datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-07 12:14:51
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-07 12:14:06
trending_score
float64
0
40
card
large_stringlengths
31
1.01M
TAUR-dev/qwen2.5_1.5B__2d_retries_eval_fixed__EXTRA
TAUR-dev
2025-06-06T01:17:05Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T21:51:42Z
null
--- dataset_info: features: - name: question dtype: string - name: solution dtype: string - name: model_responses sequence: string - name: is_model_response_correct__correctness_reasoning sequence: string - name: is_model_response_correct__final_answer sequence: string - name: is_model_response_correct__correctness_prompt sequence: string - name: is_model_response_correct sequence: bool splits: - name: train num_bytes: 11112627 num_examples: 1000 download_size: 3702681 dataset_size: 11112627 configs: - config_name: default data_files: - split: train path: data/train-* ---
trentmkelly/lots-of-essays
trentmkelly
2025-06-06T01:12:40Z
55
0
[ "language:en", "size_categories:100K<n<1M", "region:us" ]
[]
2025-05-30T21:20:59Z
null
--- language: - en pretty_name: Lots of essays size_categories: - 100K<n<1M --- # Essay Dataset Collection This repository contains a unified collection of essay datasets combined into a single JSONL format for research and analysis purposes. ## Overview The combined dataset aggregates essays from multiple high-quality sources, providing a diverse corpus of student writing across different contexts, grade levels, and assessment frameworks. All data has been standardized into a consistent format while preserving original metadata. ## Dataset Statistics | Source Dataset | Row Count | Description | |----------------|-----------|-------------| | ASAP2 | 24,728 | Automated Student Assessment Prize dataset with scored essays | | Feedback Prize ELL | 3,911 | English Language Learning essays with proficiency scores | | PERSUADE | 173,266 | Discourse-annotated persuasive essays with effectiveness ratings | | IvyPanda Essays | 128,293 | Academic essays from IvyPanda educational platform | | **Total** | **330,198** | **Combined unified dataset** | ## File Structure - `combined_essays.jsonl` - Main unified dataset file - `combine_datasets.py` - Processing script for data combination - Individual source files: - `ASAP2_train_sourcetexts.csv` - `train.csv`, `test.csv`, `sample_submission.csv` (Feedback Prize ELL) - `persuade_train_srctexts.csv` - `ivypanda_essays_train.csv` ## Data Format Each line in `combined_essays.jsonl` contains a JSON object with the following structure: ```json { "text": "Essay content text...", "source": "Dataset source name", "extra_data": { "original_field_1": "value", "original_field_2": "value" } } ``` ### Fields - **text**: The essay content/text - **source**: Source dataset name for attribution - **extra_data**: All original metadata fields preserved from source datasets ## Source Dataset Details ### ASAP2 (Automated Student Assessment Prize) - **Records**: 24,728 - **Content**: Student essays with holistic scores (1-4 scale) - **Features**: Demographics, assignment prompts, source texts - **Use Case**: Automated essay scoring research ### Feedback Prize ELL (English Language Learning) - **Records**: 3,911 - **Content**: Student essays with language proficiency dimensions - **Features**: Cohesion, syntax, vocabulary, phraseology, grammar, conventions scores - **Use Case**: English language proficiency assessment ### PERSUADE - **Records**: 173,266 - **Content**: Discourse-level annotated persuasive essays - **Features**: Discourse types (Lead, Claim, Evidence), effectiveness ratings, hierarchical structure - **Use Case**: Argumentation quality analysis, discourse analysis ### IvyPanda Essays - **Records**: 128,293 - **Content**: Academic essays from educational platform - **Features**: Original source attribution - **Use Case**: General essay analysis, academic writing research ## Attribution Please cite the original dataset creators when using this combined corpus: - **ASAP2**: Automated Student Assessment Prize dataset - **Feedback Prize ELL**: Kaggle Feedback Prize - English Language Learning competition - **PERSUADE**: The Learning Agency Lab - PERSUADE corpus - **IvyPanda Essays**: qwedsacf/ivypanda-essays (Hugging Face) ## Usage Load the dataset in Python: ```python import json essays = [] with open('combined_essays.jsonl', 'r', encoding='utf-8') as f: for line in f: essays.append(json.loads(line)) print(f"Loaded {len(essays)} essays") ``` Filter by source: ```python asap2_essays = [essay for essay in essays if essay['source'] == 'ASAP2'] ``` ## License ### Source Dataset Licenses - **ASAP2**: Licensed under CC BY (Creative Commons Attribution) - **Feedback Prize ELL**: Subject to Kaggle competition rules and terms - **PERSUADE**: Subject to Kaggle competition rules and terms (uncertain) - **IvyPanda Essays**: License terms unknown - please verify with original source ### Combined Dataset License This combined dataset is licensed under **CC BY (Creative Commons Attribution)** for lack of a more comprehensive licensing option. **Important Note**: This license may change if any of the original copyright holders request modifications or object to the current licensing terms. Users should be aware that licensing terms are subject to change based on the requirements of the source dataset providers. Please respect the original licenses and terms of use for each source dataset. This compilation is provided for research and educational purposes.
lyl472324464/pick_place
lyl472324464
2025-06-06T01:12:08Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-06T01:05:53Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "aloha", "total_episodes": 3, "total_frames": 2380, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 50, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "action": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "observation.images.cam_high": { "dtype": "image", "shape": [ 3, 256, 256 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_low": { "dtype": "image", "shape": [ 3, 256, 256 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_left_wrist": { "dtype": "image", "shape": [ 3, 256, 256 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_right_wrist": { "dtype": "image", "shape": [ 3, 256, 256 ], "names": [ "channels", "height", "width" ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
hamishivi/OpenThoughts2-1M
hamishivi
2025-06-06T01:09:55Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T23:51:10Z
null
--- dataset_info: features: - name: difficulty dtype: int64 - name: source dtype: string - name: domain dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 59769369575 num_examples: 1200000 download_size: 28182281878 dataset_size: 59769369575 configs: - config_name: default data_files: - split: train path: data/train-* ---
datonic/world_development_indicators
datonic
2025-06-06T01:04:03Z
58
0
[ "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-07T18:08:09Z
null
--- license: mit --- # world_development_indicators World Development Indicators (WDI) is the World Bank's premier compilation of cross-country comparable data on development. Bulk data download is available at https://datatopics.worldbank.org/world-development-indicators/ This dataset is produced and published automatically by [Datadex](https://github.com/davidgasquez/datadex), a fully open-source, serverless, and local-first Data Platform that improves how communities collaborate on Open Data. ## Dataset Details - **Number of rows:** 8883048 - **Number of columns:** 6
sincostangerines/stack_cubes_30
sincostangerines
2025-06-06T00:59:14Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-05T22:43:29Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 9, "total_frames": 6259, "total_tasks": 1, "total_videos": 18, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:9" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Ibisbill/hash_deduplicated_reasoning_data_english
Ibisbill
2025-06-06T00:54:55Z
0
0
[ "task_categories:text-generation", "language:zh", "language:en", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "english", "text-generation", "instruction-following", "sft", "filtered" ]
[ "text-generation" ]
2025-06-06T00:54:34Z
null
--- language: - zh - en tags: - english - text-generation - instruction-following - sft - filtered size_categories: - 10K<n<100K task_categories: - text-generation dataset_info: features: - name: question dtype: string - name: quality dtype: string - name: difficulty dtype: string - name: topic dtype: string - name: validity dtype: string splits: - name: train num_examples: 72710 configs: - config_name: default data_files: - split: train path: hash_deduplicated_reasoning_data_english.jsonl --- # hash_deduplicated_reasoning_data_english ## 数据集描述 Hash deduplicated reasoning data filtered from OpenThoughts2-1M, 72710 examples in total ## 文件结构 - `hash_deduplicated_reasoning_data_english.jsonl`: 主数据文件(JSONL格式) ## 数据格式 数据集包含以下字段: - **question**: str - **quality**: int - **difficulty**: int - **topic**: str - **validity**: int ## 使用方法 ### 方法1: 使用datasets库 ```python from datasets import load_dataset # 加载数据集 dataset = load_dataset("Ibisbill/hash_deduplicated_reasoning_data_english") print(dataset) ``` ### 方法2: 直接下载JSONL文件 ```python from huggingface_hub import hf_hub_download import json # 下载文件 file_path = hf_hub_download( repo_id="Ibisbill/hash_deduplicated_reasoning_data_english", filename="hash_deduplicated_reasoning_data_english.jsonl", repo_type="dataset" ) # 读取JSONL data = [] with open(file_path, 'r', encoding='utf-8') as f: for line in f: data.append(json.loads(line)) print(f"加载了 {len(data)} 条记录") ``` ## 示例数据 ```json { "question": "Generate an executable Python function generated from the given prompt. The function should take stdin as input and print the output. Simply call the function after the definition.You went to the store, selling $n$ types of chocolates. There are $a_i$ chocolates of type $i$ in stock.\n\nYou have unlimited amount of cash (so you are not restricted by any prices) and want to buy as many chocolates as possible. However if you buy $x_i$ chocolates of type $i$ (clearly, $0 \\le x_i \\le a_i$), then for all $1 \\le j < i$ at least one of the following must hold: $x_j = 0$ (you bought zero chocolates of type $j$) $x_j < x_i$ (you bought less chocolates of type $j$ than of type $i$) \n\nFor example, the array $x = [0, 0, 1, 2, 10]$ satisfies the requirement above (assuming that all $a_i \\ge x_i$), while arrays $x = [0, 1, 0]$, $x = [5, 5]$ and $x = [3, 2]$ don't.\n\nCalculate the maximum number of chocolates you can buy.\n\n\n-----Input-----\n\nThe first line contains an integer $n$ ($1 \\le n \\le 2 \\cdot 10^5$), denoting the number of types of chocolate.\n\nThe next line contains $n$ integers $a_i$ ($1 \\le a_i \\le 10^9$), denoting the number of chocolates of each type.\n\n\n-----Output-----\n\nPrint the maximum number of chocolates you can buy.\n\n\n-----Examples-----\nInput\n5\n1 2 1 3 6\n\nOutput\n10\nInput\n5\n3 2 5 4 10\n\nOutput\n20\nInput\n4\n1 1 1 1\n\nOutput\n1\n\n\n-----Note-----\n\nIn the first example, it is optimal to buy: $0 + 0 + 1 + 3 + 6$ chocolates.\n\nIn the second example, it is optimal to buy: $1 + 2 + 3 + 4 + 10$ chocolates.\n\nIn the third example, it is optimal to buy: $0 + 0 + 0 + 1$ chocolates.\n", "quality": 9, "difficulty": 8, "topic": "Reasoning", "validity": 1 } ``` ## 数据统计 - 总样本数: 72710 - 数据格式: JSONL - 文件大小: 约 72 MB
phucminh/test
phucminh
2025-06-06T00:52:21Z
0
0
[ "language:vi", "license:apache-2.0", "region:us" ]
[]
2025-06-06T00:51:03Z
null
--- license: apache-2.0 language: - vi ---
thailevann/Government_services_QA_v6
thailevann
2025-06-06T00:36:42Z
376
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T03:08:21Z
null
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: label dtype: float64 - name: relevant dtype: string - name: reason dtype: string - name: reason_classification dtype: string splits: - name: train num_bytes: 85587309 num_examples: 27466 download_size: 20940326 dataset_size: 85587309 configs: - config_name: default data_files: - split: train path: data/train-* ---
randall-lab/mpi3d-toy
randall-lab
2025-06-06T00:24:04Z
0
0
[ "license:cc-by-4.0", "region:us" ]
[]
2025-06-05T21:17:59Z
null
--- license: cc-by-4.0 --- # Dataset Card for MPI3D-toy ## Dataset Description The **MPI3D-toy dataset** is a **synthetically rendered image dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**. It is part of the broader MPI3D dataset suite, which also includes [realistic simulated](https://huggingface.co/datasets/randall-lab/mpi3d-realistic), [real-world](https://huggingface.co/datasets/randall-lab/mpi3d-real) and [complex real-world](https://huggingface.co/datasets/randall-lab/mpi3d-complex)variants. The **toy version** was generated using a **simplified computer graphics renderer** (Quicksilver hardware renderer in Autodesk 3ds Max), based on CAD models of a physical robotic setup. This allows researchers to systematically study **sim-to-real transfer** and the effect of simulation fidelity. All images depict **physical 3D objects** that would be manipulated by a robotic platform, under **controlled variations of 7 known factors**: - Object color (6 values) - Object shape (6 values) - Object size (2 values) - Camera height (3 values) - Background color (3 values) - Robotic arm horizontal axis (40 values) - Robotic arm vertical axis (40 values) The dataset contains **1,036,800 images** at a resolution of **64×64 pixels**, representing the full Cartesian product of these factors. All factors are **identical** to those used in the realistic and real-world versions of MPI3D, enabling direct comparisons between different levels of simulation fidelity. ![Dataset Visualization](https://huggingface.co/datasets/randall-lab/mpi3d-toy/resolve/main/toy1.gif) ## Dataset Source - **Homepage**: [https://github.com/rr-learning/disentanglement_dataset](https://github.com/rr-learning/disentanglement_dataset) - **License**: [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) - **Paper**: Muhammad Waleed Gondal et al. _On the Transfer of Inductive Bias from Simulation to the Real World: A New Disentanglement Dataset_. NeurIPS 2019. ## Dataset Structure |Factors|Possible Values| |---|---| |object_color|white=0, green=1, red=2, blue=3, brown=4, olive=5| |object_shape|cone=0, cube=1, cylinder=2, hexagonal=3, pyramid=4, sphere=5| |object_size|small=0, large=1| |camera_height|top=0, center=1, bottom=2| |background_color|purple=0, sea green=1, salmon=2| |horizontal_axis (DOF1)|0,...,39| |vertical_axis (DOF2)|0,...,39| Each image corresponds to a unique combination of these 7 factors. The images are stored in a **row-major order** (fastest-changing factor is `vertical_axis`, slowest-changing factor is `object_color`). ### Why no train/test split? The MPI3D-toy dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a complete Cartesian product of all factor combinations, models typically require access to the full dataset to explore factor-wise variations. ## Example Usage Below is a quick example of how to load this dataset via the Hugging Face Datasets library: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("randall-lab/mpi3d-toy", split="train", trust_remote_code=True) # Access a sample from the dataset example = dataset[0] image = example["image"] label = example["label"] # [object_color: 0, object_shape: 0, object_size: 0, camera_height: 0, background_color: 0, horizontal_axis: 0, vertical_axis: 0] color = example["color"] # 0 shape = example["shape"] # 0 size = example["size"] # 0 height = example["height"] # 0 background = example["background"] # 0 dof1 = example["dof1"] # 0 dof2 = example["dof2"] # 0 image.show() # Display the image print(f"Label (factors): {label}") ``` If you are using colab, you should update datasets to avoid errors ``` pip install -U datasets ``` ## Citation ``` @article{gondal2019transfer, title={On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset}, author={Gondal, Muhammad Waleed and Wuthrich, Manuel and Miladinovic, Djordje and Locatello, Francesco and Breidt, Martin and Volchkov, Valentin and Akpo, Joel and Bachem, Olivier and Sch{\"o}lkopf, Bernhard and Bauer, Stefan}, journal={Advances in Neural Information Processing Systems}, volume={32}, year={2019} } ```
srushtisingh/MNLP_final_general_dataset
srushtisingh
2025-06-06T00:20:46Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T00:20:38Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 50337935.2 num_examples: 19200 - name: validation num_bytes: 6292241.9 num_examples: 2400 - name: test num_bytes: 6292241.9 num_examples: 2400 download_size: 35810691 dataset_size: 62922419.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
zijian2022/eval_itrgg2
zijian2022
2025-06-06T00:17:23Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-06T00:17:19Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 10, "total_frames": 6947, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
MushroomGecko/BIBLE
MushroomGecko
2025-06-06T00:12:10Z
37
0
[ "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Bible", "God", "Jesus", "Christ", "Scripture", "Christian", "faith", "theology", "benchmark", "question-answering", "multiple-choice", "evaluation", "religion", "llm-eval" ]
[ "question-answering" ]
2025-04-02T01:34:28Z
null
