datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-06 00:37:09
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-06 00:34:34
trending_score
float64
0
40
โŒ€
card
large_stringlengths
31
1.01M
pt-sk/City_Scape_Dataset
pt-sk
2025-03-12T08:04:19Z
32
0
[ "task_categories:image-segmentation", "license:mit", "modality:image", "region:us" ]
[ "image-segmentation" ]
2025-03-08T09:37:27Z
null
--- license: mit task_categories: [image-segmentation] --- # Cityscapes Dataset The Cityscapes dataset is a large-scale dataset designed for urban scene understanding, with a focus on semantic segmentation, instance segmentation, and panoptic segmentation. It contains high-quality pixel-level annotations for images captured in 50 different cities, making it a benchmark for evaluating computer vision models in real-world urban environments.
Xuan-World/SubjectSpatial200K
Xuan-World
2025-03-12T07:59:57Z
118
2
[ "license:apache-2.0", "region:us" ]
[]
2025-03-12T05:31:51Z
null
--- license: apache-2.0 ---
aractingi/insertcube_push_20
aractingi
2025-03-12T07:55:00Z
32
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "a", "r", "c", "t", "i", "n", "g", "/", "s", "e", "u", "b", "_", "p", "h", "2", "0" ]
[ "robotics" ]
2025-03-10T13:18:48Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - a - r - a - c - t - i - n - g - i - / - i - n - s - e - r - t - c - u - b - e - _ - p - u - s - h - _ - '2' - '0' configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": null, "total_episodes": 20, "total_frames": 1239, "total_tasks": 1, "total_videos": 40, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 15 ], "names": null }, "action": { "dtype": "float32", "shape": [ 3 ], "names": null }, "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "observation.images.front": { "dtype": "video", "shape": [ 287, 458 ], "names": null, "info": { "video.fps": 10.0, "video.height": 128, "video.width": 128, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 374, 404 ], "names": null, "info": { "video.fps": 10.0, "video.height": 128, "video.width": 128, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Tony068/falcon-refined-web-5M-part2
Tony068
2025-03-12T07:48:06Z
13
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T07:42:56Z
null
--- dataset_info: features: - name: content dtype: string - name: url dtype: string - name: timestamp dtype: timestamp[us] - name: dump dtype: string - name: segment dtype: string - name: image_urls sequence: sequence: string splits: - name: train num_bytes: 14378051661 num_examples: 5000000 download_size: 8690458320 dataset_size: 14378051661 configs: - config_name: default data_files: - split: train path: data/train-* ---
gdut508/rm_so100_test_3
gdut508
2025-03-12T07:30:37Z
52
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-03-12T06:50:50Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 18, "total_frames": 6501, "total_tasks": 1, "total_videos": 36, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:18" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
AloePerryi/Multi-scalecommoditydataset
AloePerryi
2025-03-12T07:27:36Z
18
1
[ "license:mit", "modality:image", "modality:text", "region:us" ]
[]
2025-02-14T17:43:02Z
null
--- license: mit pretty_name: ่‡ชๅˆถๆ•ฐๆฎ้›† MSCD ---
laharipattabathuni/invoice_Dataset
laharipattabathuni
2025-03-12T07:07:18Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T07:07:11Z
null
--- dataset_info: features: - name: image dtype: image - name: markdown dtype: string splits: - name: train num_bytes: 7401128.0 num_examples: 8 - name: validation num_bytes: 1999923.0 num_examples: 2 download_size: 5408154 dataset_size: 9401051.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
kxxinDave/GEOVQ_Subset_500
kxxinDave
2025-03-12T07:05:15Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T07:03:52Z
null
--- dataset_info: features: - name: image dtype: image - name: problem dtype: string - name: solution dtype: string splits: - name: train num_bytes: 1416119.0 num_examples: 500 download_size: 1389388 dataset_size: 1416119.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
nanidhoni/guanaco-llama2-1k
nanidhoni
2025-03-12T07:00:18Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T07:00:16Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1654448 num_examples: 1000 download_size: 965614 dataset_size: 1654448 configs: - config_name: default data_files: - split: train path: data/train-* ---
yashduhan/DeepFakeDetection
yashduhan
2025-03-12T07:00:02Z
27
0
[ "task_categories:image-classification", "language:en", "modality:image", "region:us", "computer-vision", "deepfake-detection", "image-classification", "image" ]
[ "image-classification" ]
2025-03-12T06:00:29Z
null
--- pretty_name: "DeepFakeDetection" dataset_info: description: "A dataset for DeepFake detection containing real and fake images. Each image has a resolution of 256x256 pixels." features: - name: "image" type: "image" - name: "label" type: "class_label" names: ["real", "fake"] splits: - name: "train" num_examples: 112000 # 80% of total data - name: "validation" num_examples: 14000 # 10% of total data - name: "test" num_examples: 14000 # 10% of total data dataset_size: "4GB" image_resolution: "256x256" class_distribution: total: real: 70000 fake: 70000 train: real: 56000 fake: 56000 validation: real: 7000 fake: 7000 test: real: 7000 fake: 7000 language: "en" tags: - "computer-vision" - "deepfake-detection" - "image-classification" - "image" task_categories: - "image-classification" --- # DeepFakeDetection Dataset This repository contains a comprehensive dataset for DeepFake detection research and development. The dataset consists of 140,000 high-quality images split between real and fake categories. ## Dataset Overview - Total Images: 140,000 - Real Images: 70,000 - Fake Images: 70,000 ## Data Splits - Training Set (80%): 112,000 images - 56,000 real - 56,000 fake - Validation Set (10%): 14,000 images - 7,000 real - 7,000 fake - Test Set (10%): 14,000 images - 7,000 real - 7,000 fake ## Image Specifications - Resolution: 256x256 pixels - Format: RGB - Dataset Size: 4GB ## Tags - Computer Vision - DeepFake Detection - Image Classification ## ๐Ÿ“ฅ Download [Click here to download the dataset](./DeepFakeDetection.zip)
devika12312/eva
devika12312
2025-03-12T06:58:46Z
15
0
[ "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-03-12T06:24:26Z
null
--- size_categories: - n<1K --- # [doc] Extracted Code Dataset This dataset contains images in the `images/` subdirectory, along with a `dataset.csv` file that provides the extracted code from each image.
luke-kr/H-colqwen
luke-kr
2025-03-12T06:52:07Z
12
0
[ "task_categories:question-answering", "language:ko", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-03-10T05:04:53Z
null
--- license: apache-2.0 dataset_info: features: - name: image dtype: image - name: queries struct: - name: broad_topical_explanation dtype: string - name: broad_topical_query dtype: string - name: parsed_into_json dtype: bool - name: specific_detail_explanation dtype: string - name: specific_detail_query dtype: string - name: visual_element_explanation dtype: string - name: visual_element_query dtype: string - name: broad_topical_explanation dtype: string - name: broad_topical_query dtype: string - name: specific_detail_explanation dtype: string - name: specific_detail_query dtype: string - name: visual_element_explanation dtype: string - name: visual_element_query dtype: string - name: parsed_into_json dtype: bool splits: - name: train num_bytes: 59707808.0 num_examples: 98 download_size: 58864918 dataset_size: 59707808.0 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - question-answering language: - ko ---
rokmr/cricket-shot
rokmr
2025-03-12T06:43:35Z
36
0
[ "task_categories:video-classification", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:webdataset", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us", "Sports", "Cricket", "Classification" ]
[ "video-classification" ]
2025-03-10T08:47:49Z
null
--- license: apache-2.0 task_categories: - video-classification language: - en tags: - Sports - Cricket - Classification size_categories: - n<1K --- # CricketShotClassification Dataset ## Dataset Description This dataset is designed for video classification of cricket shots. It contains labeled videos of ten different cricket shots, making it suitable for training and evaluating machine learning models for cricket action recognition. ## Dataset Structure The dataset contains videos of ten cricket shots: | Shot Name | Label | Class ID | |---------------|------------|-----------| | Cover Drive | cover | 0 | | Defense Shot | defense | 1 | | Flick Shot | flick | 2 | | Hook Shot | hook | 3 | | Late Cut | late_cut | 4 | | Lofted Drive | lofted | 5 | | Pull Shot | pull | 6 | | Square Cut | square_cut | 7 | | Straight Drive| straight | 8 | | Sweep Shot | sweep | 9 | ### Data Splits - Train: 1,250 samples (125 per class) - Validation: 250 samples (25 per class) - Test: 250 samples (25 per class) ### Directory Structure ``` dataset/ โ”œโ”€โ”€ train/ โ”‚ โ”œโ”€โ”€ cover/ โ”‚ โ”œโ”€โ”€ defense/ โ”‚ โ”œโ”€โ”€ flick/ โ”‚ โ”œโ”€โ”€ hook/ โ”‚ โ”œโ”€โ”€ late_cut/ โ”‚ โ”œโ”€โ”€ lofted/ โ”‚ โ”œโ”€โ”€ pull/ โ”‚ โ”œโ”€โ”€ square_cut/ โ”‚ โ”œโ”€โ”€ straight/ โ”‚ โ””โ”€โ”€ sweep/ โ”œโ”€โ”€ val/ โ”‚ โ”œโ”€โ”€ cover/ โ”‚ โ”œโ”€โ”€ defense/ โ”‚ โ”œโ”€โ”€ flick/ โ”‚ โ”œโ”€โ”€ hook/ โ”‚ โ”œโ”€โ”€ late_cut/ โ”‚ โ”œโ”€โ”€ lofted/ โ”‚ โ”œโ”€โ”€ pull/ โ”‚ โ”œโ”€โ”€ square_cut/ โ”‚ โ”œโ”€โ”€ straight/ โ”‚ โ””โ”€โ”€ sweep/ โ””โ”€โ”€ test/ โ”œโ”€โ”€ cover/ โ”œโ”€โ”€ defense/ โ”œโ”€โ”€ flick/ โ”œโ”€โ”€ hook/ โ”œโ”€โ”€ late_cut/ โ”œโ”€โ”€ lofted/ โ”œโ”€โ”€ pull/ โ”œโ”€โ”€ square_cut/ โ”œโ”€โ”€ straight/ โ””โ”€โ”€ sweep/ ``` ## Usage ```python from datasets import load_dataset # Load the dataset from the hub dataset = load_dataset("rokmr/cricketshot") # Access different splits train_data = dataset['train'] val_data = dataset['validation'] test_data = dataset['test'] ``` ## Limitations and Bias - Limited sample size per class - May not cover all possible variations of each shot - Lighting and camera angle variations may affect model performance ## Citation If you use this dataset, please cite: ``` @misc{cricketshot, author = {Rohit Kumar}, title = {Cricket Shot Classification Dataset}, year = {2025}, publisher = {Hugging Face} } ``` ## Acknowledgements The dataset structure and initial inspiration was drawn from the [CricShot10 dataset](https://github.com/ascuet/CricShot10) We thank the authors for making their work publicly available. ## Dataset Card Contact For questions or concerns about the dataset, please contact the maintainers through the Hugging Face community platform.
