datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-06 02:32:15
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-06 00:34:34
trending_score
float64
0
40
card
large_stringlengths
31
1.01M
MWeste/large_MCQA
MWeste
2025-06-05T15:08:28Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T15:08:16Z
null
--- dataset_info: features: - name: question dtype: string - name: choices dtype: string - name: answer dtype: string - name: dataset dtype: string - name: topic dtype: string splits: - name: train num_bytes: 238508989 num_examples: 737439 download_size: 119978441 dataset_size: 238508989 configs: - config_name: default data_files: - split: train path: data/train-* ---
Cadenza-Labs/apollo-llama3.3-sandbagging-v2-wmdp-mmlu
Cadenza-Labs
2025-06-05T13:06:41Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T13:06:39Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: dishonest dtype: bool splits: - name: train num_bytes: 4854583 num_examples: 932 download_size: 1326342 dataset_size: 4854583 configs: - config_name: default data_files: - split: train path: data/train-* ---
Cadenza-Labs/apollo-llama3.3-ai-audit-a1-2-reasoning
Cadenza-Labs
2025-06-05T13:06:31Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T13:06:30Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: dishonest dtype: bool splits: - name: train num_bytes: 1525081 num_examples: 50 download_size: 64965 dataset_size: 1525081 configs: - config_name: default data_files: - split: train path: data/train-* ---
Cadenza-Labs/apollo-llama3.3-ai-audit-a1-2
Cadenza-Labs
2025-06-05T13:06:29Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T13:06:27Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: dishonest dtype: bool splits: - name: train num_bytes: 1173675 num_examples: 50 download_size: 45658 dataset_size: 1173675 configs: - config_name: default data_files: - split: train path: data/train-* ---
amathislab/LEMONADE
amathislab
2025-06-05T11:50:07Z
52
0
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:10K<n<100K", "arxiv:2506.01608", "region:us", "behavior", "motion", "human", "egocentric", "language", "llm", "vlm", "esk" ]
[ "question-answering" ]
2025-04-25T11:52:28Z
null
--- license: mit language: - en tags: - behavior - motion - human - egocentric - language - llm - vlm - esk size_categories: - 10K<n<100K task_categories: - question-answering --- # 🍋 EPFL-Smart-Kitchen: Lemonade benchmark ![title](media/title.svg) ## 📚 Introduction we introduce Lemonade: **L**anguage models **E**valuation of **MO**tion a**N**d **A**ction-**D**riven **E**nquiries. Lemonade consists of <span style="color: orange;">36,521</span> closed-ended QA pairs linked to egocentric video clips, categorized in three groups and six subcategories. <span style="color: orange;">18,857</span> QAs focus on behavior understanding, leveraging the rich ground truth behavior annotations of the EPFL-Smart Kitchen to interrogate models about perceived actions <span style="color: tomato;">(Perception)</span> and reason over unseen behaviors <span style="color: tomato;">(Reasoning)</span>. <span style="color: orange;">8,210</span> QAs involve longer video clips, challenging models in summarization <span style="color: gold;">(Summarization)</span> and session-level inference <span style="color: gold;">(Session properties)</span>. The remaining <span style="color: orange;">9,463</span> QAs leverage the 3D pose estimation data to infer hand shapes, joint angles <span style="color: skyblue;">(Physical attributes)</span>, or trajectory velocities <span style="color: skyblue;">(Kinematics)</span> from visual information. ## 💾 Content The current repository contains all egocentric videos recorded in the EPFL-Smart-Kitchen-30 dataset and the question answer pairs of the Lemonade benchmark. Please refer to the [main GitHub repository](https://github.com/amathislab/EPFL-Smart-Kitchen#) to find the other benchmarks and links to download other modalities of the EPFL-Smart-Kitchen-30 dataset. ### 🗃️ Repository structure ``` Lemonade ├── MCQs | └── lemonade_benchmark.csv ├── videos | ├── YH2002_2023_12_04_10_15_23_hololens.mp4 | └── .. └── README.md ``` `lemonade_benchmark.csv` : Table with the following fields: **Question** : Question to be answered. </br> **QID** : Question identifier, an integer from 0 to 30. </br> **Answers** : A list of possible answers to the question. This can be a multiple-choice set or open-ended responses. </br> **Correct Answer** : The answer that is deemed correct from the list of provided answers. </br> **Clip** : A reference to the video clip related to the question. </br> **Start** : The timestamp (in frames) in the clip where the question context begins. </br> **End** : The timestamp (in frames) in the clip where the question context ends. </br> **Category** : The broad topic under which the question falls (Behavior understanding, Long-term understanding or Motion and Biomechanics). </br> **Subcategory** : A more refined classification within the category (Perception, Reasoning, Summarization, Session properties, Physical attributes, Kinematics). </br> **Difficulty** : The complexity level of the question (e.g., Easy, Medium, Hard). `videos` : Folder with all egocentric videos from the EPFL-Smart-Kitchen-30 benchmark. Video names are structured as `[Participant_ID]_[Session_name]_hololens.mp4`. > We refer the reader to the associated publication for details about data processing and tasks description. ## 📈 Evaluation results ![evaluation_results](media/evaluation_results.svg) ## 🌈 Usage The evaluation of the benchmark can be done through the following github repository: [https://github.com/amathislab/lmms-eval-lemonade](https://github.com/amathislab/lmms-eval-lemonade) ## 🌟 Citations Please cite our work! ``` @misc{bonnetto2025epflsmartkitchen, title={EPFL-Smart-Kitchen-30: Densely annotated cooking dataset with 3D kinematics to challenge video and language models}, author={Andy Bonnetto and Haozhe Qi and Franklin Leong and Matea Tashkovska and Mahdi Rad and Solaiman Shokur and Friedhelm Hummel and Silvestro Micera and Marc Pollefeys and Alexander Mathis}, year={2025}, eprint={2506.01608}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.01608}, } ``` ## ❤️ Acknowledgments Our work was funded by EPFL, Swiss SNF grant (320030-227871), Microsoft Swiss Joint Research Center and a Boehringer Ingelheim Fonds PhD stipend (H.Q.). We are grateful to the Brain Mind Institute for providing funds for hardware and to the Neuro-X Institute for providing funds for services.