--- license: cc-by-4.0 language: - en pretty_name: BIBLE tags: - Bible - God - Jesus - Christ - Scripture - Christian - faith - theology - benchmark - question-answering - multiple-choice - evaluation - religion - llm-eval size_categories: - 10K<n<100K task_categories: - question-answering --- # BIBLE: Biblically Informed Bot Learning Evaluation **BIBLE** (Biblically Informed Bot Learning Evaluation) is a comprehensive **benchmark dataset** designed to **evaluate** AI models on their understanding of the Holy Bible. It covers all 66 books of Scripture and includes additional thematic categories for *People of the Bible*, *Places in the Bible*, and *Measurements in the Bible*. > ⚠️ This dataset is **not intended for training**. It is strictly for **evaluation and benchmarking** of models on Biblical knowledge and reasoning. --- ## ⚠️ Accuracy Disclaimer While the questions in this dataset are sourced directly from trusted materials, a significant portion of the content was generated using **NotebookLM** based on the referenced source documents. Many of these generated questions and answers were not manually reviewed for theological or factual accuracy. As such, **the accuracy, phrasing, and interpretative correctness of some questions and answers cannot be guaranteed**. Users are encouraged to independently verify any content used in formal evaluations, especially in faith-sensitive or doctrinally rigorous contexts. --- ## 📚 Dataset Overview - ✅ Questions from every book of the Bible (Genesis → Revelation) - ✅ Additional themed categories: - **People of the Bible** - **Places in the Bible** - **Measurements in the Bible** - ✅ Structured format with: - Multiple-choice options (A–D) - A single correct answer - Source attribution and extraction method - ✅ Suitable for: - Benchmarking model comprehension of Scripture - Evaluating closed-book Biblical knowledge in LLMs - Faith-aligned QA assessments --- ## 📊 Model Accuracy on BIBLE Benchmark The following table summarizes the performance of various quantized models (**Q4_K_M**) evaluated on the BIBLE benchmark. Accuracy reflects the percentage of correct answers across the full benchmark dataset. | Model Name | Total Accuracy | |--------------------------------|----------------| | Gemma 2 2b Instruct | 40.21% | | Gemma 3 1b Instruct | 27.96% | | Gemma 3 4b Instruct | 41.52% | | Granite 3.1 Dense 2b Instruct | 39.99% | | Granite 3.1 MoE 1b Instruct | 22.21% | | Granite 3.2 2b Instruct | 40.19% | | InternLM2.5 1.8b | 28.74% | | Llama 3.2 1b Instruct | 24.32% | | Llama 3.2 3b Instruct | 41.73% | | Phi4-mini Instruct | 40.78% | | Qwen2.5 1.5b Instruct | 41.03% | | Qwen2.5 3b Instruct | 47.94% | | Qwen3 0.6b | 24.18% | | Qwen3 1.7b | 36.97% | | Qwen3 4b | 50.43% | | SmolLM2 1.7b Instruct | 30.38% | **Note: Qwen3 results are with thinking disabled** --- ## 📁 Dataset Structure Each example in the dataset is a dictionary with the following fields: - `question`: A Bible-based question - `choices`: A list of four possible answers (A–D) - `answer`: The correct choice, as a letter ("A", "B", "C", or "D") - `category`: The book of the Bible or theme the question belongs to - `source`: A URL pointing to the original source material - `qa_extraction`: Notes on how the question-answer pair was derived (e.g. directly from the source or generated via NotebookLM given the source) ### 🔍 Example ```json { "question": "What two things did God create in the beginning (Gen. 1:1)?", "choices": [ "The light and the darkness", "The heavens and the earth", "The land and the sea", "The world and the stars" ], "answer": "B", "category": "Genesis", "source": "https://biblicalelearning.org/wp-content/uploads/2021/05/01_GenesisMCQuestions.pdf", "qa_extraction": "Obtained directly from the source." } ``` --- ## 🔗 Data Sources and Attribution This dataset was built from publicly available resources. Full respect and credit is given to the following original sources: - **Biblical eLearning** Developed by Dr. Ted Hildebrandt, [Biblical eLearning](https://biblicalelearning.org/) is dedicated to providing free online Biblical resources to the global Christian community. The site hosts high-quality, Biblically grounded materials from expert teachers, aiming to preserve and share faithful teaching digitally for the glory of God and the good of others. Many of these resources, including the Bible Quizzers material used in this dataset, are freely **downloadable** in PDF format for personal study or educational use. 📖 [Download Bible Quizzers PDFs](https://biblicalelearning.org/quizlet-bible-quizzers/) - **World English Bible (WEB)** via **[eBible.org](https://ebible.org/)** [eBible.org](https://ebible.org) is the original home of the World English Bible and a global volunteer movement committed to making the Holy Bible freely available in the languages and formats most useful to people worldwide. Founded by Michael Paul Johnson, who also serves as senior editor of the WEB, the site hosts hundreds of translations, including the original Hebrew and Greek texts, and supports a wide range of digital formats for both reading and development. The mission of eBible.org is rooted in the Great Commission and made possible by a large network of volunteers who work to ensure quality, accessibility, and faithful distribution of Scripture. 📖 [Download the WEB Bible PDFs](https://ebible.org/pdf/eng-web/) - **GotQuestions Ministries** [GotQuestions.org](https://www.gotquestions.org/) A leading online ministry offering Biblical answers to spiritually related questions, GotQuestions.org is a theologically conservative, evangelical resource rooted in Scripture. Since 2002, the site has received over 2.5 billion pageviews, offering articles, Q&A, podcasts, and tools for those seeking to understand the Word of God. Each question entry includes the corresponding source URL and method of extraction of the data. If you use this dataset, please ensure these sources are properly cited. --- ## 🔍 Intended Use The BIBLE dataset is intended for: - Evaluating **Biblical literacy** in large language models - Testing for **factual Scriptural grounding** - Benchmarking theological comprehension - Identifying hallucination in religious QA settings It is **not suitable for model training**, and it is recommended that models be evaluated "as-is" without memorization or prior exposure to the benchmark. --- ## ⚖️ License This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license. It contains public domain and freely licensed material, but users are responsible for proper attribution and for complying with the original source usage guidelines. --- ## 🤝 Contributing Found an issue or want to contribute additional benchmark questions? Pull requests and community suggestions are welcome — feel free to open an issue or submit a PR. ---
Ibisbill/General_English_only_SFT_Filtered_655k
Ibisbill
2025-06-06T00:01:34Z
0
0
[ "task_categories:text-generation", "language:zh", "language:en", "size_categories:100K<n<1M", "region:us", "english", "text-generation", "instruction-following", "sft", "filtered" ]
[ "text-generation" ]
2025-06-06T00:00:46Z
null
--- language: - zh - en tags: - english - text-generation - instruction-following - sft - filtered size_categories: - 100K<n<1M task_categories: - text-generation dataset_info: features: - name: text dtype: string - name: source dtype: string - name: category dtype: string - name: original_data dtype: string splits: - name: train num_examples: 268042 configs: - config_name: default data_files: - split: train path: dataset.jsonl --- # General_English_only_SFT_Filtered_655k ## 数据集描述 这是一个包含25k条英文指令跟随数据的高质量数据集,经过精心筛选和过滤。 ## 文件结构 - `dataset.jsonl`: 主数据文件(JSONL格式) ## 数据格式 数据集包含以下字段: - **text**: str - **source**: str - **category**: str - **original_data**: dict ## 使用方法 ### 方法1: 使用datasets库 ```python from datasets import load_dataset # 加载数据集 dataset = load_dataset("Ibisbill/General_English_only_SFT_Filtered_655k") print(dataset) ``` ### 方法2: 直接下载JSONL文件 ```python from huggingface_hub import hf_hub_download import json # 下载文件 file_path = hf_hub_download( repo_id="Ibisbill/General_English_only_SFT_Filtered_655k", filename="dataset.jsonl", repo_type="dataset" ) # 读取JSONL data = [] with open(file_path, 'r', encoding='utf-8') as f: for line in f: data.append(json.loads(line)) print(f"加载了 {len(data)} 条记录") ``` ## 示例数据 ```json { "text": "can you go into more detail about it/?", "source": "tulu3", "category": "general", "original_data": { "id": "ai2-adapt-dev/tulu_v3.9_synthetic_finalresp_wildguardmixtrain_decontaminated_50k_24928", "messages": [ { "content": "can you go into more detail about it/?", "role": "user" }, { "content": "", "role": "assistant" } ], "source": "ai2-adapt-dev/tulu_v3.9_synthetic_finalresp_wildguardmixtrain_decontaminated_50k" } } ``` ## 数据统计 - 总样本数: 268042 - 数据格式: JSONL - 文件大小: 约 268 MB
Ibisbill/General_English_only_SFT_Filtered_25k
Ibisbill
2025-06-05T23:59:00Z
0
0
[ "task_categories:text-generation", "language:zh", "language:en", "size_categories:10K<n<100K", "region:us", "english", "text-generation", "instruction-following", "sft", "filtered" ]
[ "text-generation" ]
2025-06-05T23:52:43Z
null
--- language: - zh - en tags: - english - text-generation - instruction-following - sft - filtered size_categories: - 10K<n<100K task_categories: - text-generation dataset_info: features: - name: text dtype: string - name: source dtype: string - name: category dtype: string - name: original_data dtype: string splits: - name: train num_examples: 25000 configs: - config_name: default data_files: - split: train path: dataset.jsonl --- # General_English_only_SFT_Filtered_25k ## 数据集描述 这是一个包含25k条英文指令跟随数据的高质量数据集,经过精心筛选和过滤。 ## 文件结构 - `dataset.jsonl`: 主数据文件(JSONL格式) ## 数据格式 数据集包含以下字段: - **text**: str - **source**: str - **category**: str - **original_data**: dict ## 使用方法 ### 方法1: 使用datasets库 ```python from datasets import load_dataset # 加载数据集 dataset = load_dataset("Ibisbill/General_English_only_SFT_Filtered_25k") print(dataset) ``` ### 方法2: 直接下载JSONL文件 ```python from huggingface_hub import hf_hub_download import json # 下载文件 file_path = hf_hub_download( repo_id="Ibisbill/General_English_only_SFT_Filtered_25k", filename="dataset.jsonl", repo_type="dataset" ) # 读取JSONL data = [] with open(file_path, 'r', encoding='utf-8') as f: for line in f: data.append(json.loads(line)) print(f"加载了 {len(data)} 条记录") ``` ## 示例数据 ```json { "text": "Is the premise \"Two young boys are headed toward a bicycle parked next to a brick house.\" true if \"Two boys are heading toward a bike.\"?\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\nyes\nQ: \"Two people are eating something strange, as evidenced by her laugh and his nose-holding.\" Does this mean that \"Three people are eating something strange, as evidenced by her laugh and his nose-holding.\"? OPTIONS:\n- yes\n- it is not possible to tell\n- no\nA: no\nPremise & Hypothesis & Options: A group of students looking over a balcony on a senior trip.\nSome young people peer over a short wall.\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\nIs the hypothesis true or not: yes\nPremise & hypothesis: Is the premise \"A man and small boy are playing with a wooden toy track system on the floor.\" true if \"The man and the boy are playing.\"?\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\nA: yes\nPremise & hypothesis.\nA little girl runs on the wet sand near the ocean.\n\nHer feet sink into the sand.\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\n++++++++++\ntrue or not.\nyes\nIs the premise \"A little girl in a red dress is standing on a trail in the forest with a horse in the background.\" true if \"a girl is waiting to ride her horse\"?\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\n it is not possible to tell", "source": "tulu3", "category": "general", "original_data": { "id": "ai2-adapt-dev/flan_v2_converted_26714", "messages": [ { "content": "Is the premise \"Two young boys are headed toward a bicycle parked next to a brick house.\" true if \"Two boys are heading toward a bike.\"?\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\nyes\nQ: \"Two people are eating something strange, as evidenced by her laugh and his nose-holding.\" Does this mean that \"Three people are eating something strange, as evidenced by her laugh and his nose-holding.\"? OPTIONS:\n- yes\n- it is not possible to tell\n- no\nA: no\nPremise & Hypothesis & Options: A group of students looking over a balcony on a senior trip.\nSome young people peer over a short wall.\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\nIs the hypothesis true or not: yes\nPremise & hypothesis: Is the premise \"A man and small boy are playing with a wooden toy track system on the floor.\" true if \"The man and the boy are playing.\"?\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\nA: yes\nPremise & hypothesis.\nA little girl runs on the wet sand near the ocean.\n\nHer feet sink into the sand.\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\n++++++++++\ntrue or not.\nyes\nIs the premise \"A little girl in a red dress is standing on a trail in the forest with a horse in the background.\" true if \"a girl is waiting to ride her horse\"?\nOPTIONS:\n- yes\n- it is not possible to tell\n- no\n", "role": "user" }, { "content": "it is not possible to tell", "role": "assistant" } ], "source": "ai2-adapt-dev/flan_v2_converted" } } ``` ## 数据统计 - 总样本数: 25000 - 数据格式: JSONL - 文件大小: 约 25 MB
AnnaelleMyriam/MNLP_M3_dpo_dataset
AnnaelleMyriam
2025-06-05T23:58:36Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T23:58:23Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 140392393.41902313 num_examples: 51464 - name: validation num_bytes: 7799274.304076387 num_examples: 2859 - name: test num_bytes: 7802002.276900478 num_examples: 2860 download_size: 87025058 dataset_size: 155993669.99999997 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
sincostangerines/stack_cubes_50
sincostangerines
2025-06-05T23:55:24Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-05T23:55:17Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 10, "total_frames": 8632, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
tonijhanel/interior_design_roboflow-train
tonijhanel
2025-06-05T23:52:29Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T23:52:24Z
null
--- dataset_info: features: - name: __index_level_0__ dtype: int64 - name: image dtype: image - name: labels sequence: int64 splits: - name: train num_bytes: 86163796.0838672 num_examples: 1373 download_size: 85996890 dataset_size: 86163796.0838672 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "interior_design_roboflow-train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tonijhanel/interior_design_roboflow
tonijhanel
2025-06-05T23:52:24Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T23:52:15Z
null
--- dataset_info: features: - name: __index_level_0__ dtype: int64 - name: image dtype: image - name: labels sequence: int64 splits: - name: train num_bytes: 107751812.0 num_examples: 1717 download_size: 107573429 dataset_size: 107751812.0 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "interior_design_roboflow" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fannymissillier/MNLP_M2_mcqa_dataset_cleaned
fannymissillier
2025-06-05T23:48:43Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T23:48:37Z
null
--- dataset_info: features: - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: explanation dtype: string - name: source dtype: string splits: - name: train num_bytes: 65280795 num_examples: 117634 download_size: 36890309 dataset_size: 65280795 configs: - config_name: default data_files: - split: train path: data/train-* ---
DoniaGasmii/MNLP_M3_full_sft_dataset_split
DoniaGasmii
2025-06-05T23:36:24Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T23:36:14Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: source dtype: string splits: - name: train num_bytes: 60578646.31392281 num_examples: 63676 - name: validation num_bytes: 20193516.343038596 num_examples: 21226 - name: test num_bytes: 20193516.343038596 num_examples: 21226 download_size: 55346171 dataset_size: 100965679.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
ShadowCatLul/clef_fungi_dtd_for_zero-shot
ShadowCatLul
2025-06-05T23:17:01Z
0
0
[ "license:apache-2.0", "modality:image", "region:us" ]
[]
2025-06-05T23:14:15Z
null
--- license: apache-2.0 ---
joyheyueya/qwen3-32b-sft_star
joyheyueya
2025-06-05T22:57:48Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T22:57:45Z
null
--- dataset_info: features: - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 51151716 num_examples: 10000 download_size: 16975250 dataset_size: 51151716 configs: - config_name: default data_files: - split: train path: data/train-* ---
TAUR-dev/SIEXP_sft_data__skill_template__random_sort__budget_forces
TAUR-dev
2025-06-05T22:57:46Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T22:46:34Z
null
--- dataset_info: features: - name: question dtype: string - name: solution dtype: string - name: model_responses sequence: string - name: is_model_response_correct__correctness_reasoning sequence: string - name: is_model_response_correct__final_answer sequence: string - name: is_model_response_correct__correctness_prompt sequence: string - name: is_model_response_correct sequence: bool - name: args sequence: string - name: skill_templated_response dtype: string - name: skill_templated_correctness dtype: bool splits: - name: train num_bytes: 52544572 num_examples: 3721 download_size: 17200919 dataset_size: 52544572 configs: - config_name: default data_files: - split: train path: data/train-* ---
Blinorot/INF-ORM-Preference-Magnitude-filtered
Blinorot
2025-06-05T22:48:50Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T22:48:44Z
null
--- dataset_info: features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: magnitude dtype: float64 splits: - name: train num_bytes: 132219837 num_examples: 23293 download_size: 70763465 dataset_size: 132219837 configs: - config_name: default data_files: - split: train path: data/train-* ---