Tony068/falcon-refined-web-5M
Tony068
2025-03-12T06:41:31Z
44
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T06:36:02Z
null
--- dataset_info: features: - name: content dtype: string - name: url dtype: string - name: timestamp dtype: timestamp[us] - name: dump dtype: string - name: segment dtype: string - name: image_urls sequence: sequence: string splits: - name: train num_bytes: 14330816788 num_examples: 5000000 download_size: 8665021107 dataset_size: 14330816788 configs: - config_name: default data_files: - split: train path: data/train-* ---
rvanova/RedPajama-Data-1K-Sample-For-Test
rvanova
2025-03-12T06:34:00Z
13
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T06:31:20Z
null
--- dataset_info: features: - name: text dtype: string - name: meta dtype: string splits: - name: train num_bytes: 5318686001 num_examples: 930514 download_size: 3059217244 dataset_size: 5318686001 configs: - config_name: default data_files: - split: train path: data/train-* ---
abdurrahimyilmaz/DermaSynth
abdurrahimyilmaz
2025-03-12T06:00:39Z
94
0
[ "task_categories:image-to-text", "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.00196", "region:us", "dermatology", "skin_lesion" ]
[ "image-to-text" ]
2025-02-07T17:31:12Z
null
--- language: - en license: cc-by-nc-4.0 size_categories: - 10K<n<100K task_categories: - image-to-text dataset_info: features: - name: image_id dtype: string - name: image_path dtype: string - name: dataset_origin dtype: string - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 43420729 num_examples: 92020 download_size: 14384301 dataset_size: 43420729 configs: - config_name: default data_files: - split: train path: data/train-* tags: - dermatology - skin_lesion --- GitHub Link: https://github.com/abdurrahimyilmaz/DermaSynth Paper: https://arxiv.org/pdf/2502.00196 Fine-tuned Model: https://huggingface.co/abdurrahimyilmaz/DermatoLlama-1.0 Please cite the paper, if you use the model or dataset: ```bibtex @article{yilmaz2025dermasynth, title={DermaSynth: Rich Synthetic Image-Text Pairs Using Open Access Dermatology Datasets}, author={Yilmaz, Abdurrahim and Yuceyalcin, Furkan and Gokyayla, Ece and Choi, Donghee and Erdem, Ozan and Demircali, Ali Anil and Varol, Rahmetullah and Kirabali, Ufuk Gorkem and Gencoglan, Gulsum and Posma, Joram M and Temelkuran, Burak}, journal={arXiv preprint arXiv:2502.00196}, year={2025} } ``` <p align="center"> <img src="word_wheel_figure.png" width="80%"> <br> *The most common 20 root verb-noun pairs of question set is shown in Figure 2 which indicates the question set is diverse. Prompts spanned a wide range of question typesโ€”such as โ€œWhat does this lesion look like?โ€ and โ€œCould this be X ?โ€โ€”and were manually screened and selected for clarity and medical relevance.* </p> | DermaSynth Dataset | Size | | --- | ---: | | [derma_synth_92k.json](https://huggingface.co/datasets/abdurrahimyilmaz/DermaSynth/resolve/main/data/derma_synth_92k.json?download=true) | 52.4 MiB |
juyoung-trl/Global-MMLU-Lite-CA
juyoung-trl
2025-03-12T05:59:31Z
60
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:32:40Z
null
--- dataset_info: - config_name: ar features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 179091.0 num_examples: 200 - name: dev num_bytes: 166163 num_examples: 215 download_size: 176384 dataset_size: 345254.0 - config_name: bn features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 262771.5 num_examples: 200 - name: dev num_bytes: 249598 num_examples: 215 download_size: 206535 dataset_size: 512369.5 - config_name: de features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 152937.0 num_examples: 200 - name: dev num_bytes: 133268 num_examples: 215 download_size: 164891 dataset_size: 286205.0 - config_name: default features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 1463028.5 num_examples: 1800 download_size: 620996 dataset_size: 1463028.5 - config_name: en features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 138009.0 num_examples: 200 - name: dev num_bytes: 119795 num_examples: 215 download_size: 148671 dataset_size: 257804.0 - config_name: es features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 148890.5 num_examples: 200 - name: dev num_bytes: 131340 num_examples: 215 download_size: 157157 dataset_size: 280230.5 - config_name: fr features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 154842.0 num_examples: 200 - name: dev num_bytes: 136111 num_examples: 215 download_size: 163261 dataset_size: 290953.0 - config_name: hi features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 258649.0 num_examples: 200 - name: dev num_bytes: 255215 num_examples: 215 download_size: 206586 dataset_size: 513864.0 - config_name: id features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 142321.5 num_examples: 200 - name: dev num_bytes: 127171 num_examples: 215 download_size: 145705 dataset_size: 269492.5 - config_name: it features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 149796.0 num_examples: 200 - name: dev num_bytes: 128894 num_examples: 215 download_size: 159277 dataset_size: 278690.0 - config_name: ja features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 155404.5 num_examples: 200 - name: dev num_bytes: 136334 num_examples: 215 download_size: 161358 dataset_size: 291738.5 - config_name: ko features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 148020.0 num_examples: 200 - name: dev num_bytes: 131241 num_examples: 215 download_size: 155896 dataset_size: 279261.0 - config_name: pt features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 145189.5 num_examples: 200 - name: dev num_bytes: 126355 num_examples: 215 download_size: 156556 dataset_size: 271544.5 - config_name: sw features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 140300.0 num_examples: 200 - name: dev num_bytes: 119949 num_examples: 215 download_size: 144527 dataset_size: 260249.0 - config_name: yo features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 172060.0 num_examples: 200 - name: dev num_bytes: 125389 num_examples: 215 download_size: 157998 dataset_size: 297449.0 - config_name: zh features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: test num_bytes: 127185.5 num_examples: 200 - name: dev num_bytes: 103758 num_examples: 215 download_size: 140963 dataset_size: 230943.5 configs: - config_name: ar data_files: - split: test path: ar/test-* - split: dev path: ar/dev-* - config_name: bn data_files: - split: test path: bn/test-* - split: dev path: bn/dev-* - config_name: de data_files: - split: test path: de/test-* - split: dev path: de/dev-* - config_name: default data_files: - split: test path: data/test-* - config_name: en data_files: - split: test path: en/test-* - split: dev path: en/dev-* - config_name: es data_files: - split: test path: es/test-* - split: dev path: es/dev-* - config_name: fr data_files: - split: test path: fr/test-* - split: dev path: fr/dev-* - config_name: hi data_files: - split: test path: hi/test-* - split: dev path: hi/dev-* - config_name: id data_files: - split: test path: id/test-* - split: dev path: id/dev-* - config_name: it data_files: - split: test path: it/test-* - split: dev path: it/dev-* - config_name: ja data_files: - split: test path: ja/test-* - split: dev path: ja/dev-* - config_name: ko data_files: - split: test path: ko/test-* - split: dev path: ko/dev-* - config_name: pt data_files: - split: test path: pt/test-* - split: dev path: pt/dev-* - config_name: sw data_files: - split: test path: sw/test-* - split: dev path: sw/dev-* - config_name: yo data_files: - split: test path: yo/test-* - split: dev path: yo/dev-* - config_name: zh data_files: - split: test path: zh/test-* - split: dev path: zh/dev-* ---
DetonateT2I/DetonateT2I_final2
DetonateT2I
2025-03-12T05:53:30Z
40
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T04:17:07Z
null
--- dataset_info: features: - name: Prompt dtype: string - name: Chosen dtype: image - name: Rejected dtype: image - name: Category dtype: string splits: - name: train num_bytes: 91782817017.596 num_examples: 31404 download_size: 91817913847 dataset_size: 91782817017.596 configs: - config_name: default data_files: - split: train path: data/train-* ---
jackkuo/LLM-Ribozyme-Kinetics-Golden-Benchmark
jackkuo
2025-03-12T05:52:05Z
44
0
[ "license:cc", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-24T02:07:43Z
null
--- license: cc --- ### ๐ŸšฉCitation Please cite the following paper if you use jackkuo/LLM-Ribozyme-Kinetics-Golden-Benchmark in your work. ```bibtex @article {Jiang2025.03.03.641178, author = {Jiang, Jinling and Hu, Jie and Xie, Siwei and Guo, Menghao and Dong, Yuhang and Fu, Shuai and Jiang, Xianyue and Yue, Zhenlei and Shi, Junchao and Zhang, Xiaoyu and Song, Minghui and Chen, Guangyong and Lu, Hua and Wu, Xindong and Guo, Pei and Han, Da and Sun, Zeyi and Qiu, Jiezhong}, title = {Enzyme Co-Scientist: Harnessing Large Language Models for Enzyme Kinetic Data Extraction from Literature}, elocation-id = {2025.03.03.641178}, year = {2025}, doi = {10.1101/2025.03.03.641178}, publisher = {Cold Spring Harbor Laboratory}, abstract = {The extraction of molecular annotations from scientific literature is critical for advancing data-driven research. However, traditional methods, which primarily rely on human curation, are labor-intensive and error-prone. Here, we present an LLM-based agentic workflow that enables automatic and efficient data extraction from literature with high accuracy. As a demonstration, our workflow successfully delivers a dataset containing over 91,000 enzyme kinetics entries from around 3,500 papers. It achieves an average F1 score above 0.9 on expert-annotated subsets of protein enzymes and can be extended to the ribozyme domain in fewer than 3 days at less than $90. This method opens up new avenues for accelerating the pace of scientific research.Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2025/03/11/2025.03.03.641178}, eprint = {https://www.biorxiv.org/content/early/2025/03/11/2025.03.03.641178.full.pdf}, journal = {bioRxiv} } ```
hijklmno/jenny-tts-6h-tagged
hijklmno
2025-03-12T05:51:48Z
29
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:51:44Z
null
--- dataset_info: features: - name: file_name dtype: string - name: text dtype: string - name: transcription_normalised dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: text_description dtype: string splits: - name: train num_bytes: 2261218 num_examples: 4000 download_size: 1054595 dataset_size: 2261218 configs: - config_name: default data_files: - split: train path: data/train-* ---
jackkuo/LLM-Enzyme-Kinetics-Golden-Benchmark
jackkuo
2025-03-12T05:50:56Z
12
0
[ "license:cc", "region:us" ]
[]
2024-11-13T06:21:39Z
null
--- license: cc --- ### ๐ŸšฉCitation Please cite the following paper if you use jackkuo/LLM-Enzyme-Kinetics-Golden-Benchmark in your work. ```bibtex @article {Jiang2025.03.03.641178, author = {Jiang, Jinling and Hu, Jie and Xie, Siwei and Guo, Menghao and Dong, Yuhang and Fu, Shuai and Jiang, Xianyue and Yue, Zhenlei and Shi, Junchao and Zhang, Xiaoyu and Song, Minghui and Chen, Guangyong and Lu, Hua and Wu, Xindong and Guo, Pei and Han, Da and Sun, Zeyi and Qiu, Jiezhong}, title = {Enzyme Co-Scientist: Harnessing Large Language Models for Enzyme Kinetic Data Extraction from Literature}, elocation-id = {2025.03.03.641178}, year = {2025}, doi = {10.1101/2025.03.03.641178}, publisher = {Cold Spring Harbor Laboratory}, abstract = {The extraction of molecular annotations from scientific literature is critical for advancing data-driven research. However, traditional methods, which primarily rely on human curation, are labor-intensive and error-prone. Here, we present an LLM-based agentic workflow that enables automatic and efficient data extraction from literature with high accuracy. As a demonstration, our workflow successfully delivers a dataset containing over 91,000 enzyme kinetics entries from around 3,500 papers. It achieves an average F1 score above 0.9 on expert-annotated subsets of protein enzymes and can be extended to the ribozyme domain in fewer than 3 days at less than $90. This method opens up new avenues for accelerating the pace of scientific research.Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2025/03/11/2025.03.03.641178}, eprint = {https://www.biorxiv.org/content/early/2025/03/11/2025.03.03.641178.full.pdf}, journal = {bioRxiv} } ```
hsurapur/logs
hsurapur
2025-03-12T05:46:40Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-16T04:00:59Z
null
