splits: - name: test num_bytes: 1812781 num_examples: 5342 download_size: 948077 dataset_size: 1812781 configs: - config_name: default data_files: - split: test path: data/test-* ---
LiuYuanCheng/rl_think
LiuYuanCheng
2025-06-03T15:15:02Z
0
0
[ "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T14:55:27Z
null
--- configs: - config_name: gsm8k data_files: - split: train path: gsm8k_rl_think/train/gsm8k_rl_think.jsonl - config_name: kk data_files: - split: train path: kk_rl_think/train/kk_rl_think.jsonl - config_name: math data_files: - split: train path: math_rl_think/train/math_rl_think.jsonl - config_name: orca data_files: - split: train path: orca_rl_think/train/orca_rl_think.jsonl ---