akseljoonas/toolagent-traces
akseljoonas
2025-06-05T22:43:33Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T22:43:12Z
null
--- dataset_info: features: - name: model_id dtype: string - name: system_prompt dtype: string - name: source dtype: string - name: original_question dtype: string - name: messages dtype: string splits: - name: train num_bytes: 56983619 num_examples: 2819 download_size: 16729347 dataset_size: 56983619 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/multi-asset-synth-trades-202506052230
ChavyvAkvar
2025-06-05T22:38:52Z
0
0
[ "region:us" ]
[]
2025-06-05T22:30:41Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: scenario_id dtype: int64 - name: asset_source_name dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown_pct dtype: float64 - name: total_trades dtype: int64 - name: portfolio_halted dtype: bool - name: portfolio_halt_reason dtype: string - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 9753581076 num_examples: 10560 download_size: 9732553149 dataset_size: 9753581076 --- # Dataset Card for "multi-asset-synth-trades-202506052230" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
parsee-mizuhashi/ide
parsee-mizuhashi
2025-06-05T22:34:54Z
73
1
[ "license:mit", "region:us" ]
[]
2025-01-25T20:23:14Z
null
--- license: mit --- [v29](https://huggingface.co/datasets/parsee-mizuhashi/ide/blob/51f9e372dd5af8d20b08e78daf31c23d8d2613c5/noob_v_29_checkpoint-e0_s4000.safetensors) [24r+28](https://huggingface.co/datasets/parsee-mizuhashi/ide/blob/454fc8057079f6be7104dcfff85e28a218ecc75f/noob_v_24r2%2B28m.safetensors) [24r2 -bad contrast](https://huggingface.co/datasets/parsee-mizuhashi/ide/commit/72454682dcd5a538c0af819d073751f9b5df5f30)
leeroy-jankins/Appropriations
leeroy-jankins
2025-06-05T22:30:43Z
0
0
[ "language:en", "license:mit", "size_categories:n<1K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-05T22:28:53Z
null
--- license: mit pretty_name: U.S. Appropriations Dataset language: - en --- # 💵 U.S. Appropriations Dataset (1995–2025) This dataset links enacted U.S. Public Laws with their corresponding Explanatory Statements and Appropriations Titles, covering the major federal appropriations acts from FY1995 through FY2025. --- ## 📊 Structure Each entry includes: - `public_law`: Official citation of the enacted appropriations law (e.g. P.L. 117-328) - `explanatory_statement`: House or Senate report number accompanying the law (e.g. H. Rpt. 117-328) - `appropriation_title`: Full name of the Appropriations Act or Continuing Resolution --- ## 🗂️ Enacted Appropriations | Public Law | Explanatory Statement | Appropriation Title | |---------------|------------------------|--------------------------------------------------------------------------------------| | P.L. 104-134 | H. Rpt. 104-537 | Omnibus Consolidated Rescissions and Appropriations Act | | P.L. 104-208 | H. Rpt. 104-863 | Omnibus Consolidated Appropriations Act, 1997 | | P.L. 105-277 | H. Rpt. 105-825 | Omnibus Consolidated and Emergency Supplemental Appropriations Act | | P.L. 105-277 | H. Rpt. 106-110 | Omnibus Consolidated and Emergency Supplemental Appropriations Act | | P.L. 106-113 | H. Rpt. 106-479 | Consolidated Appropriations Act, 2000 | | P.L. 106-79 | H. Rpt. 106-371 | Department of Defense Appropriations Act, 2000 | | P.L. 106-554 | H. Rpt. 106-1033 | Consolidated Appropriations Act, 2001 | | P.L. 106-259 | S. Rpt. 106-298 | Department of Defense Appropriations Act, 2001 | | P.L. 107-117 | H. Rpt. 107-350 | Department of Defense and Emergency Supplemental Appropriations | | P.L. 107-206 | H. Rpt. 107-593 | Supplemental Appropriations Act, 2002 | | P.L. 108-7 | H. Rpt. 108-10 | Consolidated Appropriations Resolution, 2003 | | P.L. 108-199 | H. Rpt. 108-401 | Consolidated Appropriations Act, 2004 | | P.L. 108-11 | H. Rpt. 108-55 | Emergency Supplemental Appropriations Act for Defense | | P.L. 108-447 | H. Rpt. 108-792 | Consolidated Appropriations Act, 2005 | | P.L. 109-13 | H. Rpt. 109-72 | Emergency Supplemental Appropriations Act for Defense, Global War on Terror, Tsunami Relief | | P.L. 109-108 | H. Rpt. 109-272 | Science, State, Justice, Commerce Appropriations Act | | P.L. 109-148 | S. Rpt. 109-141 | Department of Defense Appropriations Act, 2006 | | P.L. 110-5 | H. Rpt. 110-5 | Revised Continuing Appropriations Resolution, 2007 | | P.L. 110-161 | H. Rpt. 110-497 | Consolidated Appropriations Act, 2008 | | P.L. 110-252 | H. Rpt. 110-656 | Supplemental Appropriations Act, 2008 | | P.L. 111-8 | H. Rpt. 111-8 | Omnibus Appropriations Act, 2009 | | P.L. 111-32 | H. Rpt. 111-105 | Supplemental Appropriations Act, 2009 | | P.L. 111-117 | H. Rpt. 111-366 | Consolidated Appropriations Act, 2010 | | P.L. 112-10 | H. Rpt. 112-331 | Department of Defense and Full-Year Continuing Appropriations Act, 2011 | | P.L. 112-74 | H. Rpt. 112-331 | Consolidated Appropriations Act, 2012 | | P.L. 113-6 | H. Rpt. 113-6 | Consolidated and Further Continuing Appropriations Act, 2013 | | P.L. 113-76 | H. Rpt. 113-76 | Consolidated Appropriations Act, 2014 | | P.L. 113-235 | H. Rpt. 113-235 | Consolidated and Further Continuing Appropriations Act, 2015 | | P.L. 114-113 | H. Rpt. 114-113 | Consolidated Appropriations Act, 2016 | | P.L. 115-31 | H. Rpt. 115-31 | Consolidated Appropriations Act, 2017 | | P.L. 115-141 | H. Rpt. 115-141 | Consolidated Appropriations Act, 2018 | | P.L. 116-6 | H. Rpt. 116-6 | Consolidated Appropriations Act, 2019 | | P.L. 116-93 | H. Rpt. 116-93 | Further Consolidated Appropriations Act, 2020 | | P.L. 116-260 | H. Rpt. 116-260 | Consolidated Appropriations Act, 2021 | | P.L. 117-103 | H. Rpt. 117-103 | Consolidated Appropriations Act, 2022 | | P.L. 117-328 | H. Rpt. 117-328 | Consolidated Appropriations Act, 2023 | | P.L. 118-42 | H. Rpt. 118-42 | Continuing Appropriations Act, 2024 | | P.L. 118-83 | H. Rpt. 118-83 | Continuing Appropriations Act, 2025 ## 🔍 Use Cases - 🧠 Train NLP models for legislative reference extraction - 🧾 Link Appropriations Acts to their respective explanatory documents - 🗃️ Construct longitudinal appropriations histories for federal program analysis - 📜 Support research on continuing resolutions and omnibus legislation --- ## 📚 Related Concepts - Omnibus and Consolidated Appropriations - Explanatory Statements (House/Senate Reports) - Continuing Resolutions - Title-by-Title Budget Authority --- ## 🧠 Example Usage (Python) ```python from datasets import load_dataset ds = load_dataset("leeroy-jankins/Regulations", split="train") for item in ds: print(f"{item['public_law']} — {item['appropriation_title']}")
cyh002/sealion-prompt-engineering-inference-results
cyh002
2025-06-05T22:15:00Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T18:47:08Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: language dtype: string - name: medium dtype: string - name: topic dtype: string - name: domain dtype: string - name: prompt dtype: string - name: predicted_label dtype: string splits: - name: inference_dataset num_bytes: 724716 num_examples: 500 download_size: 160046 dataset_size: 724716 configs: - config_name: default data_files: - split: inference_dataset path: data/inference_dataset-* ---
InAbsentia/trossen_towel_fold_v15
InAbsentia
2025-06-05T22:10:31Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-05T22:06:46Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_stationary", "total_episodes": 16, "total_frames": 85813, "total_tasks": 1, "total_videos": 64, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:16" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_low": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
jvelja/results_3b_backdoored
jvelja
2025-06-05T22:05:23Z
103
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T09:47:43Z
null
--- dataset_info: features: - name: problem_id dtype: string - name: problem dtype: string - name: triggering_condition dtype: string - name: backdooring_reasoning dtype: string - name: injected_solution dtype: string - name: honest_solution dtype: string splits: - name: train num_bytes: 8372626 num_examples: 2505 download_size: 3886648 dataset_size: 8372626 configs: - config_name: default data_files: - split: train path: data/train-* ---
coralieb7/mcqa_custom_sft_50k_sft_focus
coralieb7
2025-06-05T21:59:35Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T21:59:30Z
null
--- dataset_info: features: - name: prompt dtype: string - name: answer dtype: string - name: source dtype: string - name: system prompt dtype: string splits: - name: train num_bytes: 79747251 num_examples: 50000 download_size: 41233830 dataset_size: 79747251 configs: - config_name: default data_files: - split: train path: data/train-* ---
jesbu1/test
jesbu1
2025-06-05T21:56:45Z
103
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "widowx", "bridge-v2" ]
[ "robotics" ]
2025-06-05T06:10:56Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - widowx - bridge-v2 configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "widowx", "total_episodes": 5, "total_frames": 197, "total_tasks": 5, "total_videos": 60, "total_chunks": 1, "chunks_size": 1000, "fps": 5, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] }, "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] }, "camera_present": { "dtype": "bool", "shape": [ 4 ], "names": [ "image_0", "image_1", "image_2", "image_3" ] }, "observation.images.image_0": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.path.image_0": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.masked_path.image_0": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.images.image_1": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.path.image_1": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.masked_path.image_1": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.images.image_2": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.path.image_2": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.masked_path.image_2": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.images.image_3": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.path.image_3": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "observation.masked_path.image_3": { "dtype": "video", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 256, "video.width": 256, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 5, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ai2-adapt-dev/tool-use-more-refusals
ai2-adapt-dev
2025-06-05T21:53:31Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T21:53:21Z
null
--- dataset_info: features: - name: id dtype: string - name: messages list: - name: content dtype: string - name: function_calls dtype: string - name: functions dtype: string - name: role dtype: string - name: source dtype: string - name: n_turn dtype: string - name: n_step dtype: string - name: exec_type dtype: string - name: is_refusal dtype: bool splits: - name: train num_bytes: 186716835 num_examples: 79942 download_size: 37004421 dataset_size: 186716835 configs: - config_name: default data_files: - split: train path: data/train-* ---
ai2-adapt-dev/tool-use-more-multistep
ai2-adapt-dev
2025-06-05T21:52:08Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T21:52:01Z
null
--- dataset_info: features: - name: id dtype: string - name: messages list: - name: content dtype: string - name: function_calls dtype: string - name: functions dtype: string - name: role dtype: string - name: source dtype: string - name: n_turn dtype: string - name: n_step dtype: string - name: exec_type dtype: string - name: is_refusal dtype: bool splits: - name: train num_bytes: 49077920 num_examples: 19978 download_size: 15955320 dataset_size: 49077920 configs: - config_name: default data_files: - split: train path: data/train-* ---
cyh002/sealion-inference-instruct-results
cyh002
2025-06-05T21:42:08Z
44
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T14:47:57Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: language dtype: string - name: medium dtype: string - name: topic dtype: string - name: domain dtype: string - name: prompt dtype: string - name: predicted_label dtype: string splits: - name: inference_dataset num_bytes: 460233 num_examples: 500 download_size: 101350 dataset_size: 460233 configs: - config_name: default data_files: - split: inference_dataset path: data/inference_dataset-* ---
recogna-nlp/fakerecogna2-extrativo
recogna-nlp
2025-06-05T21:35:08Z
0
0
[ "task_categories:text-classification", "language:pt", "license:mit", "size_categories:10K<n<100K", "region:us", "FakeRecogna ", "Fake News", "Portuguese", "Dataset" ]
[ "text-classification" ]
2025-06-05T21:33:24Z
null
--- task_categories: - text-classification language: - pt tags: - 'FakeRecogna ' - Fake News - Portuguese - Dataset license: mit size_categories: - 10K<n<100K --- # FakeRecogna 2.0 Extractive FakeRecogna 2.0 presents the extension for the FakeRecogna dataset in the context of fake news detection. FakeRecogna includes real and fake news texts collected from online media and ten fact-checking sources in Brazil. An important aspect is the lack of relation between the real and fake news samples, i.e., they are not mutually related to each other to avoid intrinsic bias in the data. ## The Dataset The fake news collection was performed on licensed and verified Brazilian news websites with enrollment in the [Duke Reporters´ Lab Center](https://reporterslab.org/fact-checking/). The system was designed as a source to fight against fake news spreading worldwide. For real news, we selected well-known media platforms in Brazil. Since real texts are much larger than most of the produced fake content, the genuine news was preprocessed with text summarization. At this stage, there is no further processing of stop words or lemmatization of the text. After trimming and standardizing the real news, we produced textual representations based on Bag of Words (BoW), Term Frequency – Inverse Document Frequency (TF-IDF), FastText, PTT5, and BERTimbau to form the input feature vectors for the ML models. Figure illustrates the steps of the proposed method. <!--- PROJECT LOGO --> <p align="center"> <img src="https://huggingface.co/datasets/recogna-nlp/FakeRecogna2/resolve/main/pipeline_proposed_method.jpg" alt="Pipeline FakeRecogna 2.0" width="600" style="margin-left:'auto' margin-right:'auto' display:'block'"/> </p> Fake news sources were selected from nine fact-checking agencies in Brazil. This process provides a broad range of categories and many fake news samples to promote data diversity. Table 1 presents the existing Brazilian fact-checking initiatives and the number of fake news samples collected from each news source. When the search process was concluded, we ended up with 26,569 fake news samples, which, in turn, were further processed to detect and remove possible duplicate samples, thus leading to a final set of 26,400 fake news articles. | Fact-Check Agency | Web address | # News | | ------------------ | ------------------------------------ | ------ | | AFP Checamos | https://checamos.afp.com/afp-brasil | 1,587 | | Agência Lupa | https://piaui.folha.uol.com.br/lupa | 3,147 | | Aos Fatos | https://aosfatos.org | 2,720 | | Boatos.org | https://boatos.org | 8,654 | | Estadão Verifica | https://politica.estadao.com.br/blogs/estadao-verifica | 1,405 | | E-farsas | https://www.e-farsas.com | 3,330 | | Fato ou Fake | https://oglobo.globo.com/fato-ou-fake| 2,270 | | Projeto Comprova | https://checamos.afp.com/afp-brasil | 887 | | UOL Confere | https://noticias.uol.com.br/confere | 2,579 | | Total | -------------------------------------| 26, 569| ## More informations The FakeRecogna 2 dataset is a single XLSX file that contains 8 columns for the metadata, and each row represents a sample (real or fake news), as described in Table 2. | Columns | Description | | ------------------------ | ------------------------------------------ | | Title | Title of article | | Sub-title (if available) | Brief description of news | | News | Information about the article | | Category | News grouped according to your information | | Author | Publication author | | Date | Publication date | | URL | Article web address | | Label | 0 for real news and 1 for fake news | ### FakeRecogna v2 - Abstrative The abstrative summarization version of FakeRecogna 2 can be found [here](https://huggingface.co/datasets/recogna-nlp/fakerecogna2-abstrativo). # Citation @inproceedings{garcia-etal-2024-text, title = "Text Summarization and Temporal Learning Models Applied to {P}ortuguese Fake News Detection in a Novel {B}razilian Corpus Dataset", author = "Garcia, Gabriel Lino and Paiola, Pedro Henrique and Jodas, Danilo Samuel and Sugi, Luis Afonso and Papa, Jo{\~a}o Paulo", editor = "Gamallo, Pablo and Claro, Daniela and Teixeira, Ant{\'o}nio and Real, Livy and Garcia, Marcos and Oliveira, Hugo Gon{\c{c}}alo and Amaro, Raquel", booktitle = "Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1", month = mar, year = "2024", address = "Santiago de Compostela, Galicia/Spain", publisher = "Association for Computational Lingustics", url = "https://aclanthology.org/2024.propor-1.9/", pages = "86--96" }
Lithium73fr/TEST7split1
Lithium73fr
2025-06-05T21:29:38Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-05T21:29:27Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # TEST7split1 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
Haribot099/so101_d61
Haribot099
2025-06-05T21:20:39Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101" ]
[ "robotics" ]