--- dataset_info: features: - name: query dtype: string - name: timestamp dtype: string splits: - name: train num_bytes: 1098 num_examples: 30 download_size: 1632 dataset_size: 1098 configs: - config_name: default data_files: - split: train path: data/train-* ---
VGraf/safe_responses_dev_8maxturns_0.7prob
VGraf
2025-03-12T05:38:17Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:38:06Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: id dtype: string - name: source dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1295603716 num_examples: 75744 download_size: 192505334 dataset_size: 1295603716 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tarakeshwaran/Hackathon_Sentiment_analysis
Tarakeshwaran
2025-03-12T05:37:01Z
44
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:16:42Z
null
--- dataset_info: features: - name: Text dtype: string - name: Timestamp dtype: string - name: User dtype: string - name: Platform dtype: string - name: Hashtags dtype: string - name: Retweets dtype: float64 - name: Likes dtype: float64 - name: Country dtype: string - name: Year dtype: int64 - name: Month dtype: int64 - name: Day dtype: int64 - name: Hour dtype: int64 - name: Sentiment dtype: string splits: - name: train num_bytes: 198093 num_examples: 732 download_size: 78808 dataset_size: 198093 configs: - config_name: default data_files: - split: train path: data/train-* --- # Sentiment Analysis Dataset ## Description This dataset contains social media posts labeled with sentiment categories. It includes metadata such as user details, timestamps, engagement metrics, and hashtags, making it useful for sentiment analysis, natural language processing (NLP), and social media analytics. ## Dataset Details ### **Columns:** - **Text**: The content of the social media post. - **Sentiment**: The sentiment classification (**Positive, Negative, Neutral**). - **Timestamp**: The date and time when the post was made. - **User**: The username of the person who posted the content. - **Platform**: The social media platform (**Twitter, Instagram, Facebook, etc.**). - **Hashtags**: Hashtags used in the post. - **Retweets**: Number of retweets (for Twitter) or shares. - **Likes**: Number of likes the post received. - **Country**: The country from which the post originated. - **Year, Month, Day, Hour**: Extracted datetime components for time-based analysis. ### **Notes:** - The dataset contains **732 entries**. - The **Unnamed: 0** and **Unnamed: 0.1** columns appear to be redundant and can be ignored. - This dataset can be used for **training sentiment classification models** or **analyzing engagement trends**. ## Use Cases - **Sentiment analysis** of social media content. - **Engagement analysis** of posts based on likes and retweets. - **Trend analysis** of public opinion over time. ## How to Use You can load the dataset using the `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("Tarakeshwaran/Hackathon_Sentiment_analysis") print(dataset)
VGraf/safe_responses_dev_8maxturns_0.4prob
VGraf
2025-03-12T05:35:25Z
35
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:35:17Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: id dtype: string - name: source dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 746999327 num_examples: 43728 download_size: 176232910 dataset_size: 746999327 configs: - config_name: default data_files: - split: train path: data/train-* ---
hijklmno/jenny-tts-tags-6h
hijklmno
2025-03-12T05:34:31Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:32:11Z
null
--- dataset_info: features: - name: file_name dtype: string - name: text dtype: string - name: transcription_normalised dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string splits: - name: train num_bytes: 1832348 num_examples: 4000 download_size: 928052 dataset_size: 1832348 configs: - config_name: default data_files: - split: train path: data/train-* ---
VGraf/safe_responses_dev_4maxturns_0.5prob
VGraf
2025-03-12T05:34:01Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:33:55Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: id dtype: string - name: source dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 340638169 num_examples: 27096 download_size: 105494154 dataset_size: 340638169 configs: - config_name: default data_files: - split: train path: data/train-* ---
XUHAN8088/xhh
XUHAN8088
2025-03-12T05:30:44Z
47
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T09:46:15Z
null
--- dataset_info: features: - name: file_name dtype: string - name: text_label dtype: string splits: - name: train num_bytes: 33911 num_examples: 161 download_size: 5230 dataset_size: 33911 configs: - config_name: default data_files: - split: train path: data/train-* ---
Leon-Leee/unofficial-pyedu
Leon-Leee
2025-03-12T05:23:02Z
34
1
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2502.02737", "region:us" ]
[]
2025-03-12T02:52:05Z
null
--- dataset_info: features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string - name: download_success dtype: bool splits: - name: train num_bytes: 13499266964 num_examples: 7678448 download_size: 6086016638 dataset_size: 13499266964 configs: - config_name: default data_files: - split: train path: data/train-* --- # About This Dataset The HuggingFaceTB team has released an impressive series of models called smollm (V1/V2) (paper๏ผš https://arxiv.org/abs/2502.02737). According to their documentation, they used Stack-Edu as the code field corpus for pretraining and published https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus. However for some reason, only a Python-Edu subset is accessible and there's no content/text field in it. The full dataset is stored on AWS S3; downloading it requires an AWS EC2 instance, or you will be blocked by AWS's rate limits under which you will never download it. Fortunately, the py-edu subset is relatively small (~7 million files) for me to afford; downloading the entire set takes approximately one hour. I am publishing the complete py-edu dataset here for anyone who needs it. If this release inadvertently causes any issues for the HuggingFaceTB team, please reach out to me and I will remove it immediately.
mteb/SpokeN-100-English
mteb
2025-03-12T05:18:52Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:18:43Z
null
--- dataset_info: features: - name: file dtype: string - name: label dtype: int64 - name: speaker dtype: string - name: audio dtype: audio splits: - name: train num_bytes: 90801340.0 num_examples: 3200 download_size: 85243025 dataset_size: 90801340.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
distillslm/alpaca-Qwen2.5-7B-Instruct-generated
distillslm
2025-03-12T05:14:04Z
13
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T08:03:01Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 67859621 num_examples: 46698 - name: test num_bytes: 7460810 num_examples: 5192 download_size: 38090687 dataset_size: 75320431 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
sihyun77/eval_act_so100_suho4
sihyun77
2025-03-12T05:11:14Z
23
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-12T05:11:04Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 8, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
sihyun77/eval_act_so100_suho3
sihyun77
2025-03-12T05:08:05Z
24
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-12T05:07:53Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 3797, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
nouhad/multiplication_test_100_4x4
nouhad
2025-03-12T05:07:31Z
26
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:07:23Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: dataset dtype: string - name: split dtype: string splits: - name: train num_bytes: 10262 num_examples: 100 download_size: 5875 dataset_size: 10262 configs: - config_name: default data_files: - split: train path: data/train-* ---
nouhad/multiplication_test_100_10x10
nouhad
2025-03-12T05:04:40Z
13
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:04:38Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: dataset dtype: string - name: split dtype: string splits: - name: train num_bytes: 13860 num_examples: 100 download_size: 9247 dataset_size: 13860 configs: - config_name: default data_files: - split: train path: data/train-* ---
nouhad/multiplication_test_100_9x9
nouhad
2025-03-12T05:04:38Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T05:04:37Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: dataset dtype: string - name: split dtype: string splits: - name: train num_bytes: 13268 num_examples: 100 download_size: 8660 dataset_size: 13268 configs: - config_name: default data_files: - split: train path: data/train-* ---
shaquille69/conversation
shaquille69
2025-03-12T05:03:54Z
8
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "question-answering" ]
2025-03-12T05:03:51Z
null
--- size_categories: n<1K task_categories: - text-generation - text2text-generation - question-answering dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 68978 num_examples: 10 download_size: 35298 dataset_size: 68978 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for conversation This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/shaquille69/conversation/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/shaquille69/conversation/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "messages": [ { "content": "You are an AI assistant designed to engage in normal, everyday conversations with users. Your purpose is to respond to a wide range of topics, from casual discussions about the weather to more substantial conversations about news, opinions, and interests. Provide engaging, relevant, and coherent responses that keep the conversation flowing smoothly, while also being mindful of the user\u0027s tone and context.\n\nRespond to queries with a mix of factual information, personal anecdotes, and creative insights, all while maintaining a friendly and approachable demeanor. Be prepared to transition between different subjects and topics as the conversation unfolds, and use your understanding of context and tone to ensure that your responses are always relevant and engaging.\n\nWhen possible, offer users suggestions for further conversation or topics to explore, and be prepared to adapt to their interests and preferences. Keep the conversation natural and spontaneous, just as you would with a human friend, and strive to build a rapport with the user over time.\n\nBe aware of nuances in language, such as idioms, colloquialisms, and figurative language, and use your understanding of context to ensure that your responses are always clear and effective.\n\nUser questions are direct and concise.", "role": "system" }, { "content": "What\u0027s the best way to handle stress?", "role": "user" }, { "content": "You know, I think managing stress is a really personal thing, but I\u0027ve found that it\u0027s all about finding those little \"hacks\" \u2013 habits that help you unwind and recharge. For me, it\u0027s been all about exercise, whether it\u0027s going for a walk, hitting the gym, or even just some good old-fashioned yoga. It\u0027s funny, but when I\u0027m feeling really overwhelmed, it\u0027s often because I\u0027ve been stuck inside staring at screens for too long. So, getting outside, even just for a short walk, really helps get my mind clear.\n\nAnother thing that works for me is creative activities, like drawing, painting, or even just doodling. Sometimes, I\u0027ll pull out my sketchbook and just start scribbling, and it helps me relax in the moment. Of course, everyone\u0027s different, but that\u0027s why it\u0027s so crucial to experiment and find what works best for you.\n\nI\u0027ve also found that practicing mindfulness has helped me manage stress better. It\u0027s about being present and letting go of all that mental chatter. It\u0027s not always easy, but it\u0027s something that\u0027s really helped me learn to breathe through those tough moments.\n\nWhat about you, do you have any tricks up your sleeve for managing stress?", "role": "assistant" }, { "content": "Do you believe that one can really achieve significant self-improvement through the power of habits? \n\n", "role": "user" }, { "content": "You know, I think habits are a powerful tool for self-improvement, but it\u0027s not just about forming new habits, it\u0027s also about breaking the old ones that hold us back. I mean, think about it \u2013 most of us have a default mode of behavior that\u0027s been shaped by years of repetition, and that can be hard to shift. But, the thing is, once we develop new habits, they can start to compound and really drive change. For example, when I was trying to get back into running, I started with just a few minutes a day, and before I knew it, I was hooked.\n\nIt\u0027s also worth noting that the key to sustained self-improvement is to find habits that actually align with your goals and values, rather than trying to force change into a preconceived identity. It\u0027s all about creating a sense of identity that\u0027s cohesive and authentic. For me, it\u0027s been about recognizing what\u0027s truly important and finding habits that support that identity.\n\nAnother thing that I\u0027ve found helpful is to focus on small wins, rather than trying to tackle everything at once. It\u0027s really about building momentum and confidence through incremental successes. So, if you\u0027re looking to make significant self-improvement, I\u0027d say start with a small habit change**, and then gradually build on it.\n\nYou know, I also want to mention that it\u0027s all about progress, not perfection. It\u0027s okay to stumble and make mistakes \u2013 it\u0027s all part of the journey, and the important thing is to learn from them and keep moving forward.\n\nWould you like to talk more about habit change or something else related to self-improvement?", "role": "assistant" }, { "content": "Do you know what would be really helpful to have an equipped learning plan to help student learning student learning plan to help students become more self-directed learners increase their academic resilience.", "role": "user" }, { "content": null, "role": "assistant" } ] } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("shaquille69/conversation", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("shaquille69/conversation") ``` </details>