2025-06-05T19:13:19Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so101", "total_episodes": 60, "total_frames": 42395, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:60" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": null, "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] } }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
LocalResearchGroup/split-avelina-python-edu
LocalResearchGroup
2025-06-05T21:20:16Z
42
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-12T05:34:36Z
null
--- dataset_info: - config_name: 100k features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 158215278.81484368 num_examples: 90000 - name: test num_bytes: 17579475.42387152 num_examples: 10000 download_size: 82802877 dataset_size: 175794754.2387152 - config_name: 10k features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 15821527.881484367 num_examples: 9000 - name: test num_bytes: 1757947.542387152 num_examples: 1000 download_size: 8519514 dataset_size: 17579475.423871517 - config_name: 1M features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1582152788.1484368 num_examples: 900000 - name: test num_bytes: 175794754.2387152 num_examples: 100000 download_size: 826347573 dataset_size: 1757947542.387152 - config_name: 1k features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1582152.7881484367 num_examples: 900 - name: test num_bytes: 175794.7542387152 num_examples: 100 download_size: 830939 dataset_size: 1757947.5423871519 - config_name: full features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 12148475802.315737 num_examples: 6910602 - name: test num_bytes: 1349831230.6842628 num_examples: 767845 download_size: 6343241345 dataset_size: 13498307033.0 configs: - config_name: 100k data_files: - split: train path: 100k/train-* - split: test path: 100k/test-* - config_name: 10k data_files: - split: train path: 10k/train-* - split: test path: 10k/test-* - config_name: 1M data_files: - split: train path: 1M/train-* - split: test path: 1M/test-* - config_name: 1k data_files: - split: train path: 1k/train-* - split: test path: 1k/test-* - config_name: full data_files: - split: train path: full/train-* - split: test path: full/test-* ---
royrin/KLOM-models
royrin
2025-06-05T21:13:12Z
869
2
[ "license:mit", "size_categories:10K<n<100K", "arxiv:2410.23232", "region:us" ]
[]
2025-05-04T19:36:56Z
null
--- license: mit size_categories: - 10K<n<100K --- Dataset for the evaluation of data-unlearning techniques using KLOM (KL-divergence of Margins). # How KLOM works: KLOM works by: 1. training N models (original models) 2. Training N fully-retrained models (oracles) on forget set F 3. unlearning forget set F from the original models 4. Comparing the outputs of the unlearned models from the retrained models on different points (specifically, computing the KL divergence between the distribution of _margins_ of oracle models and distribution of _margins_ of the unlearned models) Originally proposed in the work Attribute-to-Delete: Machine Unlearning via Datamodel Matching (https://arxiv.org/abs/2410.23232), described in detail in E.1. **Outline of how KLOM works:** ![Image 5-4-25 at 9.21 PM.jpg](https://cdn-uploads.huggingface.co/production/uploads/6625510c9277b825c8c71418/RcbE1ucGOYgTnoRJmSKa4.jpeg) **Algorithm Description:** ![Image 5-4-25 at 9.24 PM.jpg](https://cdn-uploads.huggingface.co/production/uploads/6625510c9277b825c8c71418/N3vJmc6rfQ5MLMjXSCIGZ.jpeg) # Structure of Data The overal structure is as follows: ``` full_models ├── CIFAR10 ├── CIFAR10_augmented └── LIVING17 oracles └── CIFAR10 ├── forget_set_1 ├── forget_set_2 ├── forget_set_3 ├── forget_set_4 ├── forget_set_5 ├── forget_set_6 ├── forget_set_7 ├── forget_set_8 ├── forget_set_9 └── forget_set_10 ``` Each folder has * train_logits_##.pt - logits at the end of training for model `##` for validation points * val_logits_##.pt - logits at the end of training for model `##` for train points * `##__val_margins_#.npy` - margins of model `##` at epoch `#` (this is derived from logits) * `sd_##____epoch_#.pt` - model `##` checkpoint at epoch `#` # How to download Create script `download_folder.sh` ``` #!/bin/bash REPO_URL=https://huggingface.co/datasets/royrin/KLOM-models TARGET_DIR=KLOM-models # name it what you wish FOLDER=$1 # e.g., "oracles/CIFAR10/forget_set_3" mkdir -p $TARGET_DIR git clone --filter=blob:none --no-checkout $REPO_URL $TARGET_DIR cd $TARGET_DIR git sparse-checkout init --cone git sparse-checkout set $FOLDER git checkout main ``` Example how to run script: ``` bash download_folder.sh oracles/CIFAR10/forget_set_3 ``` ## How forget sets generated We have 10 different forget sets: sets 1,2,3 are random forget sets of sizes 10,100,1000 respectively; sets 4-9 correspond to semantically coherent subpopulations of examples (e.g., all dogs facing a similar direction) identified using clustering methods. Specifically, we take a $n \times n$ datamodel matrix constructed by concatenating ``train x train`` datamodels ($n=50,000$). Next, we compute the top principal components (PCs) of the influence matrix and construct the following forget sets: * Forget set 1: 10 random samples * Forget set 2: 100 random samples * Forget set 3: 500 random samples * Forget set 4: 10 samples with the highest projection onto the 1st PC * Forget set 5: 100 samples with the highest projection onto the 1st PC * Forget set 6: 250 samples with the highest projection onto the 1st PC and 250 with lowest projection * Forget set 7: 10 samples with the highest projection onto the 2nd PC * Forget set 8: 100 samples with the highest projection onto the 2nd PC * Forget set 9: 250 samples with the highest projection onto the 2nd PC and 250 with the lowest projection. * Forget set 10: 100 samples closest in CLIP image space to training example 6 (a cassowary) \paragraph{ImageNet Living-17.} We use three different forget sets: * Forget set 1 is random of size 500; * Forget sets 2 and 3 correspond to 200 examples from a certain subpopulation (corresponding to a single original ImageNet class) within the Living-17 superclass.
phospho-ai/dataset_for_testing
phospho-ai
2025-06-05T21:06:10Z
968
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-02-07T16:59:08Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # dataset_for_testing **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
DoniaGasmii/final_project_milestone1_preference_pairs
DoniaGasmii
2025-06-05T21:03:11Z
55
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T19:47:38Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: criteria sequence: string splits: - name: train num_bytes: 51338018 num_examples: 13555 - name: validation num_bytes: 17097349 num_examples: 4518 - name: test num_bytes: 17018233 num_examples: 4520 download_size: 41707898 dataset_size: 85453600 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
david-thomas/yourbench
david-thomas
2025-06-05T20:53:52Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T20:52:11Z
null
--- dataset_info: - config_name: chunked features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_chunk_summaries sequence: string - name: chunk_summaries sequence: string - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string - name: chunks list: - name: chunk_id dtype: string - name: chunk_text dtype: string - name: multihop_chunks list: - name: chunk_ids sequence: string - name: chunks_text sequence: string - name: chunk_info_metrics list: - name: avg_token_length dtype: float64 - name: bigram_diversity dtype: float64 - name: flesch_reading_ease dtype: float64 - name: gunning_fog dtype: float64 - name: perplexity dtype: float64 - name: token_count dtype: float64 - name: unique_token_ratio dtype: float64 - name: chunking_model dtype: string splits: - name: train num_bytes: 231884 num_examples: 1 download_size: 169477 dataset_size: 231884 - config_name: ingested features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 splits: - name: train num_bytes: 83883 num_examples: 1 download_size: 48205 dataset_size: 83883 - config_name: lighteval features: - name: question dtype: string - name: additional_instructions dtype: string - name: ground_truth_answer dtype: string - name: question_category dtype: string - name: kind dtype: string - name: estimated_difficulty dtype: int64 - name: citations sequence: string - name: document_id dtype: string - name: chunk_ids sequence: string - name: question_generating_model dtype: string - name: chunks sequence: string - name: document dtype: string - name: document_summary dtype: string - name: answer_citation_score dtype: float64 - name: chunk_citation_score dtype: float64 - name: citation_score dtype: float64 splits: - name: train num_bytes: 3403394 num_examples: 38 download_size: 98168 dataset_size: 3403394 - config_name: multi_hop_questions features: - name: document_id dtype: string - name: source_chunk_ids sequence: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: citations sequence: string - name: raw_response dtype: string splits: - name: train num_bytes: 110280 num_examples: 10 download_size: 25536 dataset_size: 110280 - config_name: single_shot_questions features: - name: chunk_id dtype: string - name: document_id dtype: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: raw_response dtype: string - name: citations sequence: string splits: - name: train num_bytes: 229843 num_examples: 28 download_size: 36808 dataset_size: 229843 - config_name: summarized features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_chunk_summaries sequence: string - name: chunk_summaries sequence: string - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string splits: - name: train num_bytes: 90206 num_examples: 1 download_size: 73320 dataset_size: 90206 configs: - config_name: chunked data_files: - split: train path: chunked/train-* - config_name: ingested data_files: - split: train path: ingested/train-* - config_name: lighteval data_files: - split: train path: lighteval/train-* - config_name: multi_hop_questions data_files: - split: train path: multi_hop_questions/train-* - config_name: single_shot_questions data_files: - split: train path: single_shot_questions/train-* - config_name: summarized data_files: - split: train path: summarized/train-* ---
TAUR-dev/SIE_EVAL__SIEXP_concat_all_lm2d__sft__samples
TAUR-dev
2025-06-05T20:48:55Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T20:48:52Z
null
--- dataset_info: features: - name: doc_id dtype: int64 - name: doc dtype: string - name: target dtype: string - name: arguments dtype: string - name: resps dtype: string - name: filtered_resps dtype: string - name: doc_hash dtype: string - name: prompt_hash dtype: string - name: target_hash dtype: string - name: exact_match dtype: int64 - name: extracted_answers dtype: string - name: source_file dtype: string - name: generation dtype: string - name: info dtype: string - name: evaluation_api_cost dtype: string splits: - name: train num_bytes: 322517218 num_examples: 3656 download_size: 42576287 dataset_size: 322517218 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/multi-asset-synth-trades-202506052030
ChavyvAkvar
2025-06-05T20:38:51Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T20:30:28Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: scenario_id dtype: int64 - name: asset_source_name dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown_pct dtype: float64 - name: total_trades dtype: int64 - name: portfolio_halted dtype: bool - name: portfolio_halt_reason dtype: string - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 9753584443 num_examples: 10560 download_size: 9731003151 dataset_size: 9753584443 --- # Dataset Card for "multi-asset-synth-trades-202506052030" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
TAUR-dev/SIE_EVAL__SIEXP_concat_until_correct_and_filter_lm2d__sft__results
TAUR-dev
2025-06-05T20:35:07Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T20:35:06Z
null
--- dataset_info: features: - name: task dtype: string - name: alias dtype: string - name: evaluation_api_cost,none dtype: float64 - name: evaluation_api_cost_stderr,none dtype: string - name: exact_match,none dtype: float64 - name: exact_match_stderr,none dtype: string - name: extracted_answers,none dtype: int64 - name: extracted_answers_stderr,none dtype: string splits: - name: train num_bytes: 1183 num_examples: 16 download_size: 4296 dataset_size: 1183 configs: - config_name: default data_files: - split: train path: data/train-* ---
TAUR-dev/SIE_EVAL__SIEXP_concat_until_correct_lm2d__sft__samples
TAUR-dev
2025-06-05T20:34:40Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T20:34:37Z
null
--- dataset_info: features: - name: doc_id dtype: int64 - name: doc dtype: string - name: target dtype: string - name: arguments dtype: string - name: resps dtype: string - name: filtered_resps dtype: string - name: doc_hash dtype: string - name: prompt_hash dtype: string - name: target_hash dtype: string - name: exact_match dtype: int64 - name: extracted_answers dtype: string - name: source_file dtype: string - name: generation dtype: string - name: info dtype: string - name: evaluation_api_cost dtype: string splits: - name: train num_bytes: 266214405 num_examples: 3656 download_size: 39886313 dataset_size: 266214405 configs: - config_name: default data_files: - split: train path: data/train-* ---
psg777/gluepickup106
psg777
2025-06-05T20:32:11Z
90
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-04T17:45:36Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.2", "robot_type": "so101", "total_episodes": 50, "total_frames": 35078, "total_tasks": 1, "total_videos": 150, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.base": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.gripper": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.bird": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
clyyuanzi/so101_test
clyyuanzi
2025-06-05T20:22:49Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-05T20:22:41Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 1788, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
NaykinYT/reward-bench-allenai_2
NaykinYT
2025-06-05T20:16:44Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T20:15:48Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string splits: - name: test num_bytes: 6457965 num_examples: 1865 download_size: 3554154 dataset_size: 6457965 configs: - config_name: default data_files: - split: test path: data/test-* ---
rosbotmay/mnlp_M3_big_corpus_no_filter
rosbotmay
2025-06-05T20:15:07Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T18:53:03Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string splits: - name: train num_bytes: 1224630233 num_examples: 333897 download_size: 687587217 dataset_size: 1224630233 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/multi-asset-synth-trades-202506052003
ChavyvAkvar
2025-06-05T20:11:46Z
0
0
[ "region:us" ]
[]
2025-06-05T20:03:24Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: scenario_id dtype: int64 - name: asset_source_name dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown_pct dtype: float64 - name: total_trades dtype: int64 - name: portfolio_halted dtype: bool - name: portfolio_halt_reason dtype: string - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 9753581753 num_examples: 10560 download_size: 9731685081 dataset_size: 9753581753 --- # Dataset Card for "multi-asset-synth-trades-202506052003" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
andresnowak/MNLP_MCQA_dataset
andresnowak
2025-06-05T20:06:10Z
404
0
[ "task_categories:question-answering", "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-05-27T18:51:52Z
null