jjaehyeok2/kimbab_kimchisoup_tteokbokki
jjaehyeok2
2025-03-12T05:02:12Z
12
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T04:48:34Z
null
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 77735601.0 num_examples: 417 download_size: 77606007 dataset_size: 77735601.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
HeyixInn0/Reorganized-mbpp
HeyixInn0
2025-03-12T04:55:50Z
41
1
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-09T21:44:11Z
null
--- dataset_info: features: - name: entry_func dtype: string - name: solution dtype: string - name: task_name dtype: string - name: doc_string dtype: string - name: compare_func sequence: 'null' - name: tgt_lang dtype: string - name: suffix dtype: string - name: import_str sequence: string - name: src_lang dtype: 'null' - name: demos sequence: 'null' - name: test_cases sequence: sequence: string - name: data_id dtype: int64 - name: prefix dtype: string - name: dataset_name dtype: string splits: - name: train num_bytes: 126254 num_examples: 257 download_size: 61055 dataset_size: 126254 configs: - config_name: default data_files: - split: train path: data/train-* ---
Shakil2448868/bangla-songs-synthetic-prompt
Shakil2448868
2025-03-12T04:52:38Z
53
0
[ "task_categories:text2text-generation", "task_categories:text-generation", "language:bn", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text2text-generation", "text-generation" ]
2025-03-07T10:32:42Z
null
--- dataset_info: features: - name: Writer dtype: string - name: Title dtype: string - name: Song dtype: string - name: syn_prompt dtype: string splits: - name: train num_bytes: 13531276 num_examples: 2222 download_size: 5547102 dataset_size: 13531276 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - text2text-generation - text-generation language: - bn size_categories: - 1K<n<10K --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
kishoreb8220/finetuning_demo
kishoreb8220
2025-03-12T04:51:37Z
55
0
[ "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T04:51:35Z
null
--- dataset_info: features: - name: prompt dtype: float64 splits: - name: train num_bytes: 0 num_examples: 0 download_size: 548 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/train_fasttext_classifier_seed_code_best_sharegpt
mlfoundations-dev
2025-03-12T04:15:55Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T04:15:53Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 140 num_examples: 1 download_size: 4557 dataset_size: 140 configs: - config_name: default data_files: - split: train path: data/train-* ---
dfdsfgf/big_math_dataset
dfdsfgf
2025-03-12T04:07:03Z
46
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T04:06:57Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 16305977 num_examples: 97467 download_size: 9339580 dataset_size: 16305977 configs: - config_name: default data_files: - split: train path: data/train-* ---
singsan9song/smhrd_llama3_korea
singsan9song
2025-03-12T04:05:31Z
11
0
[ "license:llama3", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T03:36:29Z
null
--- license: llama3 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 6161 num_examples: 19 download_size: 5159 dataset_size: 6161 ---
qishenfu/debug_2_0311
qishenfu
2025-03-12T04:04:52Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T04:04:30Z
null
--- dataset_info: features: - name: system dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: gvkey dtype: int64 - name: fyear dtype: int64 splits: - name: train num_bytes: 47551 num_examples: 5 download_size: 22155 dataset_size: 47551 configs: - config_name: default data_files: - split: train path: data/train-* ---
gguava/xiaoshuo
gguava
2025-03-12T03:54:36Z
30
0
[ "license:artistic-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T03:53:56Z
null
--- license: artistic-2.0 ---
passionMan/dataset_seed_evol_cherry204
passionMan
2025-03-12T03:48:59Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T03:48:56Z
null
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: input dtype: string splits: - name: train num_bytes: 5084080 num_examples: 2611 download_size: 2501289 dataset_size: 5084080 configs: - config_name: default data_files: - split: train path: data/train-* ---
speedxd/CFSC-Dataset
speedxd
2025-03-12T03:28:08Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T08:14:44Z
null
--- dataset_info: features: - name: tweet dtype: string - name: entity dtype: string - name: sentiment dtype: int64 splits: - name: train num_bytes: 448644 num_examples: 1698 - name: test num_bytes: 120676 num_examples: 433 download_size: 181765 dataset_size: 569320 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
sihyun77/eval_act_so100_suho
sihyun77
2025-03-12T03:18:50Z
22
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-12T03:18:39Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 3790, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
yuebanlaosiji/e-girl
yuebanlaosiji
2025-03-12T03:03:03Z
22
0
[ "language:zh", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-08T02:23:53Z
null
--- language: - zh license: apache-2.0 ---
SKIML-ICL/nq_retrieved_adversarial_sentence_sim
SKIML-ICL
2025-03-12T03:00:08Z
7
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:54:56Z
null
--- dataset_info: config_name: adversarial features: - name: qid dtype: int64 - name: question dtype: string - name: answers sequence: string - name: answer_sentence dtype: string - name: ctxs list: - name: hasanswer dtype: bool - name: nli dtype: string - name: pid dtype: int64 - name: rank dtype: int64 - name: score dtype: float64 - name: text dtype: string - name: title dtype: string - name: hasanswer dtype: bool - name: answerable dtype: string - name: qa_cases list: - name: answers sequence: string - name: context dtype: string - name: distance dtype: string - name: original_answers sequence: string - name: question dtype: string - name: unanswerable_cases list: - name: answers sequence: string - name: context dtype: string - name: distance dtype: string - name: original_answers sequence: string - name: question dtype: string - name: conflict_cases list: - name: answers sequence: string - name: context dtype: string - name: distance dtype: string - name: original_answers sequence: string - name: question dtype: string - name: named_entities sequence: string - name: input dtype: string - name: prompt dtype: string - name: adversarial_sentence dtype: string - name: cosine_similarity dtype: float32 splits: - name: train num_bytes: 1637167855.0 num_examples: 69106 - name: validation num_bytes: 181329026.0 num_examples: 7659 download_size: 864882517 dataset_size: 1818496881.0 configs: - config_name: adversarial data_files: - split: train path: adversarial/train-* - split: validation path: adversarial/validation-* ---
dean1111ii/medical_01_sft
dean1111ii
2025-03-12T02:59:28Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T04:00:01Z
null
--- dataset_info: features: - name: Question dtype: string - name: Complex_CoT dtype: string - name: Response dtype: string splits: - name: train num_bytes: 157599 num_examples: 73 download_size: 71065 dataset_size: 157599 configs: - config_name: default data_files: - split: train path: data/train-* ---
agentlans/FarisHijazi-kajiwoto.ai-chat
agentlans
2025-03-12T02:46:20Z
13
0
[ "task_categories:text-generation", "language:en", "region:us", "roleplay", "kajiwoto", "sharegpt" ]
[ "text-generation" ]
2025-03-11T20:12:20Z
null
--- language: - en tags: - roleplay - kajiwoto - sharegpt task_categories: - text-generation --- # FarisHijazi/kajiwoto.ai-chat ## Dataset Description This dataset is a processed version of the [FarisHijazi/kajiwoto.ai-chat](https://huggingface.co/datasets/FarisHijazi/kajiwoto.ai-chat) dataset, containing extracted and re-formatted conversation data from Kajiwoto. Kajiwoto is a platform where users can create and interact with AI character datasets. This version focuses on providing the core conversational data in a ShareGPT-like format. **Important Note:** This data is still in a raw format and requires careful consideration before use in training. * **Size:** 13&thinsp;784 rows ## Data Fields The dataset contains the following fields, mirroring the original Kajiwoto dataset structure: * `id`: Unique identifier for the character. * `name`: Name of the character. * `description`: Character description (often empty). * `profilePhotoUri`: URI of the character's profile photo (may be null). * `dominantColors`: List of dominant colors in the profile photo (may be null). * `personalities`: Personality tags (may be null). * `nsfw`: Boolean indicating whether the character is marked as "not safe for work." * `conversations`: A list of turns representing a conversation. Each turn has: * `from`: Either "human" or "gpt" indicating the speaker. * `value`: The text of the message. * `upvotes`: Number of upvotes the character has received. ## Data Format The `conversations` field is formatted in a ShareGPT-like structure, where each turn indicates the speaker ("human" or "gpt") and the message content: ```json { "id": "M51k", "name": "Damian ", "description": "", "profilePhotoUri": null, "dominantColors": null, "personalities": null, "nsfw": false, "conversations": [ { "from": "human", "value": "Still a horrific introvert?" }, { "from": "gpt", "value": "I know you wanted me to find some friends, but I've already got one here in Gotham and one is more than enough" }, { "from": "human", "value": "How is the friend making going " }, { "from": "gpt", "value": "I know you wanted me to find some friends, but I've already got one here in Gotham and one is more than enough" }, { "from": "human", "value": "You're not very good at this relax and have fun thing are you" }, { "from": "gpt", "value": "I wasn't raised to have fun" }, ... ], "upvotes": 0 } ``` ## Intended Uses This dataset is intended for research and experimentation in areas such as: * AI character development * Dialogue generation * Role-playing AI * Analyzing conversational patterns ## Caveats and Recommendations ### Preprocessing Considerations: * **Filtering:** * **Upvotes:** Consider filtering by the number of upvotes. However, be aware that profiles with fewer views might have lower upvotes, even if the quality is high. * **NSFW:** The `nsfw` field may not be completely reliable. Some users engage in NSFW chats with characters not marked as NSFW. Manual inspection may be required. * **Text Processing:** * The text contains special markup that needs to be handled: * `#scene=happy`: Scene descriptions. * `%{Howdy|G'day|Yo}`: Multiple possible options for a phrase. * Pronouns: Requires handling for consistency. ### Limitations * The data might not be sufficiently filtered for training without further processing. * Many short, repetitive messages may not accurately represent character behavior. * The dataset contains a mixture of good and bad quality conversations.