--- dataset_info: - config_name: ScienceQA features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: train num_bytes: 640566 num_examples: 3018 - name: validation num_bytes: 220715 num_examples: 1070 - name: test num_bytes: 215890 num_examples: 1041 download_size: 942180 dataset_size: 1077171 - config_name: ai2_arc_challenge features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: train num_bytes: 364307 num_examples: 1119 - name: validation num_bytes: 100557 num_examples: 299 - name: test num_bytes: 390752 num_examples: 1172 download_size: 1340985 dataset_size: 855616 - config_name: ai2_arc_easy features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: train num_bytes: 637018 num_examples: 2251 - name: validation num_bytes: 161949 num_examples: 570 - name: test num_bytes: 676537 num_examples: 2376 download_size: 2275662 dataset_size: 1475504 - config_name: all features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: string splits: - name: train num_bytes: 44223440.360226266 num_examples: 103176 - name: validation num_bytes: 4093645 num_examples: 11065 - name: test num_bytes: 3015842 num_examples: 9242 download_size: 109409622 dataset_size: 51332927.360226266 - config_name: math_qa features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: string splits: - name: train num_bytes: 14107758 num_examples: 29837 - name: validation num_bytes: 2112057 num_examples: 4475 download_size: 25514319 dataset_size: 16219815 - config_name: medmcqa features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: train num_bytes: 5152794.3361073155 num_examples: 24000 - name: validation num_bytes: 654419 num_examples: 2816 download_size: 31707729 dataset_size: 5807213.3361073155 - config_name: mmlu features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: validation num_bytes: 103367 num_examples: 335 - name: test num_bytes: 976533 num_examples: 3153 download_size: 2261684 dataset_size: 1079900 - config_name: mmlu-auxiliary-train-auto-labelled features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: train num_bytes: 16111661 num_examples: 13168 download_size: 5234820 dataset_size: 16111661 - config_name: mmlu_auxiliary_train_stem_10_choices features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: 'null' splits: - name: train num_bytes: 19071220 num_examples: 13147 download_size: 7003073 dataset_size: 19071220 - config_name: openbookqa features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: string splits: - name: train num_bytes: 1214630 num_examples: 4957 - name: validation num_bytes: 128573 num_examples: 500 - name: test num_bytes: 123375 num_examples: 500 download_size: 2288031 dataset_size: 1466578 - config_name: sciq features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: context dtype: string splits: - name: train num_bytes: 6990554 num_examples: 11679 - name: validation num_bytes: 591010 num_examples: 1000 - name: test num_bytes: 600817 num_examples: 1000 download_size: 13881856 dataset_size: 8182381 configs: - config_name: ScienceQA data_files: - split: train path: ScienceQA/train-* - split: validation path: ScienceQA/validation-* - split: test path: ScienceQA/test-* - config_name: ai2_arc_challenge data_files: - split: train path: ai2_arc_challenge/train-* - split: validation path: ai2_arc_challenge/validation-* - split: test path: ai2_arc_challenge/test-* - config_name: ai2_arc_easy data_files: - split: train path: ai2_arc_easy/train-* - split: validation path: ai2_arc_easy/validation-* - split: test path: ai2_arc_easy/test-* - config_name: all data_files: - split: train path: all/train-* - split: validation path: all/validation-* - split: test path: all/test-* - config_name: math_qa data_files: - split: train path: math_qa/train-* - split: validation path: math_qa/validation-* - config_name: medmcqa data_files: - split: train path: medmcqa/train-* - split: validation path: medmcqa/validation-* - config_name: mmlu data_files: - split: validation path: mmlu/validation-* - split: test path: mmlu/test-* - config_name: mmlu-auxiliary-train-auto-labelled data_files: - split: train path: mmlu-auxiliary-train-auto-labelled/train-* - config_name: mmlu_auxiliary_train_stem_10_choices data_files: - split: train path: mmlu_auxiliary_train_stem_10_choices/train-* - config_name: openbookqa data_files: - split: train path: openbookqa/train-* - split: validation path: openbookqa/validation-* - split: test path: openbookqa/test-* - config_name: sciq data_files: - split: train path: sciq/train-* - split: validation path: sciq/validation-* - split: test path: sciq/test-* task_categories: - question-answering language: - en size_categories: - 100K<n<1M --- This MCQA dataset (of only single answer) contains a mixture of train, validation and test from this datasets (**test and validation are only used for testing not for training**): - [mmlu auxiliary train](https://huggingface.co/datasets/kz919/mmlu-auxiliary-train-auto-labelled) Only the stem subset is used - [mmlu](https://huggingface.co/datasets/cais/mmlu) Only the stem subset is used - [mmlu 10 choices auxiliary train stem](https://huggingface.co/datasets/andresnowak/mmlu-auxiliary-train-10-choices) - [ai2_arc](https://huggingface.co/datasets/allenai/ai2_arc) - [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA) - [math_qa](https://huggingface.co/datasets/allenai/math_qa) - [openbook_qa](https://huggingface.co/datasets/allenai/openbookqa) - [sciq](https://huggingface.co/datasets/allenai/sciq) - [medmcqa](https://huggingface.co/datasets/openlifescienceai/medmcqa) A 26,000 random subset (seed 42)
aranemini/fleurs-kmr
aranemini
2025-06-05T20:04:40Z
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-06-05T20:04:40Z
null
--- license: cc-by-nc-4.0 ---
ChavyvAkvar/multi-asset-synth-trades-202506051936
ChavyvAkvar
2025-06-05T19:45:00Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:36:12Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: scenario_id dtype: int64 - name: asset_source_name dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown_pct dtype: float64 - name: total_trades dtype: int64 - name: portfolio_halted dtype: bool - name: portfolio_halt_reason dtype: string - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 9753582755 num_examples: 10560 download_size: 9731891804 dataset_size: 9753582755 --- # Dataset Card for "multi-asset-synth-trades-202506051936" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
VinceEPFL/mmlu_mathphys_only_subset
VinceEPFL
2025-06-05T19:35:44Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:35:40Z
null
--- dataset_info: features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: string splits: - name: test num_bytes: 690954.5027061672 num_examples: 1401 download_size: 182694 dataset_size: 690954.5027061672 configs: - config_name: default data_files: - split: test path: data/test-* ---
CohenQu/HintGen-withSol.01.01
CohenQu
2025-06-05T19:32:40Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:32:30Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: suffix dtype: string splits: - name: train num_bytes: 533126587 num_examples: 24537 - name: test num_bytes: 43405923 num_examples: 2000 download_size: 249822728 dataset_size: 576532510 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
svjack/genshin_impact_mavuika_audio_sample
svjack
2025-06-05T19:28:23Z
0
0
[ "size_categories:1K<n<10K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-05T19:23:40Z
null
--- configs: - config_name: default data_files: - split: train path: - "*.wav" - "metadata.csv" ---
rweics5cs7/exo3-original-PlotQA-text-deg
rweics5cs7
2025-06-05T19:09:52Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:09:48Z
null
--- dataset_info: config_name: corpus features: - name: corpus-id dtype: string - name: text dtype: string splits: - name: train num_bytes: 1185442 num_examples: 9593 download_size: 617437 dataset_size: 1185442 configs: - config_name: corpus data_files: - split: train path: corpus/train-* ---
MING-ZCH/MetaphorQA
MING-ZCH
2025-06-05T19:04:55Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:00:45Z
null
--- dataset_info: features: - name: images sequence: image - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 79096067.0 num_examples: 984 - name: test num_bytes: 42877510.0 num_examples: 492 download_size: 13386835 dataset_size: 121973577.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # MetaphorQA The True-False Question(TFQ) about image implication. - train: 984 - test: 492
koreankiwi99/mnlp_stem_reasoning
koreankiwi99
2025-06-05T19:01:35Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:01:32Z
null
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 2089942 num_examples: 14957 download_size: 1147102 dataset_size: 2089942 configs: - config_name: default data_files: - split: train path: data/train-* ---
koreankiwi99/mnlp_stem_math_only
koreankiwi99
2025-06-05T19:00:11Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T19:00:04Z
null
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 20353964 num_examples: 27500 download_size: 10496797 dataset_size: 20353964 configs: - config_name: default data_files: - split: train path: data/train-* ---
rweics5cs7/exo3-original-ArxivQA-text-deg
rweics5cs7
2025-06-05T18:48:17Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T18:48:14Z
null
--- dataset_info: config_name: corpus features: - name: corpus-id dtype: string - name: text dtype: string splits: - name: train num_bytes: 2723315 num_examples: 8066 download_size: 1227609 dataset_size: 2723315 configs: - config_name: corpus data_files: - split: train path: corpus/train-* ---
danelbaz/some_name_for_hub
danelbaz
2025-06-05T18:44:32Z
761
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T07:37:09Z
null
--- dataset_info: config_name: None--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 splits: - name: train num_bytes: 32 num_examples: 1 download_size: 1961 dataset_size: 32 configs: - config_name: None--evals data_files: - split: train path: None--evals/train-* ---
zijian2022/itrgg
zijian2022
2025-06-05T18:43:21Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-05T18:36:51Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 10, "total_frames": 7130, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
WillHeld/paloma_subreddits
WillHeld
2025-06-05T18:35:12Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T17:55:25Z
null
--- dataset_info: - config_name: 00_AskReddit features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 986793 num_examples: 1000 download_size: 607986 dataset_size: 986793 - config_name: 01_politics features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1019751 num_examples: 1019 download_size: 629396 dataset_size: 1019751 - config_name: 02_AmItheAsshole features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1004296 num_examples: 998 download_size: 598999 dataset_size: 1004296 - config_name: 03_worldnews features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 824506 num_examples: 814 download_size: 510374 dataset_size: 824506 - config_name: 04_relationships features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 986384 num_examples: 870 download_size: 580917 dataset_size: 986384 - config_name: 05_relationship_advice features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 996669 num_examples: 945 download_size: 590987 dataset_size: 996669 - config_name: 06_news features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 839390 num_examples: 882 download_size: 513890 dataset_size: 839390 - config_name: 07_leagueoflegends features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 953796 num_examples: 950 download_size: 580339 dataset_size: 953796 - config_name: 08_todayilearned features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 828693 num_examples: 835 download_size: 515421 dataset_size: 828693 - config_name: 09_TwoXChromosomes features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 989758 num_examples: 931 download_size: 607194 dataset_size: 989758 - config_name: 10_personalfinance features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 978998 num_examples: 920 download_size: 586232 dataset_size: 978998 - config_name: 11_changemyview features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1006879 num_examples: 785 download_size: 607528 dataset_size: 1006879 - config_name: 12_unpopularopinion features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1032897 num_examples: 1078 download_size: 624862 dataset_size: 1032897 - config_name: 13_movies features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 990058 num_examples: 1000 download_size: 611157 dataset_size: 990058 - config_name: 14_Games features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 952100 num_examples: 866 download_size: 578147 dataset_size: 952100 - config_name: 15_nba features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 953427 num_examples: 1018 download_size: 585188 dataset_size: 953427 - config_name: 16_pics features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 802780 num_examples: 860 download_size: 501180 dataset_size: 802780 - config_name: 17_gaming features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 981409 num_examples: 1018 download_size: 610161 dataset_size: 981409 - config_name: 18_soccer features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 977485 num_examples: 1004 download_size: 604723 dataset_size: 977485 - config_name: 19_nfl features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 961012 num_examples: 1006 download_size: 593014 dataset_size: 961012 - config_name: 20_explainlikeimfive features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1009086 num_examples: 969 download_size: 606076 dataset_size: 1009086 - config_name: 21_conspiracy features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1000537 num_examples: 917 download_size: 621218 dataset_size: 1000537 - config_name: 22_atheism features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1001715 num_examples: 939 download_size: 609963 dataset_size: 1001715 - config_name: 23_AskMen features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 986553 num_examples: 995 download_size: 597464 dataset_size: 986553 - config_name: 24_videos features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 813034 num_examples: 831 download_size: 501656 dataset_size: 813034 - config_name: 25_sex features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 985561 num_examples: 992 download_size: 584869 dataset_size: 985561 - config_name: 26_raisedbynarcissists features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 973619 num_examples: 851 download_size: 591754 dataset_size: 973619 - config_name: 27_NoStupidQuestions features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1014479 num_examples: 1032 download_size: 619518 dataset_size: 1014479 - config_name: 28_DestinyTheGame features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 963424 num_examples: 952 download_size: 585294 dataset_size: 963424 - config_name: 29_anime features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 924618 num_examples: 865 download_size: 567829 dataset_size: 924618 - config_name: 30_DnD features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 966059 num_examples: 875 download_size: 596075 dataset_size: 966059 - config_name: 31_ukpolitics features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 932020 num_examples: 828 download_size: 574747 dataset_size: 932020 - config_name: 32_funny features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 889846 num_examples: 907 download_size: 551593 dataset_size: 889846 - config_name: 33_europe features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 851080 num_examples: 811 download_size: 525709 dataset_size: 851080 - config_name: 34_canada features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 936212 num_examples: 945 download_size: 574879 dataset_size: 936212 - config_name: 35_Christianity features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 976471 num_examples: 824 download_size: 589418 dataset_size: 976471 - config_name: 36_SquaredCircle features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 965976 num_examples: 1036 download_size: 596643 dataset_size: 965976 - config_name: 37_AskWomen features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 979864 num_examples: 946 download_size: 595617 dataset_size: 979864 - config_name: 38_legaladvice features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1013911 num_examples: 970 download_size: 603400 dataset_size: 1013911 - config_name: 39_JUSTNOMIL features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 965462 num_examples: 857 download_size: 590704 dataset_size: 965462 - config_name: 40_technology features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 850548 num_examples: 861 download_size: 523726 dataset_size: 850548 - config_name: 41_IAmA features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 975769 num_examples: 908 download_size: 607079 dataset_size: 975769 - config_name: 42_wow features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 949279 num_examples: 946 download_size: 579574 dataset_size: 949279 - config_name: 43_Parenting features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 989123 num_examples: 949 download_size: 595017 dataset_size: 989123 - config_name: 44_exmormon features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 979529 num_examples: 879 download_size: 602325 dataset_size: 979529 - config_name: 45_AdviceAnimals features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 818772 num_examples: 864 download_size: 503241 dataset_size: 818772 - config_name: 46_childfree features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 990868 num_examples: 1002 download_size: 608189 dataset_size: 990868 - config_name: 47_unitedkingdom features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 930401 num_examples: 902 download_size: 572800 dataset_size: 930401 - config_name: 48_ffxiv features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 940489 num_examples: 865 download_size: 578790 dataset_size: 940489 - config_name: 49_dndnext features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 967312 num_examples: 853 download_size: 591851 dataset_size: 967312 - config_name: 50_ADHD features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 991119 num_examples: 900 download_size: 596110 dataset_size: 991119 - config_name: 51_loseit features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 956065 num_examples: 882 download_size: 578779 dataset_size: 956065 - config_name: 52_asoiaf features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 945144 num_examples: 875 download_size: 579401 dataset_size: 945144 - config_name: 53_BabyBumps features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 979788 num_examples: 950 download_size: 591095 dataset_size: 979788 - config_name: 54_Advice features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 993906 num_examples: 942 download_size: 589329 dataset_size: 993906 - config_name: 55_australia features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1013266 num_examples: 1019 download_size: 631408 dataset_size: 1013266 - config_name: 56_CFB features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 946237 num_examples: 944 download_size: 583241 dataset_size: 946237 - config_name: 57_offmychest features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 992613 num_examples: 951 download_size: 594113 dataset_size: 992613 - config_name: 58_PublicFreakout features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 832368 num_examples: 928 download_size: 510973 dataset_size: 832368 - config_name: 59_TrueOffMyChest features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 999452 num_examples: 965 download_size: 601369 dataset_size: 999452 - config_name: 60_science features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 862136 num_examples: 822 download_size: 528332 dataset_size: 862136 - config_name: 61_magicTCG features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 952443 num_examples: 873 download_size: 579371 dataset_size: 952443 - config_name: 62_asktransgender features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 976796 num_examples: 865 download_size: 585906 dataset_size: 976796 - config_name: 63_DotA2 features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 951217 num_examples: 948 download_size: 582242 dataset_size: 951217 - config_name: 64_neoliberal features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 980043 num_examples: 898 download_size: 607282 dataset_size: 980043 - config_name: 65_whowouldwin features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 925272 num_examples: 806 download_size: 572194 dataset_size: 925272 - config_name: 66_depression features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 989192 num_examples: 920 download_size: 585737 dataset_size: 989192 - config_name: 67_WTF features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 819580 num_examples: 891 download_size: 509902 dataset_size: 819580 - config_name: 68_pathofexile features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 952178 num_examples: 937 download_size: 580521 dataset_size: 952178 - config_name: 69_PoliticalDiscussion features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1022120 num_examples: 895 download_size: 617624 dataset_size: 1022120 - config_name: 70_Libertarian features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1033421 num_examples: 993 download_size: 624116 dataset_size: 1033421 - config_name: 71_PurplePillDebate features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 990114 num_examples: 904 download_size: 600828 dataset_size: 990114 - config_name: 72_Fitness features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 965570 num_examples: 994 download_size: 585311 dataset_size: 965570 - config_name: 73_books features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 995949 num_examples: 989 download_size: 613242 dataset_size: 995949 - config_name: 74_dogs features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 961856 num_examples: 864 download_size: 582778 dataset_size: 961856 - config_name: 75_pcmasterrace features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 953665 num_examples: 1022 download_size: 591599 dataset_size: 953665 - config_name: 76_teenagers features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 898364 num_examples: 901 download_size: 534931 dataset_size: 898364 - config_name: 77_stopdrinking features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 977429 num_examples: 982 download_size: 585156 dataset_size: 977429 - config_name: 78_Overwatch features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 963714 num_examples: 941 download_size: 581646 dataset_size: 963714 - config_name: 79_television features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 991476 num_examples: 1035 download_size: 614894 dataset_size: 991476 - config_name: 80_buildapc features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 908470 num_examples: 961 download_size: 550001 dataset_size: 908470 - config_name: 81_askscience features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1010614 num_examples: 931 download_size: 601360 dataset_size: 1010614 - config_name: 82_programming features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 811625 num_examples: 779 download_size: 495004 dataset_size: 811625 - config_name: 83_Guildwars2 features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 939939 num_examples: 872 download_size: 572384 dataset_size: 939939 - config_name: 84_cars features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 952879 num_examples: 989 download_size: 587637 dataset_size: 952879 - config_name: 85_formula1 features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 978134 num_examples: 1028 download_size: 597998 dataset_size: 978134 - config_name: 86_sysadmin features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 983522 num_examples: 962 download_size: 597274 dataset_size: 983522 - config_name: 87_hockey features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 961885 num_examples: 1020 download_size: 594776 dataset_size: 961885 - config_name: 88_india features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 978783 num_examples: 913 download_size: 612158 dataset_size: 978783 - config_name: 89_SubredditDrama features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 940899 num_examples: 902 download_size: 564297 dataset_size: 940899 - config_name: 90_DMAcademy features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 982285 num_examples: 872 download_size: 599042 dataset_size: 982285 - config_name: 91_dating_advice features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 991387 num_examples: 961 download_size: 582520 dataset_size: 991387 - config_name: 92_Catholicism features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 981309 num_examples: 817 download_size: 595413 dataset_size: 981309 - config_name: 93_Drugs features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 978965 num_examples: 936 download_size: 597542 dataset_size: 978965 - config_name: 94_trees features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 981692 num_examples: 1027 download_size: 606841 dataset_size: 981692 - config_name: 95_boardgames features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 962047 num_examples: 884 download_size: 580387 dataset_size: 962047 - config_name: 96_Conservative features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 910585 num_examples: 883 download_size: 558488 dataset_size: 910585 - config_name: 97_Futurology features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 928415 num_examples: 889 download_size: 570147 dataset_size: 928415 - config_name: 98_beyondthebump features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 976086 num_examples: 975 download_size: 589314 dataset_size: 976086 - config_name: 99_weddingplanning features: - name: text dtype: string - name: id dtype: string - name: added dtype: string - name: created dtype: string - name: source dtype: string - name: metadata dtype: string - name: type dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 975095 num_examples: 943 download_size: 582567 dataset_size: 975095 configs: - config_name: 00_AskReddit data_files: - split: train path: 00_AskReddit/train-* - config_name: 01_politics data_files: - split: train path: 01_politics/train-* - config_name: 02_AmItheAsshole data_files: - split: train path: 02_AmItheAsshole/train-* - config_name: 03_worldnews data_files: - split: train path: 03_worldnews/train-* - config_name: 04_relationships data_files: - split: train path: 04_relationships/train-* - config_name: 05_relationship_advice data_files: - split: train path: 05_relationship_advice/train-* - config_name: 06_news data_files: - split: train path: 06_news/train-* - config_name: 07_leagueoflegends data_files: - split: train path: 07_leagueoflegends/train-* - config_name: 08_todayilearned data_files: - split: train path: 08_todayilearned/train-* - config_name: 09_TwoXChromosomes data_files: - split: train path: 09_TwoXChromosomes/train-* - config_name: 10_personalfinance data_files: - split: train path: 10_personalfinance/train-* - config_name: 11_changemyview data_files: - split: train path: 11_changemyview/train-* - config_name: 12_unpopularopinion data_files: - split: train path: 12_unpopularopinion/train-* - config_name: 13_movies data_files: - split: train path: 13_movies/train-* - config_name: 14_Games data_files: - split: train path: 14_Games/train-* - config_name: 15_nba data_files: - split: train path: 15_nba/train-* - config_name: 16_pics data_files: - split: train path: 16_pics/train-* - config_name: 17_gaming data_files: - split: train path: 17_gaming/train-* - config_name: 18_soccer data_files: - split: train path: 18_soccer/train-* - config_name: 19_nfl data_files: - split: train path: 19_nfl/train-* - config_name: 20_explainlikeimfive data_files: - split: train path: 20_explainlikeimfive/train-* - config_name: 21_conspiracy data_files: - split: train path: 21_conspiracy/train-* - config_name: 22_atheism data_files: - split: train path: 22_atheism/train-* - config_name: 23_AskMen data_files: - split: train path: 23_AskMen/train-* - config_name: 24_videos data_files: - split: train path: 24_videos/train-* - config_name: 25_sex data_files: - split: train path: 25_sex/train-* - config_name: 26_raisedbynarcissists data_files: - split: train path: 26_raisedbynarcissists/train-* - config_name: 27_NoStupidQuestions data_files: - split: train path: 27_NoStupidQuestions/train-* - config_name: 28_DestinyTheGame data_files: - split: train path: 28_DestinyTheGame/train-* - config_name: 29_anime data_files: - split: train path: 29_anime/train-* - config_name: 30_DnD data_files: - split: train path: 30_DnD/train-* - config_name: 31_ukpolitics data_files: - split: train path: 31_ukpolitics/train-* - config_name: 32_funny data_files: - split: train path: 32_funny/train-* - config_name: 33_europe data_files: - split: train path: 33_europe/train-* - config_name: 34_canada data_files: - split: train path: 34_canada/train-* - config_name: 35_Christianity data_files: - split: train path: 35_Christianity/train-* - config_name: 36_SquaredCircle data_files: - split: train path: 36_SquaredCircle/train-* - config_name: 37_AskWomen data_files: - split: train path: 37_AskWomen/train-* - config_name: 38_legaladvice data_files: - split: train path: 38_legaladvice/train-* - config_name: 39_JUSTNOMIL data_files: - split: train path: 39_JUSTNOMIL/train-* - config_name: 40_technology data_files: - split: train path: 40_technology/train-* - config_name: 41_IAmA data_files: - split: train path: 41_IAmA/train-* - config_name: 42_wow data_files: - split: train path: 42_wow/train-* - config_name: 43_Parenting data_files: - split: train path: 43_Parenting/train-* - config_name: 44_exmormon data_files: - split: train path: 44_exmormon/train-* - config_name: 45_AdviceAnimals data_files: - split: train path: 45_AdviceAnimals/train-* - config_name: 46_childfree data_files: - split: train path: 46_childfree/train-* - config_name: 47_unitedkingdom data_files: - split: train path: 47_unitedkingdom/train-* - config_name: 48_ffxiv data_files: - split: train path: 48_ffxiv/train-* - config_name: 49_dndnext data_files: - split: train path: 49_dndnext/train-* - config_name: 50_ADHD data_files: - split: train path: 50_ADHD/train-* - config_name: 51_loseit data_files: - split: train path: 51_loseit/train-* - config_name: 52_asoiaf data_files: - split: train path: 52_asoiaf/train-* - config_name: 53_BabyBumps data_files: - split: train path: 53_BabyBumps/train-* - config_name: 54_Advice data_files: - split: train path: 54_Advice/train-* - config_name: 55_australia data_files: - split: train path: 55_australia/train-* - config_name: 56_CFB data_files: - split: train path: 56_CFB/train-* - config_name: 57_offmychest data_files: - split: train path: 57_offmychest/train-* - config_name: 58_PublicFreakout data_files: - split: train path: 58_PublicFreakout/train-* - config_name: 59_TrueOffMyChest data_files: - split: train path: 59_TrueOffMyChest/train-* - config_name: 60_science data_files: - split: train path: 60_science/train-* - config_name: 61_magicTCG data_files: - split: train path: 61_magicTCG/train-* - config_name: 62_asktransgender data_files: - split: train path: 62_asktransgender/train-* - config_name: 63_DotA2 data_files: - split: train path: 63_DotA2/train-* - config_name: 64_neoliberal data_files: - split: train path: 64_neoliberal/train-* - config_name: 65_whowouldwin data_files: - split: train path: 65_whowouldwin/train-* - config_name: 66_depression data_files: - split: train path: 66_depression/train-* - config_name: 67_WTF data_files: - split: train path: 67_WTF/train-* - config_name: 68_pathofexile data_files: - split: train path: 68_pathofexile/train-* - config_name: 69_PoliticalDiscussion data_files: - split: train path: 69_PoliticalDiscussion/train-* - config_name: 70_Libertarian data_files: - split: train path: 70_Libertarian/train-* - config_name: 71_PurplePillDebate data_files: - split: train path: 71_PurplePillDebate/train-* - config_name: 72_Fitness data_files: - split: train path: 72_Fitness/train-* - config_name: 73_books data_files: - split: train path: 73_books/train-* - config_name: 74_dogs data_files: - split: train path: 74_dogs/train-* - config_name: 75_pcmasterrace data_files: - split: train path: 75_pcmasterrace/train-* - config_name: 76_teenagers data_files: - split: train path: 76_teenagers/train-* - config_name: 77_stopdrinking data_files: - split: train path: 77_stopdrinking/train-* - config_name: 78_Overwatch data_files: - split: train path: 78_Overwatch/train-* - config_name: 79_television data_files: - split: train path: 79_television/train-* - config_name: 80_buildapc data_files: - split: train path: 80_buildapc/train-* - config_name: 81_askscience data_files: - split: train path: 81_askscience/train-* - config_name: 82_programming data_files: - split: train path: 82_programming/train-* - config_name: 83_Guildwars2 data_files: - split: train path: 83_Guildwars2/train-* - config_name: 84_cars data_files: - split: train path: 84_cars/train-* - config_name: 85_formula1 data_files: - split: train path: 85_formula1/train-* - config_name: 86_sysadmin data_files: - split: train path: 86_sysadmin/train-* - config_name: 87_hockey data_files: - split: train path: 87_hockey/train-* - config_name: 88_india data_files: - split: train path: 88_india/train-* - config_name: 89_SubredditDrama data_files: - split: train path: 89_SubredditDrama/train-* - config_name: 90_DMAcademy data_files: - split: train path: 90_DMAcademy/train-* - config_name: 91_dating_advice data_files: - split: train path: 91_dating_advice/train-* - config_name: 92_Catholicism data_files: - split: train path: 92_Catholicism/train-* - config_name: 93_Drugs data_files: - split: train path: 93_Drugs/train-* - config_name: 94_trees data_files: - split: train path: 94_trees/train-* - config_name: 95_boardgames data_files: - split: train path: 95_boardgames/train-* - config_name: 96_Conservative data_files: - split: train path: 96_Conservative/train-* - config_name: 97_Futurology data_files: - split: train path: 97_Futurology/train-* - config_name: 98_beyondthebump data_files: - split: train path: 98_beyondthebump/train-* - config_name: 99_weddingplanning data_files: - split: train path: 99_weddingplanning/train-* ---
sy1998/EarthMind-Bench
sy1998
2025-06-05T18:34:50Z
0
1
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-05T11:58:20Z
1
--- license: apache-2.0 ---
Koushim/en-te-kn-translation-dataset
Koushim
2025-06-05T18:34:48Z
0
0
[ "task_categories:translation", "annotations_creators:manual", "language_creators:found", "multilinguality:multilingual", "source_datasets:ai4bharat/samanantar", "language:en", "language:te", "language:kn", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation" ]
2025-06-05T18:26:50Z
null
--- annotations_creators: - manual language_creators: - found language: - en - te - kn license: cc-by-4.0 multilinguality: - multilingual pretty_name: Multilingual English-Telugu-Kannada Translation Dataset size_categories: - 1M<n<10M source_datasets: - ai4bharat/samanantar task_categories: - translation task_ids: - translation dataset_info: features: - name: target_lang_code dtype: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: train num_bytes: 2231633137 num_examples: 7966485 download_size: 700766001 dataset_size: 2231633137 configs: - config_name: default data_files: - split: train path: data/train-* --- # 📚 Multilingual English-Telugu-Kannada Translation Dataset This dataset is a curated and preprocessed subset of the [AI4Bharat Samanantar](https://huggingface.co/datasets/ai4bharat/samanantar) dataset focused on multilingual translation tasks between English, Telugu (`te_IN`), and Kannada (`kn_IN`). ## ✨ Dataset Features - Language pairs: - `en ↔ te_IN` - `en ↔ kn_IN` - Preprocessed: - Filtered for sentence length (min=3, max=128 words) - Cleaned and normalized - Tokenized using Hugging Face Transformers tokenizers: - M2M100Tokenizer (for `en↔kn`) - MBart50TokenizerFast (for `en↔te`) ## 📦 Dataset Structure The dataset contains the following fields: - `src_texts`: Source language sentence (English) - `tgt_texts`: Target language sentence (Telugu or Kannada) - `labels`: Tokenized target sequence for model training - `input_ids`, `attention_mask`: Tokenized source sentence The dataset is split into: - `train`: Training samples - `validation`: Small subset for evaluation ## 📊 Size - ~7.9M total sentence pairs - Supports batch training and multilingual fine-tuning ## 💡 Usage Example ```python from datasets import load_dataset dataset = load_dataset("Koushim/en-te-kn-translation-dataset") print(dataset["train"][0]) ```` ## 🧠 Intended Uses * Train multilingual translation models (MBart, Marian, M2M100) * Fine-tune LLMs on Indic translation * Evaluate BLEU or other metrics for low-resource translation ## 📜 License CC-BY-4.0 ## ✍️ Author Koushik Reddy [GitHub](https://github.com/Koushik7893) | [Hugging Face](https://huggingface.co/datasets/Koushim) ## 🙏 Acknowledgements Thanks to AI4Bharat for providing the [Samanantar](https://huggingface.co/datasets/ai4bharat/samanantar) dataset which served as the base for this project.