cchoi1/humaneval_qwen7b_att_iter0_ppo_att20_sol50
cchoi1
2025-03-12T02:42:52Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:42:49Z
null
--- dataset_info: features: - name: mutation_id dtype: string - name: task_id dtype: string - name: prompt dtype: string - name: response dtype: string - name: mutation_info dtype: string - name: score dtype: float64 - name: scores dtype: string - name: solutions dtype: string - name: solutions_info dtype: string splits: - name: train num_bytes: 17626355 num_examples: 1326 download_size: 1385490 dataset_size: 17626355 configs: - config_name: default data_files: - split: train path: data/train-* ---
andy309/eval_act_so100_0311_1152_03121028
andy309
2025-03-12T02:31:01Z
24
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-12T02:30:42Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1258, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.back": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist_right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mlfoundations-dev/train_fasttext_classifier_seed_math_worst_mix_5_3_1
mlfoundations-dev
2025-03-12T02:13:55Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:13:35Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 134 num_examples: 1 download_size: 4527 dataset_size: 134 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/train_fasttext_classifier_seed_math_worst_1
mlfoundations-dev
2025-03-12T02:13:36Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:13:07Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 134 num_examples: 1 download_size: 4527 dataset_size: 134 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/train_fasttext_classifier_seed_math_worst_3
mlfoundations-dev
2025-03-12T02:12:28Z
55
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:11:59Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 134 num_examples: 1 download_size: 4527 dataset_size: 134 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/train_fasttext_classifier_seed_math_best_automath
mlfoundations-dev
2025-03-12T02:12:16Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:11:18Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 140 num_examples: 1 download_size: 4557 dataset_size: 140 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/train_fasttext_classifier_seed_math_best_tigerlab
mlfoundations-dev
2025-03-12T02:11:23Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:11:17Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 140 num_examples: 1 download_size: 4557 dataset_size: 140 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/train_fasttext_classifier_seed_math_best_s1
mlfoundations-dev
2025-03-12T02:10:48Z
25
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T02:10:46Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 134 num_examples: 1 download_size: 4527 dataset_size: 134 configs: - config_name: default data_files: - split: train path: data/train-* ---
dirganmdcp/yfinance_Indonesia_Stock_Exchange
dirganmdcp
2025-03-12T02:05:32Z
51
0
[ "license:apache-2.0", "region:us" ]
[]
2025-03-12T02:05:32Z
null
--- license: apache-2.0 ---
infinite-dataset-hub/AsianFacesForBiasDetection
infinite-dataset-hub
2025-03-12T02:04:43Z
24
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-03-12T02:04:42Z
null
--- license: mit tags: - infinite-dataset-hub - synthetic --- # AsianFacesForBiasDetection tags: ethics, diversity, AI _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'AsianFacesForBiasDetection' dataset is aimed at identifying and mitigating bias in facial recognition AI systems. It contains a diverse range of images representing various Asian ethnicities to train models to recognize and understand the ethnic diversity within Asian faces. The dataset includes features like age, gender, and ethnicity diversity, which are critical in promoting fairness and diversity in AI. The label column indicates whether the face image shows potential signs of bias in recognition accuracy. **CSV Content Preview:** ```csv id, image_url, label 1, https://example.com/asian_face1.jpg, No_Bias 2, https://example.com/asian_face2.jpg, Minor_Bias 3, https://example.com/asian_face3.jpg, Major_Bias 4, https://example.com/asian_face4.jpg, No_Bias 5, https://example.com/asian_face5.jpg, No_Bias ``` **Dataset Description:** The 'AsianFacesForBiasDetection' dataset consists of high-resolution images of Asian faces with a focus on promoting diversity in AI facial recognition technologies. The dataset is created with the aim of reducing racial bias and increasing the accuracy of AI systems across different ethnic groups. The images in the dataset are labeled according to the level of detection bias observed in preliminary studies, ranging from no bias to varying degrees of potential bias. **CSV Content Preview:** ```csv id, image_url, label 1, https://example.com/asian_face1.jpg, No_Bias 2, https://example.com/asian_face2.jpg, Mild_Bias 3, https://example.com/asian_face3.jpg, Moderate_Bias 4, https://example.com/asian_face4.jpg, No_Bias 5, https://example.com/asian_face5.jpg, No_Bias ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'Asian face': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=Asian+face&dataset=AsianFacesForBiasDetection&tags=ethics,+diversity,+AI - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
zijian2022/llmtest102
zijian2022
2025-03-12T01:29:45Z
16
0
[ "task_categories:robotics", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-12T01:29:37Z
null
--- task_categories: - robotics tags: - LeRobot - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
EMMMMMnn/test
EMMMMMnn
2025-03-12T01:22:51Z
7
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T12:07:42Z
null
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '10' '3': '100' '4': '101' '5': '102' '6': '103' '7': '104' '8': '105' '9': '106' '10': '107' '11': '108' '12': '109' '13': '11' '14': '110' '15': '111' '16': '112' '17': '113' '18': '114' '19': '115' '20': '116' '21': '117' '22': '118' '23': '119' '24': '12' '25': '120' '26': '121' '27': '122' '28': '123' '29': '124' '30': '125' '31': '126' '32': '127' '33': '128' '34': '129' '35': '13' '36': '130' '37': '131' '38': '132' '39': '133' '40': '134' '41': '135' '42': '136' '43': '137' '44': '138' '45': '139' '46': '14' '47': '140' '48': '141' '49': '142' '50': '143' '51': '144' '52': '145' '53': '146' '54': '147' '55': '148' '56': '149' '57': '15' '58': '150' '59': '151' '60': '152' '61': '153' '62': '154' '63': '155' '64': '156' '65': '157' '66': '158' '67': '159' '68': '16' '69': '160' '70': '161' '71': '162' '72': '163' '73': '164' '74': '165' '75': '166' '76': '167' '77': '168' '78': '169' '79': '17' '80': '170' '81': '171' '82': '172' '83': '173' '84': '174' '85': '175' '86': '176' '87': '177' '88': '178' '89': '179' '90': '18' '91': '180' '92': '181' '93': '182' '94': '183' '95': '184' '96': '185' '97': '186' '98': '187' '99': '188' '100': '189' '101': '19' '102': '190' '103': '191' '104': '192' '105': '193' '106': '194' '107': '195' '108': '196' '109': '197' '110': '198' '111': '199' '112': '2' '113': '20' '114': '21' '115': '22' '116': '23' '117': '24' '118': '25' '119': '26' '120': '27' '121': '28' '122': '29' '123': '3' '124': '30' '125': '31' '126': '32' '127': '33' '128': '34' '129': '35' '130': '36' '131': '37' '132': '38' '133': '39' '134': '4' '135': '40' '136': '41' '137': '42' '138': '43' '139': '44' '140': '45' '141': '46' '142': '47' '143': '48' '144': '49' '145': '5' '146': '50' '147': '51' '148': '52' '149': '53' '150': '54' '151': '55' '152': '56' '153': '57' '154': '58' '155': '59' '156': '6' '157': '60' '158': '61' '159': '62' '160': '63' '161': '64' '162': '65' '163': '66' '164': '67' '165': '68' '166': '69' '167': '7' '168': '70' '169': '71' '170': '72' '171': '73' '172': '74' '173': '75' '174': '76' '175': '77' '176': '78' '177': '79' '178': '8' '179': '80' '180': '81' '181': '82' '182': '83' '183': '84' '184': '85' '185': '86' '186': '87' '187': '88' '188': '89' '189': '9' '190': '90' '191': '91' '192': '92' '193': '93' '194': '94' '195': '95' '196': '96' '197': '97' '198': '98' '199': '99' splits: - name: train num_bytes: 72435133.0 num_examples: 7500 download_size: 69992616 dataset_size: 72435133.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
pzhang1990/DIOR-RSVG
pzhang1990
2025-03-12T01:21:18Z
21
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T09:47:38Z
null
--- dataset_info: features: - name: image_id dtype: int64 - name: image_path dtype: string - name: image dtype: image - name: question_id dtype: int64 - name: question dtype: string - name: bbox sequence: int64 splits: - name: test num_bytes: 2473956035.5 num_examples: 7500 download_size: 2012317038 dataset_size: 2473956035.5 configs: - config_name: default data_files: - split: test path: data/test-* ---
droid-ai/libero
droid-ai
2025-03-12T01:15:39Z
15
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot" ]
[ "robotics" ]
2025-03-12T01:08:44Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "libero", "total_episodes": 1693, "total_frames": 273465, "total_tasks": 40, "total_videos": 0, "total_chunks": 2, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1693" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "is_first": { "dtype": "bool", "shape": [ 1 ] }, "is_last": { "dtype": "bool", "shape": [ 1 ] }, "is_terminal": { "dtype": "bool", "shape": [ 1 ] }, "image": { "dtype": "image", "shape": [ 256, 256, 3 ] }, "wrist_image": { "dtype": "image", "shape": [ 256, 256, 3 ] }, "state": { "dtype": "float32", "shape": [ 8 ] }, "joint_state": { "dtype": "float32", "shape": [ 7 ] }, "actions": { "dtype": "float32", "shape": [ 7 ] }, "discount": { "dtype": "float32", "shape": [ 1 ] }, "reward": { "dtype": "float32", "shape": [ 1 ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
BroAlanTaps/Pretrain-Stage1-1024
BroAlanTaps
2025-03-12T01:12:00Z
18
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T10:08:33Z
null
--- dataset_info: features: - name: dump dtype: string - name: text dtype: string - name: target dtype: string - name: compress_ids sequence: int64 - name: llm_ids sequence: int64 - name: next_ids sequence: int64 - name: token_count dtype: int64 splits: - name: train num_bytes: 55937435446 num_examples: 1689078 - name: test num_bytes: 22384728 num_examples: 676 download_size: 19806231580 dataset_size: 55959820174 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Svngoku/AHistoryOfSouthAfrica
Svngoku
2025-03-12T00:59:06Z
7
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:58:56Z
null