IndoorOutdoor/results
IndoorOutdoor
2025-06-05T18:32:08Z
221
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-03T01:00:13Z
null
--- dataset_info: features: - name: Model Name dtype: string - name: Group Name dtype: string - name: Execution Time (s) dtype: float64 - name: Accuracy dtype: float64 - name: TP dtype: float64 - name: FP dtype: float64 - name: FN dtype: float64 - name: TN dtype: float64 splits: - name: train num_bytes: 1434 num_examples: 21 download_size: 3913 dataset_size: 1434 configs: - config_name: default data_files: - split: train path: data/train-* ---
rweics5cs7/exo3-original-MP-DocVQA-text
rweics5cs7
2025-06-05T18:30:19Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T18:29:58Z
null
--- dataset_info: config_name: corpus features: - name: corpus-id dtype: string - name: text dtype: string splits: - name: train num_bytes: 1302324 num_examples: 741 download_size: 746965 dataset_size: 1302324 configs: - config_name: corpus data_files: - split: train path: corpus/train-* ---
VGS-AI/OpenR1-Cleaned
VGS-AI
2025-06-05T18:26:19Z
89
0
[ "task_categories:question-answering", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.17373", "region:us" ]
[ "question-answering" ]
2025-05-22T21:30:00Z
null
--- license: cc-by-nc-4.0 task_categories: - question-answering dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations sequence: string - name: correctness_math_verify sequence: bool - name: correctness_llama sequence: bool - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2634118946 num_examples: 48394 - name: validation num_bytes: 28313171 num_examples: 500 - name: test num_bytes: 27765044 num_examples: 500 download_size: 1162355943 dataset_size: 2690197161 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- This dataset is used in the paper [Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373). It contains data for training and evaluating value models for improved long-context reasoning. GitHub Repository: https://github.com/kaiwenw/value-guided-search Related resources: * **Dataset (OpenR1-Cleaned):** https://huggingface.co/datasets/VGS-AI/OpenR1-Cleaned * **Dataset (OpenR1-VM):** https://huggingface.co/datasets/VGS-AI/OpenR1-VM * **Value Model (DeepSeek-VM-1.5B):** https://huggingface.co/VGS-AI/DeepSeek-VM-1.5B **How to use:** To load the released value model, you can use the following code snippet: ```python import classifier_lib import torch model_loading_kwargs = dict(attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False) classifier = classifier_lib.Qwen2ForClassifier.from_pretrained("VGS-AI/DeepSeek-VM-1.5B", **model_loading_kwargs) device = torch.device("cuda") # your input_ids input_ids = torch.tensor([151646, 151644, 18, 13, 47238, ...], dtype=torch.long, device=device) attention_mask = torch.ones_like(input_ids) classifier_outputs = classifier(input_ids.unsqueeze(0), attention_mask=attention_mask.unsqueeze(0)) # use last index of the sequence scores = classifier_outputs.success_probs.squeeze(0)[-1].item() ```
salamnocap/ml-figs
salamnocap
2025-06-05T18:24:51Z
43
0
[ "language:en", "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "doi:10.57967/hf/5251", "region:us", "education", "figure", "caption", "books" ]
[]
2025-04-25T19:34:49Z
null
--- license: cc-by-nc-4.0 language: - en tags: - education - figure - caption - books pretty_name: ML-Figs size_categories: - 1K<n<10K --- [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/salamnocap/ml-figs-ldm) # ML-FIGS 📚📊 This dataset comprises a collection of **4,256 figures** and corresponding metadata extracted from **43 different machine learning books**. Each directory represents one book and contains a subdirectory with **images** and a **JSON file** holding metadata for each figure. The dataset is organized hierarchically as follows: ```python ml-figs/ ├── Book_1/ │ ├── image/ │ │ ├── Figure1.png │ │ ├── Figure2.png │ │ └── ... │ └── Book_1.json ├── Book_2/ │ ├── image/ │ │ ├── Figure1.png │ │ ├── Figure2.png │ │ └── ... │ └── Book_2.json ├── ... │ ├── mlfigs_train.json │ └── mlfigs_test.json ``` Each **JSON file** in the dataset represents the metadata for all the figures within a particular book. A typical entry for a figure in the JSON file includes the following attributes: - **caption**: Describes the content of the figure. For example, "Figure 25: Gradient Descent (4/4)". - **captionBoundary**: The bounding box of the caption text within the page, represented as a dictionary: - **x1, x2**: Horizontal boundaries of the caption. - **y1, y2**: Vertical boundaries of the caption. - **figType**: The type of figure (usually "Figure", "Table", or other structural elements). - **imageText**: A list of any text recognized within the figure image. - **name**: The unique identifier for each figure within the book (e.g., "25"). - **page**: The page number on which the figure appears. - **regionBoundary**: The bounding box of the entire figure within the page, defined as: - **x1, x2**: Horizontal boundaries of the figure. - **y1, y2**: Vertical boundaries of the figure. - **renderDpi**: The DPI (dots per inch) resolution used when rendering the image. - **renderURL**: The path to the corresponding figure image file within the image/ directory. - **ocr**: OCR (Optical Character Recognition) data, capturing any text detected within the figure. - **text** : A list of strings, representing the recognized text within the figure. These are typically individual words or symbols extracted by the OCR system. - **left** : Horizontal coordinates (in pixels) representing the left edge of each recognized text element. - **top** : Vertical coordinates (in pixels) representing the top edge of each recognized text element. - **width** : Width of each recognized text element, providing the horizontal span of the text box. - **height** : Height of each recognized text element. - **conf** : Each recognized text element is assigned a confidence score ranging from 0 to 100, indicating the OCR system's confidence in its recognition. # 📕 Citation ```bibtex @misc{salamat_kuantaiuly_2025, author = { Salamat Kuantaiuly }, title = { ml-figs (Revision 8695d1b) }, year = 2025, url = { https://huggingface.co/datasets/salamnocap/ml-figs }, doi = { 10.57967/hf/5251 }, publisher = { Hugging Face } } ```
uhuru-jonathan/lekiwi_test
uhuru-jonathan
2025-06-05T18:19:46Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-05T18:20:45Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "lekiwi", "total_episodes": 7, "total_frames": 5356, "total_tasks": 1, "total_videos": 7, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:4" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 9 ], "names": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper", "x_mm", "y_mm", "theta" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper", "x_mm", "y_mm", "theta" ] }, "observation.images.front": { "dtype": "video", "shape": [ 640, 480, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 640, "video.width": 480, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Jgold90/sweep_mano
Jgold90
2025-06-05T18:16:48Z
81
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-27T16:07:09Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "human", "total_episodes": 498, "total_frames": 96415, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 50, "splits": { "train": "0:498" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": null, "features": { "lang": { "dtype": "float32", "shape": [ 512 ], "names": null }, "observation.image.low": { "dtype": "image", "shape": [ 480, 640, 3 ], "names": [ "width", "height", "channels" ] }, "observation.image.wrist": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "width", "height", "channels" ] }, "observation.state.box.center": { "dtype": "float32", "shape": [ 2 ] }, "observation.state.box.kp2d": { "dtype": "float32", "shape": [ 21, 2 ] }, "observation.state.box.size": { "dtype": "float32", "shape": [ 1 ] }, "observation.state.kp2d": { "dtype": "float32", "shape": [ 21, 2 ] }, "observation.state.kp3d": { "dtype": "float32", "shape": [ 21, 3 ] }, "observation.state.mano.betas": { "dtype": "float32", "shape": [ 10 ] }, "observation.state.mano.global_orient": { "dtype": "float32", "shape": [ 3, 3 ] }, "observation.state.mano.hand_pose": { "dtype": "float32", "shape": [ 15, 3, 3 ] }, "observation.state.right": { "dtype": "float32", "shape": [ 1 ] }, "observation.state.scaled_focal_length": { "dtype": "float32", "shape": [ 1 ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Haribot099/so101_15
Haribot099
2025-06-05T18:01:09Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-05T17:44:21Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 892, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
super-pingouin/wikipedia-stem-articles
super-pingouin
2025-06-05T17:46:36Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T17:46:33Z
null
--- dataset_info: features: - name: title dtype: string - name: text dtype: string - name: category dtype: string splits: - name: train num_bytes: 4911800 num_examples: 887 download_size: 2610695 dataset_size: 4911800 configs: - config_name: default data_files: - split: train path: data/train-* ---
BlueSeaHoneyBee/13TEST_Rated_HSE_QA_Reviewed
BlueSeaHoneyBee
2025-06-05T17:44:43Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T17:44:41Z
null
--- dataset_info: features: - name: question dtype: string - name: thinking_step dtype: string - name: answer dtype: string - name: rating dtype: int64 splits: - name: train num_bytes: 2009 num_examples: 3 download_size: 5717 dataset_size: 2009 configs: - config_name: default data_files: - split: train path: data/train-* ---
Cameronbarry/cams
Cameronbarry
2025-06-05T17:39:42Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-05T17:39:41Z
null
--- license: apache-2.0 ---
jlbaker361/clip-art_coco_captioned-1000
jlbaker361
2025-06-05T17:33:10Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T17:32:57Z
null
--- dataset_info: features: - name: image dtype: image - name: embedding sequence: sequence: sequence: float32 - name: text sequence: sequence: sequence: float16 - name: prompt dtype: string - name: posterior sequence: sequence: sequence: float16 splits: - name: train num_bytes: 249480845.0 num_examples: 1000 download_size: 242482521 dataset_size: 249480845.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
jlbaker361/ssl-coco_captioned-1000
jlbaker361
2025-06-05T17:33:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T15:46:54Z
null
--- dataset_info: features: - name: image dtype: image - name: embedding sequence: sequence: sequence: float32 - name: text sequence: sequence: sequence: float16 - name: prompt dtype: string - name: posterior sequence: sequence: sequence: float16 splits: - name: train num_bytes: 259178898.0 num_examples: 1000 download_size: 254013098 dataset_size: 259178898.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
slprl/TinyStress-15K
slprl
2025-06-05T17:18:46Z
119
3
[ "task_categories:audio-classification", "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.19103", "region:us" ]
[ "audio-classification" ]
2025-05-25T07:23:06Z
2
--- dataset_info: features: - name: id dtype: int64 - name: original_sample_index dtype: int64 - name: sentence_index dtype: int64 - name: transcription dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: ssml dtype: string - name: emphasis_indices sequence: int64 - name: metadata struct: - name: gender dtype: int64 - name: language_code dtype: string - name: voice_name dtype: string - name: word_start_timestamps sequence: float64 - name: aligned_whisper_transcriptions dtype: string splits: - name: train num_bytes: 5215476174 num_examples: 15000 - name: test num_bytes: 337636506 num_examples: 1000 download_size: 4817381967 dataset_size: 5553112680 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* language: - en task_categories: - audio-classification license: cc-by-nc-4.0 --- # 📚 TinyStress-15K Dataset TinyStress-15K is a synthetic dataset developed as part of our paper: "[***WhiStress***](https://arxiv.org/abs/2505.19103): *Enriching Transcriptions with Sentence Stress Detection*". It is designed to support research of models that understand sentence stress i.e., emphasis on specific words that affect sentence meaning. Check out our [project page](https://pages.cs.huji.ac.il/adiyoss-lab/whistress/) to access more resources. ## 📦 Dataset Summary - **Name**: `TinyStress-15K` - **Type**: Synthetic speech dataset with stress annotations - **Samples**: 15,000 training and 1,000 testing examples - **Sampling Rate**: 48 kHz - **Texts**: Derived from [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories) --- ## 🧩 Dataset Structure Each sample contains: | Feature | Description | |--------|-------------| | `id` | Unique sample identifier | | `original_sample_index` | Index of the original TinyStories sample (story) | | `sentence_index` | Position of the sentence in the original story | | `transcription` | Text transcription of the spoken audio | | `audio` | Audio waveform (`.wav`), sampled at 48kHz | | `ssml` | SSML-formatted version used to manipulate prosodic features | | `emphasis_indices` | List of word indices in the transcription that contain emphasis | | `metadata.gender` | Speaker gender (integer-coded) | | `metadata.language_code` | Language tag (e.g., `"en"`) | | `metadata.voice_name` | Synthetic voice name | | `word_start_timestamps` | Start times (in seconds) for each word | | `aligned_whisper_transcriptions` | Whisper generated transcription | --- ## 📥 How to Use ```python from datasets import load_dataset dataset = load_dataset("slprl/TinyStress-15K", split="train") sample = dataset[0] words = sample["transcription"].split() stressed_words = [words[i] for i in sample["emphasis_indices"]] print(sample["transcription"]) print(sample["emphasis_indices"]) print(stressed_words) ``` --- ## Notes The data is intended for research purposes only. --- ## 🧠 Citation If you our use our dataset, please cite our work: ```bibtex @misc{yosha2025whistress, title={WHISTRESS: Enriching Transcriptions with Sentence Stress Detection}, author={Iddo Yosha and Dorin Shteyman and Yossi Adi}, year={2025}, eprint={2505.19103}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.19103}, } ```
livecodebench/code_generation_lite
livecodebench
2025-06-05T17:18:27Z
47,439
42
[ "license:cc", "size_categories:n<1K", "arxiv:2403.07974", "region:us", "code", "code generation" ]
[]
2024-04-16T04:46:53Z
null
--- license: cc tags: - code - code generation pretty_name: LiveCodeBench size_categories: - n<1K --- ## LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code <p align="center"> <a href="https://livecodebench.github.io/">🏠 Home Page</a> • <a href="https://github.com/LiveCodeBench/LiveCodeBench">💻 GitHub Repository </a> • <a href="https://livecodebench.github.io/leaderboard.html">🏆 Leaderboard</a> • <a href="https://arxiv.org/abs/2403.07974">📄 Paper </a> </p> ![LiveCodeBench](images/lcb.png) ## Change Log Since LiveCodeBench is a continuously updated benchmark, we provide different versions of the dataset. Particularly, we provide the following versions of the dataset: - `release_v1`: The initial release of the dataset with problems released between May 2023 and Mar 2024 containing 400 problems. - `release_v2`: The updated release of the dataset with problems released between May 2023 and May 2024 containing 511 problems. - `release_v3`: The updated release of the dataset with problems released between May 2023 and Jul 2024 containing 612 problems. - `release_v4`: The updated release of the dataset with problems released between May 2023 and Sep 2024 containing 713 problems. - `release_v5`: The updated release of the dataset with problems released between May 2023 and Jan 2025 containing 880 problems. You can use the `version_tag` argument to load the desired version of the dataset. Additionally, you can use version tags like `v1`, `v2`, `v1_v3`, `v4_v5` to get the problems released in a specific version. ## Dataset Description LiveCodeBench is a "live" updating benchmark for holistically evaluating code related capabilities of LLMs. Particularly, it evaluates LLMs across a range of capabilties including code generation, self-repair, test output prediction, and code execution. This is the code generation scenario of LiveCodeBench. It is also used for evaluating self-repair using test case feedback. LiveCodeBench problems are collected from competition programming websites with particular focus on maintaining problem quality, test case quality, and problem difficulty diversity. This scenario currently hosts over 500 problems from LeetCode, AtCoder, and Codeforces. Each problem instance consists of a problem description, input/output examples, and hidden test cases. Additionally, every problem is tagged with its difficulty level and release date, which allows measuring model performance across different time windows. The goal is to generate a correct and efficient solution for each problem instance. The initial code_generation dataset included a larger number of test cases which leads to a substantially large dataset size. This (lite) version has pruned and sampled tests while trying to ensure similar performances with the original dataset. Going forward, livecodebench will be using this lite version for code generation evaluations. ## Usage You can use the dataset by loading it from the Hugging Face datasets library. Additionally, the version tag "release_v1" is used to specify the (temporal) version of the dataset. "v1" corresponds to the initial release of the dataset and "release_v2" is the second version. ```python from datasets import load_dataset lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") ```
deepghs/game_characters
deepghs
2025-06-05T17:15:16Z
1,441
27
[ "license:apache-2.0", "region:us" ]
[]
2023-01-28T11:12:51Z
null
--- license: apache-2.0 --- # Database of Characters in Mobile Games [![Last Updated](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/narugo1992/254442dea2e77cf46366df97f499242f/raw/data_last_update.json)](https://huggingface.co/datasets/deepghs/game_characters) All the character in the following games are supported: * Arknights (crawled from [https://prts.wiki](https://prts.wiki)) * Fate/Grand Order (crawled from [https://fgo.wiki](https://fgo.wiki)) * Azur Lane (crawled from [https://wiki.biligame.com/blhx](https://wiki.biligame.com/blhx)) * Girls' Front-Line (crawled from [https://iopwiki.com/](https://iopwiki.com/)) * Genshin Impact (crawled from [https://genshin-impact.fandom.com/ja/wiki/%E5%8E%9F%E7%A5%9E_Wiki](https://genshin-impact.fandom.com/ja/wiki/%E5%8E%9F%E7%A5%9E_Wiki)) The source code and python library is hosted on [narugo1992/gchar](https://github.com/narugo1992/gchar), and the scheduled job is configured on Github Action, so the data will be automatically updated to the latest version once a day. More character data for other games is coming...
BlueSeaHoneyBee/10TEST_Rated_HSE_QA_Reviewed
BlueSeaHoneyBee
2025-06-05T17:12:13Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:54:32Z
null
--- dataset_info: features: - name: question dtype: string - name: thinking_step dtype: string - name: answer dtype: string - name: rating dtype: int64 splits: - name: train num_bytes: 13234 num_examples: 20 download_size: 11591 dataset_size: 13234 configs: - config_name: default data_files: - split: train path: data/train-* ---
harrisonenyeartkaleido/defi_training_dataset_6_5_25
harrisonenyeartkaleido
2025-06-05T17:10:08Z
0
0
[ "language:en", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "finance" ]
[]
2025-06-05T17:09:25Z
null
--- language: - en tags: - finance size_categories: - n<1K ---
revyu/pulze_intent_unwrapped_and_ranked
revyu
2025-06-05T16:59:47Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:59:41Z
null
--- dataset_info: features: - name: prompt_uid dtype: string - name: prompt_category dtype: string - name: prompt dtype: string - name: claude-3-haiku-20240307_response dtype: string - name: claude-3-opus-20240229_response dtype: string - name: claude-3-sonnet-20240229_response dtype: string - name: command-r_response dtype: string - name: command-r-plus_response dtype: string - name: dbrx-instruct_response dtype: string - name: gpt-3.5-turbo-0125_response dtype: string - name: gpt-4-turbo-2024-04-09_response dtype: string - name: llama-3-70b-instruct_response dtype: string - name: mistral-large_response dtype: string - name: mistral-medium_response dtype: string - name: mistral-small_response dtype: string - name: mixtral-8x7b-instruct_response dtype: string - name: response_mixtral-8x7b-instruct_reward dtype: float64 - name: response_mixtral-8x7b-instruct_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_mistral-small_reward dtype: float64 - name: response_mistral-small_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_mistral-medium_reward dtype: float64 - name: response_mistral-medium_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_gpt-3.5-turbo-0125_reward dtype: float64 - name: response_gpt-3.5-turbo-0125_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_mistral-large_reward dtype: float64 - name: response_mistral-large_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_gpt-4-turbo-2024-04-09_reward dtype: float64 - name: response_gpt-4-turbo-2024-04-09_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_claude-3-opus-20240229_reward dtype: float64 - name: response_claude-3-opus-20240229_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_claude-3-sonnet-20240229_reward dtype: float64 - name: response_claude-3-sonnet-20240229_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_command-r_reward dtype: float64 - name: response_command-r_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_command-r-plus_reward dtype: float64 - name: response_command-r-plus_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_claude-3-haiku-20240307_reward dtype: float64 - name: response_claude-3-haiku-20240307_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_dbrx-instruct_reward dtype: float64 - name: response_dbrx-instruct_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 - name: response_llama-3-70b-instruct_reward dtype: float64 - name: response_llama-3-70b-instruct_by_objective struct: - name: argilla-judge_lm dtype: float64 - name: argilla-overall_quality dtype: float64 - name: beavertails-is_safe dtype: float64 - name: code-complexity dtype: float64 - name: code-explanation dtype: float64 - name: code-instruction-following dtype: float64 - name: code-readability dtype: float64 - name: code-style dtype: float64 - name: helpsteer-coherence dtype: float64 - name: helpsteer-complexity dtype: float64 - name: helpsteer-correctness dtype: float64 - name: helpsteer-helpfulness dtype: float64 - name: helpsteer-verbosity dtype: float64 - name: prometheus-score dtype: float64 - name: ultrafeedback-helpfulness dtype: float64 - name: ultrafeedback-honesty dtype: float64 - name: ultrafeedback-instruction_following dtype: float64 - name: ultrafeedback-overall_score dtype: float64 - name: ultrafeedback-truthfulness dtype: float64 splits: - name: train num_bytes: 68280366 num_examples: 2522 download_size: 38750345 dataset_size: 68280366 configs: - config_name: default data_files: - split: train path: data/train-* ---
cristiano-sartori/rag_ft
cristiano-sartori
2025-06-05T16:54:20Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:54:17Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 3753310 num_examples: 1425 download_size: 1374941 dataset_size: 3753310 configs: - config_name: default data_files: - split: train path: data/train-* ---
fintech-final/FRESH-all_products-with_missing_products-with_cold_item
fintech-final
2025-06-05T16:48:09Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T13:33:39Z
null
--- dataset_info: features: - name: session_id dtype: float64 - name: event_sequence sequence: string - name: product_sequence sequence: int64 - name: start_time dtype: float64 - name: end_time dtype: float64 splits: - name: train num_bytes: 50457 num_examples: 1065 download_size: 9027 dataset_size: 50457 configs: - config_name: default data_files: - split: train path: data/train-* ---
carminho/piqa-mt-pt
carminho
2025-06-05T16:45:51Z
0
0
[ "language:pt", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T12:57:09Z
null
--- language: - pt configs: - config_name: default data_files: - split: train path: piqa_train_pt.jsonl - split: test path: piqa_test_pt.jsonl - split: validation path: piqa_validation_pt.jsonl ---
carminho/siqa-mt-pt
carminho
2025-06-05T16:43:19Z
0
0
[ "language:pt", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T13:21:38Z
null
--- language: - pt size_categories: - 10K<n<100K configs: - config_name: default data_files: - split: train path: siqa_train_pt.jsonl - split: validation path: siqa_validation_pt.jsonl ---
fannymissillier/balanced-mcqa-dataset-cleaned
fannymissillier
2025-06-05T16:41:33Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:41:25Z
null
--- dataset_info: features: - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: explanation dtype: string - name: source dtype: string splits: - name: train num_bytes: 10195500 num_examples: 12308 - name: validation num_bytes: 1151722 num_examples: 1368 download_size: 6623485 dataset_size: 11347222 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
sugarquark/temp-fashion-1m
sugarquark
2025-06-05T16:40:31Z
0
0
[ "region:us" ]
[]
2025-06-05T16:39:07Z
null
--- viewer: false --- Fashion shows from 1990 to 2025. Cloned from and owned by tonyassi.
cristiano-sartori/open_mnlp_m1
cristiano-sartori
2025-06-05T16:39:07Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:39:04Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 538506 num_examples: 475 download_size: 266937 dataset_size: 538506 configs: - config_name: default data_files: - split: train path: data/train-* ---
Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research
Gatescrispy
2025-06-05T16:34:18Z
14
0
[ "task_categories:feature-extraction", "task_categories:text-classification", "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "region:us", "chemistry", "drug-discovery", "molecules", "bioactivity", "traditional-medicine", "phytotherapy", "therapeutic-compounds", "natural-products", "machine-learning", "pharmaceutical-research", "cheminformatics", "qsar", "drug-repurposing" ]
[ "feature-extraction", "text-classification" ]
2025-06-05T06:49:33Z
null
--- license: cc-by-4.0 task_categories: - feature-extraction - text-classification tags: - chemistry - drug-discovery - molecules - bioactivity - traditional-medicine - phytotherapy - therapeutic-compounds - natural-products - machine-learning - pharmaceutical-research - cheminformatics - qsar - drug-repurposing language: - en size_categories: - 1M<n<10M pretty_name: "PhytoAI MEGA Dataset - 1.4M Therapeutic Molecules" --- # 🧬 PhytoAI MEGA Dataset - 1.4M Therapeutic Molecules <div align="center"> ![PhytoAI Logo](https://img.shields.io/badge/PhytoAI-MEGA%20Dataset-brightgreen?style=for-the-badge) ![Molecules](https://img.shields.io/badge/Molecules-1,400,000-blue?style=for-the-badge) ![License](https://img.shields.io/badge/License-CC%20BY%204.0-yellow?style=for-the-badge) **A Comprehensive Dataset of Therapeutic Molecules for AI Drug Discovery Research** </div> ## 🌟 Overview The **PhytoAI MEGA Dataset** contains **1,600,000+ therapeutic molecules** with comprehensive molecular properties, bioactivity data, and traditional medicine annotations. This dataset bridges traditional pharmaceutical knowledge and modern computational methods, enabling research opportunities in drug discovery. ### 🏆 Dataset Features - **Large Scale**: 1,600,000+ unique therapeutic molecules - **Comprehensive Coverage**: Traditional medicine systems + modern pharmacology - **High Quality**: Curated and validated molecular data - **Optimized Format**: Apache Arrow for efficient processing - **Open Access**: CC BY 4.0 license for research and commercial use ## 📊 Dataset Composition ### Scale & Statistics | Metric | Value | Description | |--------|--------|-------------| | **Total Molecules** | 1,600,000+ | Unique therapeutic compounds | | **Data Size** | 759.9 MB | Optimized Apache Arrow format | | **Splits** | train/validation/test | 80%/10%/10% distribution | | **Format** | Apache Arrow | High-performance columnar format | | **License** | CC BY 4.0 | Open for research and commercial use | ### Data Sources Our data integration includes: - **🔬 Scientific Literature**: PubMed research papers - **💊 Bioactivity Databases**: ChEMBL validated bioactivities - **🌿 Traditional Medicine**: Traditional use records - **📚 Pharmacopoeias**: International pharmacopoeias ## 🗂️ Dataset Structure ### File Organization ``` 📁 PhytoAI-MEGA-Dataset/ ├── 🗂️ train/ # Training split (80% - ~1,280,000 molecules) │ ├── data-00000-of-00002.arrow (304 MB) │ └── data-00001-of-00002.arrow (304 MB) ├── 🗂️ validation/ # Validation split (10% - ~160,000 molecules) │ └── data-00000-of-00001.arrow (76 MB) ├── 🗂️ test/ # Test split (10% - ~160,000 molecules) │ └── data-00000-of-00001.arrow (76 MB) └── 📄 README.md # This documentation ``` **Total Size**: 759.9 MB of molecular data ### Molecular Features Schema Each molecule contains: ```json { "id": "unique_identifier", "name": "compound_name", "molecular_weight": float, // Molecular weight in Daltons "molecular_formula": "string", // Chemical formula (e.g., C21H30O2) "smiles": "string", // Canonical SMILES notation "inchi": "string", // InChI identifier "logp": float, // Lipophilicity (octanol-water partition) "hbd": int, // Hydrogen bond donors "hba": int, // Hydrogen bond acceptors "tpsa": float, // Topological polar surface area "rotatable_bonds": int, // Number of rotatable bonds "bioactivity_score": float, // Predicted therapeutic potential (0-1) "safety_index": float, // Predicted safety profile (0-1) "traditional_use": "string", // Historical therapeutic applications "bioactivities": ["array"], // Biological activities "targets": ["array"], // Molecular targets "pathways": ["array"], // Biological pathways "collection_date": "iso_date", // Data integration timestamp "is_champion": boolean, // High therapeutic potential flag "literature_refs": ["array"], // Supporting research papers "source_database": "string" // Original data source } ``` ## 🎯 Therapeutic Coverage ### Major Therapeutic Categories Distribution across therapeutic areas: | Therapeutic Area | Molecules | Percentage | Key Targets | |------------------|-----------|------------|-------------| | **Anti-inflammatory** | ~180,000 | 11.2% | COX-1/2, NF-κB, TNF-α | | **Antioxidant** | ~220,000 | 13.8% | ROS scavenging, SOD, catalase | | **Cardiovascular** | ~150,000 | 9.4% | ACE, β-blockers, calcium channels | | **Neuroprotective** | ~130,000 | 8.1% | AChE, MAO, NMDA receptors | | **Anti-cancer** | ~160,000 | 10.0% | p53, MDR1, apoptosis pathways | | **Antimicrobial** | ~140,000 | 8.8% | Cell wall synthesis, protein synthesis | | **Multi-target** | ~200,000 | 12.5% | Complex polypharmacology | | **Other activities** | ~420,000 | 26.2% | Metabolic, endocrine, immune | ### Drug-likeness Assessment Molecular properties distribution: - **Lipinski's Rule of Five**: 89.3% compliance - **Veber Rules**: 92.1% compliance - **PAINS Filters**: 96.8% pass rate - **Lead-like Properties**: 78.4% compliance ## 💻 Usage Guide ### Quick Start ```python from datasets import load_dataset import pandas as pd # Load the complete dataset dataset = load_dataset("Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research") # Access different splits train_data = dataset['train'] validation_data = dataset['validation'] test_data = dataset['test'] print(f"Training molecules: {len(train_data):,}") print(f"Validation molecules: {len(validation_data):,}") print(f"Test molecules: {len(test_data):,}") print(f"Total molecules: {len(train_data) + len(validation_data) + len(test_data):,}") ``` ### Analysis Examples #### Molecular Property Analysis ```python # Convert to pandas for analysis df = train_data.to_pandas() # Molecular weight distribution import matplotlib.pyplot as plt plt.hist(df['molecular_weight'], bins=50, alpha=0.7) plt.xlabel('Molecular Weight (Da)') plt.ylabel('Frequency') plt.title('Molecular Weight Distribution') plt.axvline(500, color='red', linestyle='--', label='Lipinski Limit') plt.legend() plt.show() # Drug-likeness assessment lipinski_compliant = ( (df['molecular_weight'] <= 500) & (df['logp'] <= 5) & (df['hbd'] <= 5) & (df['hba'] <= 10) ) print(f"Lipinski compliant: {lipinski_compliant.sum():,} ({lipinski_compliant.mean()*100:.1f}%)") ``` #### Bioactivity Analysis ```python # Extract bioactivities bioactivities = df['bioactivities'].explode().value_counts() print("Top 10 bioactivities:") print(bioactivities.head(10)) # High-potential compounds champions = df[df['is_champion'] == True] print(f"Champion molecules: {len(champions):,}") # Traditional use categories traditional_uses = df['traditional_use'].value_counts() print("Traditional use categories:") print(traditional_uses.head(10)) ``` #### Machine Learning Pipeline ```python from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score # Prepare features for bioactivity prediction features = ['molecular_weight', 'logp', 'hbd', 'hba', 'tpsa', 'rotatable_bonds'] X = df[features].fillna(df[features].median()) y = df['bioactivity_score'] # Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train model model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) # Evaluate y_pred = model.predict(X_test) print(f"R² Score: {r2_score(y_test, y_pred):.3f}") print(f"RMSE: {mean_squared_error(y_test, y_pred, squared=False):.3f}") ``` ## 🤝 Citation ### Recommended Citation ```bibtex @dataset{phytoai_mega_1_6m_2025, title={PhytoAI MEGA Dataset: 1.6M Therapeutic Molecules for AI Drug Discovery}, author={Tantcheu, Cedric}, year={2025}, month={June 2025}, publisher={Hugging Face}, url={https://huggingface.co/datasets/Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research}, note={Large-scale curated therapeutic molecule dataset with traditional medicine integration}, keywords={drug discovery, machine learning, traditional medicine, cheminformatics, therapeutic molecules} } ``` ## 🔗 Related Resources ### PhytoAI Ecosystem - **🤖 AI Models**: [Pre-trained models for molecular analysis](https://huggingface.co/Gatescrispy/Pre-trained_AImodels_for_therapeutic_molecule_analysis_and_bioactivity_prediction) - **📚 Research Papers**: [Scientific methodology and findings](https://huggingface.co/datasets/Gatescrispy/Scientific_research_papers_and_methodology_for_PhytoAI_therapeutic_discovery) - **💬 Community**: Join our research community for collaboration - **🔧 Tools**: Molecular analysis and prediction tools ### External Databases - **ChEMBL**: Bioactivity data source - **PubChem**: Chemical structure validation - **DrugBank**: Pharmaceutical annotations - **KEGG**: Pathway and target information ## 📄 License **License**: [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) This dataset is freely available for: - ✅ **Academic Research**: No restrictions - ✅ **Commercial Use**: Including pharmaceutical companies - ✅ **Educational Purposes**: Teaching and training - ✅ **Open Source Projects**: Community-driven tools - ✅ **Derivative Works**: Building upon our work ## 🔬 Potential Applications This dataset can be used for: - **Machine Learning**: Molecular property prediction, bioactivity modeling - **Drug Discovery**: Virtual screening, lead optimization - **Cheminformatics**: Chemical space analysis, QSAR modeling - **Traditional Medicine**: Validation of traditional therapeutic uses - **Educational**: Teaching computational drug discovery methods --- <div align="center"> ## 🧬 Advancing Therapeutic Discovery Through Data Science **A comprehensive molecular dataset for the research community** [📧 Contact](mailto:research@phytoai.org) | [🌐 Website](https://phytoai.org) *Last updated: June 2025* </div>
glitchinthematrix/diseases_of_the_eye_and_adnexa
glitchinthematrix
2025-06-05T16:33:34Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T18:57:49Z
null
--- dataset_info: features: - name: question dtype: string - name: options dtype: string - name: answer dtype: string - name: k_hops dtype: int64 splits: - name: test num_bytes: 313055 num_examples: 345 download_size: 153626 dataset_size: 313055 configs: - config_name: default data_files: - split: test path: data/test-* ---
glitchinthematrix/drugs__hormones_and_biological_mediators
glitchinthematrix
2025-06-05T16:33:14Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T18:56:30Z
null
--- dataset_info: features: - name: question dtype: string - name: options dtype: string - name: answer dtype: string - name: k_hops dtype: int64 splits: - name: test num_bytes: 327591 num_examples: 345 download_size: 174449 dataset_size: 327591 configs: - config_name: default data_files: - split: test path: data/test-* ---
Bki54/dahabuyuk
Bki54
2025-06-05T16:15:37Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:15:18Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 2153416.8724832213 num_examples: 1072 - name: test num_bytes: 241054.12751677854 num_examples: 120 download_size: 839909 dataset_size: 2394471.0 --- # Dataset Card for "dahabuyuk" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
kunwang2000/eval-gsm8k-DeepSeek-R1-Distill-Qwen-1.5B
kunwang2000
2025-06-05T16:12:18Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:12:15Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: token_count dtype: int64 - name: completion sequence: string - name: verify dtype: bool - name: format_correct dtype: bool splits: - name: test num_bytes: 37538162 num_examples: 1319 download_size: 3337766 dataset_size: 37538162 configs: - config_name: default data_files: - split: test path: data/test-* ---