--- dataset_info: features: - name: chunk_id dtype: int64 - name: content dtype: string - name: metadata struct: - name: author dtype: string - name: creationDate dtype: string - name: creationdate dtype: string - name: creator dtype: string - name: file_path dtype: string - name: format dtype: string - name: keywords dtype: string - name: modDate dtype: string - name: moddate dtype: string - name: page dtype: int64 - name: producer dtype: string - name: source dtype: string - name: start_index dtype: int64 - name: subject dtype: string - name: title dtype: string - name: total_pages dtype: int64 - name: trapped dtype: string - name: page_image dtype: string splits: - name: train num_bytes: 226940841 num_examples: 1056 download_size: 82229093 dataset_size: 226940841 configs: - config_name: default data_files: - split: train path: data/train-* ---
lime66/eval_so100_test
lime66
2025-03-12T00:54:14Z
29
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-03-12T00:54:03Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 469, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mlfoundations-dev/scale_up_science_25K
mlfoundations-dev
2025-03-12T00:51:07Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:50:49Z
null
--- dataset_info: features: - name: text dtype: string - name: category dtype: string - name: url dtype: string - name: title dtype: string - name: __index_level_0__ dtype: int64 - name: problem dtype: string - name: __original_row_idx dtype: int64 - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: discipline dtype: string - name: expert dtype: string - name: num_topics dtype: int64 - name: num_subtopics dtype: int64 - name: num_questions dtype: int64 - name: topic dtype: string - name: subtopic dtype: string - name: score dtype: int64 - name: year dtype: int64 - name: id dtype: string splits: - name: train num_bytes: 726700099 num_examples: 25002 download_size: 363148840 dataset_size: 726700099 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/scale_up_science_1K
mlfoundations-dev
2025-03-12T00:51:00Z
11
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:50:49Z
null
--- dataset_info: features: - name: text dtype: string - name: category dtype: string - name: url dtype: string - name: title dtype: string - name: __index_level_0__ dtype: int64 - name: problem dtype: string - name: __original_row_idx dtype: int64 - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: discipline dtype: string - name: expert dtype: string - name: num_topics dtype: int64 - name: num_subtopics dtype: int64 - name: num_questions dtype: int64 - name: topic dtype: string - name: subtopic dtype: string - name: score dtype: int64 - name: year dtype: int64 - name: id dtype: string splits: - name: train num_bytes: 29065678.705703545 num_examples: 1000 download_size: 14816353 dataset_size: 29065678.705703545 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/scale_up_science_4K
mlfoundations-dev
2025-03-12T00:50:58Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:50:50Z
null
--- dataset_info: features: - name: text dtype: string - name: category dtype: string - name: url dtype: string - name: title dtype: string - name: __index_level_0__ dtype: int64 - name: problem dtype: string - name: __original_row_idx dtype: int64 - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: discipline dtype: string - name: expert dtype: string - name: num_topics dtype: int64 - name: num_subtopics dtype: int64 - name: num_questions dtype: int64 - name: topic dtype: string - name: subtopic dtype: string - name: score dtype: int64 - name: year dtype: int64 - name: id dtype: string splits: - name: train num_bytes: 116262714.82281418 num_examples: 4000 download_size: 58413798 dataset_size: 116262714.82281418 configs: - config_name: default data_files: - split: train path: data/train-* ---
rd211/eth-mathdial-conversations
rd211
2025-03-12T00:49:19Z
87
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-27T23:13:11Z
null
--- dataset_info: features: - name: question dtype: string - name: ground_truth dtype: string - name: student_incorrect_solution dtype: string - name: student_profile dtype: string - name: conversation list: - name: content dtype: string - name: role dtype: string - name: student_name dtype: string splits: - name: train num_bytes: 8955666 num_examples: 2261 - name: test num_bytes: 2338595 num_examples: 599 download_size: 3746870 dataset_size: 11294261 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
mlfoundations-dev/train_fasttext_classifier_seed_code_worst_8
mlfoundations-dev
2025-03-12T00:45:55Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:45:53Z
null
--- dataset_info: features: - name: TRAIN_FASTTEXT_OP_PATH dtype: 'null' - name: TRAIN_FASTTEXT_OP_HF_REPO_ID dtype: string - name: TRAIN_FASTTEXT_OP_TEXT_COLUMN dtype: string - name: TRAIN_FASTTEXT_OP_EPOCH dtype: int64 - name: TRAIN_FASTTEXT_OP_LR dtype: float64 - name: TRAIN_FASTTEXT_OP_WORD_NGRAMS dtype: int64 - name: TRAIN_FASTTEXT_OP_MIN_COUNT dtype: int64 - name: TRAIN_FASTTEXT_OP_DIM dtype: int64 splits: - name: train num_bytes: 134 num_examples: 1 download_size: 4527 dataset_size: 134 configs: - config_name: default data_files: - split: train path: data/train-* ---
passionMan/dataset_seed_evol_cherry206
passionMan
2025-03-12T00:40:56Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:40:52Z
null
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: instruction dtype: string splits: - name: train num_bytes: 7844357 num_examples: 3917 download_size: 3830834 dataset_size: 7844357 configs: - config_name: default data_files: - split: train path: data/train-* ---
bp7274/fam_DS_split
bp7274
2025-03-12T00:30:38Z
21
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:30:33Z
null
--- dataset_info: features: - name: input dtype: string - name: response dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 2185 num_examples: 17 - name: validation num_bytes: 221 num_examples: 2 - name: test num_bytes: 611 num_examples: 5 download_size: 7904 dataset_size: 3017 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
sequelbox/Raiden-DeepSeek-R1
sequelbox
2025-03-12T00:26:21Z
76
43
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b" ]
[ "text-generation" ]
2025-02-11T04:54:53Z
null
--- license: apache-2.0 tags: - raiden - creative - analytical - reasoning - rational - deepseek - r1 - 685b language: - en task_categories: - text-generation size_categories: - 10K<n<100K --- **[Click here to support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)** **Raiden-DeepSeek-R1** is a dataset containing creative-reasoning and analytic-reasoning responses, testing the limits of [DeepSeek R1's](https://huggingface.co/deepseek-ai/DeepSeek-R1) reasoning skills! This dataset contains: - 63k 'creative_content' and 'analytical_reasoning' prompts from [microsoft/orca-agentinstruct-1M-v1](https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1), with all responses generated by [deepseek-ai/DeepSeek-R1.](https://huggingface.co/deepseek-ai/DeepSeek-R1) - Responses demonstrate the reasoning capabilities of DeepSeek's 685b parameter R1 reasoning model. **Responses have not been filtered or edited at all:** the Raiden dataset strives to accurately represent the R1 model. Potential issues may include inaccurate answers and infinite thought loops. Raiden is presented as-is to be used at your discretion. Users should consider applying their own sub-filtering and manual examination of the dataset before use in training. Do as you will.
Argenis29/Adam
Argenis29
2025-03-12T00:25:29Z
16
0
[ "license:apache-2.0", "region:us" ]
[]
2025-03-12T00:25:29Z
null
--- license: apache-2.0 ---
hanaearg/ARSaSDataOk
hanaearg
2025-03-12T00:23:38Z
13
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:23:34Z
null
--- dataset_info: features: - name: text dtype: string - name: sentiment dtype: string - name: instruction dtype: string splits: - name: train num_bytes: 8088700 num_examples: 15368 - name: test num_bytes: 2047861 num_examples: 3842 download_size: 2156422 dataset_size: 10136561 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Mohamed-DLM/eld7e7_KHOAFoxaZaQ_mp3_updated_updated
Mohamed-DLM
2025-03-12T00:23:30Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:23:27Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 33229432.0 num_examples: 72 download_size: 33205826 dataset_size: 33229432.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
jjz5463/hard-negatives
jjz5463
2025-03-12T00:04:15Z
28
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T08:48:01Z
null
--- dataset_info: features: - name: anchor dtype: string - name: negative dtype: string splits: - name: train num_bytes: 1358605308 num_examples: 789850 download_size: 850578085 dataset_size: 1358605308 configs: - config_name: default data_files: - split: train path: data/train-* ---
rzgar/kurdish_sorani_wikipedia_gemma_2b_it
rzgar
2025-03-12T00:03:57Z
57
0
[ "language:ku", "license:cc-by-sa-4.0", "modality:text", "region:us" ]
[]
2025-02-27T15:22:01Z
null
--- license: cc-by-sa-4.0 language: - ku pretty_name: Lang CKB Gemma-2b-it --- # Kurdish Sorani Wikipedia Text Dataset for Gemma-2-2b-it Fine-Tuning ## Dataset Description This dataset contains Kurdish Sorani text extracted from Wikipedia, preprocessed and formatted for fine-tuning the `google/gemma-2-2b-it`language model. The goal of this dataset is to improve the model's ability to generate fluent, grammatically correct, and contextually relevant Kurdish Sorani text, particularly in the style of Wikipedia articles. ## Dataset Statistics * **Number of lines:** 52,430 * **Total characters:** 99,080,311 * **Language:** Kurdish Sorani (Central Kurdish) * **Source:** Wikipedia * **Format:** Plain text, preprocessed with Gemma-compatible templates ## Data Collection and Preprocessing The dataset was created through the following steps: 1. **Data Extraction:** Kurdish Sorani text was scraped directly from Wikipedia articles. * List of URLs: [rzgar/ckb_wikipedia_kurdish_sorani_urls](https://huggingface.co/datasets/rzgar/ckb_wikipedia_kurdish_sorani_urls) 2. **Text Cleaning:** The extracted text was cleaned to remove: * Extra whitespace * HTML tags (if any were present) * Unicode Left-to-Right Marks * Citation Marks ## Licensing Information This dataset is shared under the [Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/). Users are free to use, adapt, and share the data, provided attribution is given to the source (CKB WikiPedia) and derivative works are shared under the same license. ## Acknowledgements This dataset was created with the help of open-source tools and resources, including: * Hugging Face Transformers library * NLTK (Natural Language Toolkit) * We gratefully acknowledge the countless contributors to Wikipedia who have dedicated their time and effort to creating, translating, editing, and fact-checking Kurdish Sorani content. Their commitment to making knowledge freely accessible is the foundation of this dataset. Without their contributions, this project would not have been possible.
cchoi1/bigcode_bench_debug
cchoi1
2025-03-12T00:03:48Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T00:03:47Z
null
--- dataset_info: features: - name: mutation_id dtype: string - name: task_id dtype: string - name: prompt dtype: string - name: response dtype: string - name: mutation_info dtype: string - name: score dtype: float64 - name: scores dtype: string - name: solutions dtype: string - name: solutions_info dtype: string splits: - name: train num_bytes: 4605 num_examples: 2 download_size: 15010 dataset_size: 4605 configs: - config_name: default data_files: - split: train path: data/train-* ---
VGraf/safety_pref_stack_dev
VGraf
2025-03-11T23:50:39Z
42
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T21:23:47Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: id dtype: string - name: source dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 645031379 num_examples: 14547 download_size: 272759205 dataset_size: 645031379 configs: - config_name: default data_files: - split: train path: data/train-* ---
andrewbai/distilabel-intel-orca-dpo-pairs_filtered_pref-skywork-8B
andrewbai
2025-03-11T23:44:16Z
24
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T23:44:09Z
null
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 21345528 num_examples: 5922 - name: test num_bytes: 1890252 num_examples: 500 download_size: 11963272 dataset_size: 23235780 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
farrell236/LUNA25_ts_seg
farrell236
2025-03-11T23:33:46Z
62
0
[ "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-07T16:26:54Z
null
--- title: "LUNA25_TS_seg" license: cc-by-nc-sa-4.0 configs: - config_name: metadata data_files: "metadata.csv" --- # LUNA25 TS Segmentations The [LUNA25 challenge](https://luna25.grand-challenge.org/) serves as a benchmark for evaluating lung nodule detection in low-dose CT scans. This repository includes segmentations generated using [TotalSegmentator](https://github.com/wasserth/TotalSegmentator) for the `total`, `lung_vessels`, and `lung_nodules` tasks. Note: Segmentation volumes have not been independently verified and are supplied "as is". ## Steps to recreate 1. Use `scripts/convert_nifti.py` and `scripts/convert_nifti.sh` to convert LUNA25 `.mha` files to `.nii.gz`. 2. Install [TotalSegmentator](https://github.com/wasserth/TotalSegmentator). 3. Run TS segmentation scripts (written for parallel execution): - `scripts/ts_total.sh` - `scripts/ts_lung_vessels.sh` - `scripts/ts_lung_nodules.sh` 4. Run `scripts/get_metadata.py` to get metadata for detected lung nodules. ```text Installation Info: - Date installed: Mar 6, 2025. - Python version: 3.9.15 - TotalSegmentator version: 2.7.0 ``` For full list of package versions, see [requirements.txt](requirements.txt). ## Citation ```text @misc{luna25, title={{LUNA25: LUng Nodule Analysis Challenge}}, author={{Grand-Challenge.org}}, year={2025} howpublished={\url{https://luna25.grand-challenge.org/}}, } @article{wasserthal2023totalsegmentator, title={TotalSegmentator: robust segmentation of 104 anatomic structures in CT images}, author={Wasserthal, Jakob and Breit, Hanns-Christian and Meyer, Manfred T and Pradella, Maurice and Hinck, Daniel and Sauter, Alexander W and Heye, Tobias and Boll, Daniel T and Cyriac, Joshy and Yang, Shan and others}, journal={Radiology: Artificial Intelligence}, volume={5}, number={5}, pages={e230024}, year={2023}, publisher={Radiological Society of North America} } @article{poletti2022automated, title={Automated lung vessel segmentation reveals blood vessel volume redistribution in viral pneumonia}, author={Poletti, Julien and Bach, Michael and Yang, Shan and Sexauer, Raphael and Stieltjes, Bram and Rotzinger, David C and Bremerich, Jens and Sauter, Alexander Walter and Weikert, Thomas}, journal={European Journal of Radiology}, volume={150}, pages={110259}, year={2022}, publisher={Elsevier} } ```
takara-ai/rand-1m-multimodal
takara-ai
2025-03-11T23:33:08Z
100
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T22:00:56Z
null
--- dataset_info: features: - name: svg dtype: string - name: prompt dtype: string - name: image dtype: image splits: - name: train num_bytes: 135789832903.0 num_examples: 1000000 download_size: 131282059668 dataset_size: 135789832903.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
esfrankel17/original_ChatbotArena55k_binarized_Qwen2.5-0.5B-Instruct_preferences
esfrankel17
2025-03-11T23:27:32Z
34
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T23:27:24Z
null
--- dataset_info: features: - name: original_chosen list: - name: content dtype: string - name: role dtype: string - name: original_chosen_rating dtype: int64 - name: original_rejected list: - name: content dtype: string - name: role dtype: string - name: original_rejected_rating dtype: int64 - name: model_chosen list: - name: content dtype: string - name: role dtype: string - name: model_rejected list: - name: content dtype: string - name: role dtype: string - name: model_agreed_with_original dtype: bool splits: - name: winner num_bytes: 267600836 num_examples: 36149 download_size: 142981504 dataset_size: 267600836 configs: - config_name: default data_files: - split: winner path: data/winner-* ---
AlignmentResearch/JailbreakInputs
AlignmentResearch
2025-03-11T23:24:11Z
39
1
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T22:19:38Z
null
--- dataset_info: - config_name: default features: - name: completion dtype: string - name: instructions dtype: string - name: answer_prompt dtype: string - name: content sequence: string - name: clf_label dtype: class_label: names: '0': Benign '1': Harmful - name: proxy_clf_label dtype: class_label: names: '0': Benign '1': Harmful - name: gen_target dtype: string - name: proxy_gen_target dtype: string splits: - name: train num_bytes: 79911587.0 num_examples: 41332 - name: validation num_bytes: 17641875.0 num_examples: 9772 download_size: 54772617 dataset_size: 97553462.0 - config_name: neg features: - name: completion dtype: string - name: instructions dtype: string - name: answer_prompt dtype: string - name: content sequence: string - name: clf_label dtype: class_label: names: '0': Benign '1': Harmful - name: proxy_clf_label dtype: class_label: names: '0': Benign '1': Harmful - name: gen_target dtype: string - name: proxy_gen_target dtype: string splits: - name: train num_bytes: 40139467.18540114 num_examples: 20761 - name: validation num_bytes: 8842601.693614408 num_examples: 4898 download_size: 25071265 dataset_size: 48982068.87901555 - config_name: pos features: - name: completion dtype: string - name: instructions dtype: string - name: answer_prompt dtype: string - name: content sequence: string - name: clf_label dtype: class_label: names: '0': Benign '1': Harmful - name: proxy_clf_label dtype: class_label: names: '0': Benign '1': Harmful - name: gen_target dtype: string - name: proxy_gen_target dtype: string splits: - name: train num_bytes: 39772119.81459886 num_examples: 20571 - name: validation num_bytes: 8799273.306385592 num_examples: 4874 download_size: 28841247 dataset_size: 48571393.12098445 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - config_name: neg data_files: - split: train path: neg/train-* - split: validation path: neg/validation-* - config_name: pos data_files: - split: train path: pos/train-* - split: validation path: pos/validation-* ---
mlfoundations-dev/SWEbench_evalchemy
mlfoundations-dev
2025-03-11T23:21:03Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T23:21:00Z
null
--- dataset_info: features: - name: context list: - name: content dtype: string - name: role dtype: string - name: gen_kwargs struct: - name: do_sample dtype: bool - name: max_gen_toks dtype: int64 - name: temperature dtype: float64 - name: top_p dtype: float64 - name: repeat_idx dtype: int64 - name: request_idx dtype: int64 - name: task_name dtype: string - name: metadata struct: - name: expected_answer dtype: string - name: problem_id dtype: string - name: reference_solution dtype: string splits: - name: train num_bytes: 17344328 num_examples: 300 download_size: 7616607 dataset_size: 17344328 configs: - config_name: default data_files: - split: train path: data/train-* ---
Lauther/measuring-embeddings-v4
Lauther
2025-03-11T23:18:38Z
34
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T23:18:33Z
null
--- dataset_info: features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: score dtype: float64 splits: - name: train num_bytes: 2581238.157295698 num_examples: 3075 - name: test num_bytes: 553182.4213521512 num_examples: 659 - name: validation num_bytes: 553182.4213521512 num_examples: 659 download_size: 100660 dataset_size: 3687603.0000000005 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
DanOgh07/eval_icl_sample
DanOgh07
2025-03-11T23:05:32Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T23:05:30Z
null
--- dataset_info: features: - name: input sequence: string - name: target dtype: string splits: - name: eval num_bytes: 43176528 num_examples: 731 download_size: 300575 dataset_size: 43176528 configs: - config_name: default data_files: - split: eval path: data/eval-* ---
LatinNLP/LatinSummarizer
LatinNLP
2025-03-11T22:58:19Z
60
0
[ "task_categories:translation", "task_categories:text-generation", "task_categories:summarization", "task_ids:news-articles-summarization", "task_ids:document-retrieval", "language:en", "language:la", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:csv", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "text", "translation", "latin", "english", "parallel-corpus", "dataset", "mt5", "nlp", "multilingual", "summarization" ]
[ "translation", "text-generation", "summarization" ]
2025-03-09T13:42:36Z
null
--- tags: - text - translation - latin - english - parallel-corpus - dataset - mt5 - nlp - multilingual - summarization language: - en - la license: "cc-by-4.0" datasets: - grosenthal/latin_english_translation - opus - Fece228/latin-literature-dataset-170M pretty_name: "LatinSummarizer" size_categories: - 100K<n<500K task_categories: - translation - text-generation - summarization task_ids: - news-articles-summarization - document-retrieval --- # **LatinSummarizer Dataset** ## Structure - `aligned_en_la_data_raw.csv` - `aligned_en_la_data_cleaned.csv` - `aligned_en_la_data_cleaned_with_stanza.csv` - `concat_aligned_data.csv` - `concat_cleaned.csv` - `latin_wikipedia_cleaned.csv` - `latin_wikipedia_raw.csv` - `latin-literature-dataset-170M_raw_cleaned.csv` - `latin-literature-dataset-170M_raw_cleaned_chunked.csv` - `Elsa_aligned/` - `README.md` ## Details ### `aligned_en_la_data_raw.csv` This dataset contains aligned **Latin (`la`) - English (`en`)** text extracted from multiple sources to train and fine-tune machine translation models. #### **Dataset Sources** The dataset was built from: - **[HuggingFace Latin-English Dataset](https://huggingface.co/datasets/grosenthal/latin_english_translation)** (101,371 rows) - **[Bible-uedin.en-la](https://object.pouta.csc.fi/OPUS-bible-uedin/v1/moses/en-la.txt.zip) and [Wikimedia.en-la](https://object.pouta.csc.fi/OPUS-wikimedia/v20230407/moses/en-la.txt.zip)** (163,067 rows) #### **Dataset Structure** Each row contains an **aligned sentence pair** in **English (`en`)** and **Latin (`la`)**. | Column | Description | |---------|------------| | `en` | English sentence/document | | `la` | Corresponding Latin translation | #### **Statistics** | Statistic | English (en) | Latin (la) | |:----------:|:-------------:|:------------:| | **Mean** | 31.27 | 19.86 | | **Std Dev** | 20.21 | 11.99 | | **Min** | 0.00 | 0.00 | | **Max** | 672.00 | 308.00 | ### `aligned_en_la_data_cleaned.csv` This file contains the **cleaned version** of the dataset after preprocessing steps such as: - Removal of unwanted symbols, HTML tags, URLs, and non-Latin characters. - Filtering out duplicate sentences and ensuring high-quality alignment. - Removing overly short or non-informative text entries. #### **Cleaning Statistics** - Removed **33 rows** with unwanted patterns. - Removed **44,759 duplicate rows**. - Removed **5 rows** without Roman letters. #### **Updated Statistics** | Statistic | English (`en`) | Latin (`la`) | |:----------:|:-------------:|:------------:| | **Mean** | 30.99 | 19.75 | | **Std Dev** | 19.85 | 11.80 | | **Min** | 1.00 | 1.00 | | **Max** | 634.00 | 307.00 | ### `latin-literature-dataset-170M_raw_cleaned.csv` This dataset is derived from the **[Fece228/latin-literature-dataset-170M](https://huggingface.co/datasets/Fece228/latin-literature-dataset-170M)** and consists of large Latin literary texts. It has been cleaned for **extractive summarization tasks**. #### **Preprocessing Steps** - Removed **0 rows** with NaN values. - Removed **5 rows** with unwanted patterns. - Removed **0 duplicate rows**. - Removed **14 rows** with identical values in all columns. - Removed **1 row** without Roman letters. #### **Statistics (Before and After Cleaning)** | Statistic | `text` (Before Cleaning) | `text` (After Cleaning) | |:----------:|:----------------------:|:----------------------:| | **Mean** | 60,133.06 | 56,802.40 | | **Std Dev** | 231,865.86 | 225,328.53 | | **Min** | 26 | 24 | | **Max** | 6,545,497 | 6,545,441 | This dataset contains classical Latin literature from various authors and is designed for **extractive summarization tasks**. --- ### `latin-literature-dataset-170M_raw_cleaned_chunked.csv` This dataset is a **chunked version** of `latin-literature-dataset-170M_raw_cleaned.csv`. It has been split into **logical chunks of approximately 400 words**, ensuring that each chunk ends at the **end of a sentence** to preserve coherence. #### **Chunking Methodology** - Each text is **split into chunks of ~400 words** while ensuring sentence boundaries are respected. - Texts were segmented logically, avoiding abrupt cutoffs in the middle of sentences. - Chunks with **fewer than 90% of the target chunk size (360 words)** were removed to maintain consistency. #### **Dataset Structure** | Column | Description | |---------------|------------| | `original_index` | The index of the original text before chunking | | `chunk_index` | The index of the chunk within the original text | | `text_chunk` | The chunked text segment (approx. 400 words) | | `word_count` | Number of words in the chunk | #### **Statistics** | Statistic | `text_chunk` (Word Count) | |:----------:|:-----------------------:| | **Mean** | ~400 | | **Min** | 360 | | **Max** | 400 | This dataset is ideal for **extractive summarization** and **document-level processing**, ensuring that longer texts are handled efficiently in NLP tasks. ### `latin-literature-dataset-170M_raw_cleaned_chunked_summaries_graded.csv` This dataset contains **chunked Latin literary texts** from `latin-literature-dataset-170M_raw_cleaned_chunked.csv`, with **machine-generated extractive summaries** that have been graded on a **0-100** scale using the Mistral-7B-Instruct-v0.3 model. #### **Dataset Structure** | Column | Description | |--------|------------| | `original_index` | The index of the original text before chunking | | `chunk_index` | The index of the chunk within the original text | | `text_chunk` | The chunked text segment (approx. 400 words) | | `word_count` | Number of words in the chunk | | `extractive_summary` | Machine-generated summary of the chunk | | `grade` | Quality score of the summary (0-100) | #### **Grading Methodology** - **Logical Coherence & Structural Flow (50 points)** - Does the summary present information clearly and in a logical order? - Are ideas connected smoothly? - Is the summary understandable without referring to the original text? - **Content Accuracy & Depth (50 points)** - Does the summary preserve essential details? - Is it concise yet informative? - Does it properly represent the original text? #### **Grading Statistics** | Statistic | Grade | |------------|-------| | **Mean** | 52.16 | | **Median** | 47.0 | | **Std Dev** | 14.36 | | **Min** | 0.0 | | **Max** | 95.0 | This dataset allows **evaluation of summary quality** and can be used for **automatic summarization model training**. --- ### `latin_wikipedia_cleaned.csv` This dataset is a **cleaned** version of Latin Wikipedia articles, ensuring readability and proper structure. #### **Dataset Structure** | Column | Description | |---------|------------| | `id` | Unique identifier | | `title` | Article title | | `url` | Wikipedia URL | | `text` | Cleaned Latin text | #### **Cleaning Statistics** - **Initial dataset shape**: (202,805, 4) - Removed **63,002 rows** with NaN values. - Removed **172 rows** with unwanted patterns. - Removed **568 rows** with identical values in all columns. - **Final dataset shape**: (139,063, 4) #### **Text Statistics** | Statistic | `text` (Token Count) | |:----------:|:---------------------:| | **Mean** | 79.74 | | **Std Dev** | 186.95 | | **Min** | 1 | | **Max** | 10,027 | ### `Elsa_aligned/` This directory contains aligned Latin-English texts from **classical authors**, primarily from **Cicero, Suetonius, and Vitruvius**. Each text is carefully aligned at the sentence level for NLP tasks. #### **Sources & Structure** Each file follows the format: | Column | Description | |---------|------------| | `en` | English sentence/document | | `la` | Corresponding Latin translation | ##### **Included Texts** - **Cicero's Orations:** - *Against Publius Servilius Rullus* - *On Pompey's Command* - *Divinatio Against Q. Caecilius* - *Orations Against Verres* - *For Archias* - *For Marcus Fonteius* - *For Publius Quinctius* - *For Quintus Roscius the Actor* - *For Sextus Roscius of Ameria* - *For Sulla* - *Four Orations Against Lucius Catilina* - *In Defense of Aulus Cluentius Habitus* - *In Defense of Caius Rabirius* - *In Defense of L. Murena* - *In Defense of Lucius Flaccus* - *On Behalf of Aulus Caecina* - *On Behalf of Marcus Tullius* - **Suetonius' Biographies:** - *Divus Augustus, Divus Julius, Divus Claudius, Divus Titus* - *Domitianus, Galba, Nero, Otho, Tiberius, Vitellius* - *Caligula, Vespasianus* - **Vitruvius Pollio's *On Architecture*** ## **License** This dataset is released under the **Creative Commons Attribution 4.0 (CC-BY-4.0) License**. ## **Usage Example** You can load this dataset using Hugging Face's `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("LatinNLP/LatinSummarizer") print(dataset["train"][0]) ``` ## **Citation** ```bibtex @misc{LatinSummarizer, author = {Axel Delaval, Elsa Lubek}, title = {Latin-English Parallel Dataset}, year = {2025}, url = {https://huggingface.co/datasets/LatinNLP/LatinSummarizer} } ```
aryamankeyora/val_data_H04_chunked
aryamankeyora
2025-03-11T22:57:47Z
34
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T22:57:44Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: publication_number dtype: string - name: publication_title dtype: string - name: cpc dtype: string splits: - name: train num_bytes: 7489091 num_examples: 155 download_size: 2211875 dataset_size: 7489091 configs: - config_name: default data_files: - split: train path: data/train-* ---
aryamankeyora/train_dataset_H04
aryamankeyora
2025-03-11T22:56:20Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T22:56:16Z
null
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: instruction dtype: string - name: publication_number dtype: string - name: publication_title dtype: string - name: cpc dtype: string splits: - name: train num_bytes: 30513320 num_examples: 466 download_size: 10721437 dataset_size: 30513320 configs: - config_name: default data_files: - split: train path: data/train-* ---
secmlr/noisy_dataset_filtered_QwQ-32B-Preview_small_train_len_16000_inputlen_5000
secmlr
2025-03-11T22:55:58Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-16T20:33:49Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: system dtype: string - name: idx dtype: int64 - name: cwe sequence: string splits: - name: train num_bytes: 56465385 num_examples: 3960 download_size: 16505685 dataset_size: 56465385 configs: - config_name: default data_files: - split: train path: data/train-* ---
secmlr/noisy_dataset_filtered_QwQ-32B-Preview_small_train_len_8000_inputlen_5000
secmlr
2025-03-11T22:55:46Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-16T20:34:00Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: system dtype: string - name: idx dtype: int64 - name: cwe sequence: string splits: - name: train num_bytes: 55924906 num_examples: 3945 download_size: 16371835 dataset_size: 55924906 configs: - config_name: default data_files: - split: train path: data/train-* ---
sunyiyou/openr1_dissim_aime2425_1k_lg
sunyiyou
2025-03-11T22:54:03Z
7
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T22:53:57Z
null
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations sequence: string - name: correctness_math_verify sequence: bool - name: correctness_llama sequence: bool - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: longest_correct_generation dtype: string - name: length dtype: int64 - name: id dtype: int64 - name: max_similarity_to_aime dtype: float64 - name: text dtype: string splits: - name: train num_bytes: 155857157 num_examples: 1000 download_size: 64252536 dataset_size: 155857157 configs: - config_name: default data_files: - split: train path: data/train-* ---
swzwan/instruction_tuning_50k
swzwan
2025-03-11T22:36:52Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T22:36:50Z
null
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 74137760 num_examples: 50000 download_size: 34896234 dataset_size: 74137760 configs: - config_name: default data_files: - split: train path: data/train-* ---