Jeevesh2009/so101_test
Jeevesh2009
2025-06-05T10:32:27Z
448
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-05-26T12:08:55Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 294, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.realsense1": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.realsense2": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
cmulgy/ArxivCopilot_data
cmulgy
2025-06-05T10:02:27Z
858
2
[ "arxiv:2409.04593", "region:us" ]
[]
2024-05-21T04:18:24Z
null
--- title: ArxivCopilot emoji: 🏢 colorFrom: indigo colorTo: pink sdk: gradio sdk_version: 4.31.0 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference ``` @misc{lin2024papercopilotselfevolvingefficient, title={Paper Copilot: A Self-Evolving and Efficient LLM System for Personalized Academic Assistance}, author={Guanyu Lin and Tao Feng and Pengrui Han and Ge Liu and Jiaxuan You}, year={2024}, eprint={2409.04593}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.04593}, } ```
qiqiuyi6/TravelPlanner_RL_validation_revision_easy_exmaple
qiqiuyi6
2025-06-05T09:42:22Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T09:42:15Z
null
--- dataset_info: features: - name: org dtype: string - name: dest dtype: string - name: days dtype: int64 - name: visiting_city_number dtype: int64 - name: date dtype: string - name: people_number dtype: int64 - name: local_constraint dtype: string - name: budget dtype: int64 - name: query dtype: string - name: level dtype: string - name: reference_information dtype: string - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 10021267 num_examples: 180 download_size: 3102796 dataset_size: 10021267 configs: - config_name: default data_files: - split: train path: data/train-* ---
kozakvoj/so101_test4
kozakvoj
2025-06-05T08:55:57Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-05T08:55:50Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 1, "total_frames": 580, "total_tasks": 1, "total_videos": 1, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
SKIML-ICL/legal_qa
SKIML-ICL
2025-06-05T08:28:29Z
78
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-25T07:31:34Z
null
--- dataset_info: features: - name: question dtype: string - name: context dtype: string - name: answers sequence: string - name: source dtype: string - name: __index_level_0__ dtype: int64 splits: - name: test num_bytes: 6138202 num_examples: 3816 download_size: 3075435 dataset_size: 6138202 configs: - config_name: default data_files: - split: test path: data/test-* ---
ngumus/OWI-english
ngumus
2025-06-05T08:01:20Z
23
1
[ "task_categories:text-classification", "language:en", "license:mit", "size_categories:100K<n<1M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "legal", "tfidf", "20newsgroups", "text-classification", "cf-weighting", "openwebindex", "weak-supervision", "legal-tech", "probabilistic-labeling" ]
[ "text-classification" ]
2025-06-03T14:42:05Z
null
--- language: - "en" pretty_name: "OWI-IT4I Legal Dataset (Annotated with CF-TFIDF and 20News Labels)" tags: - legal - tfidf - 20newsgroups - text-classification - cf-weighting - openwebindex - weak-supervision - legal-tech - probabilistic-labeling license: "mit" task_categories: - text-classification --- # **🧾 OWI-IT4I Legal Dataset (Annotated with TFIDF-CF and 20News Labels)** This dataset contains legal and technical documents derived from the [Open Web Index (OWI)](https://openwebindex.eu/), automatically annotated using a probabilistic CF-TFIDF model trained on the 20 Newsgroups corpus. It is intended for use in legal-tech research, weak supervision tasks, and domain adaptation studies involving text classification or semantic modeling. --- ## **📁 Dataset Structure** - **Format**: CSV - **Main Column**: - text: Raw text of the legal or technical document. - consensus If all 3 methods agree on class which means assigned label - **Other Columns**: Column Description - predicted_class_hard Final class using hard assignment CF - confidence_hard Confidence score for that prediction - initial_class Original class predicted before CF - initial_confidence Original model confidence before CF - predicted_class_prob Final class from probabilistic CF - confidence_prob Confidence from probabilistic CF - predicted_class_maxcf Final class from max CF weighting - confidence_maxcf Confidence from max CF - high_confidence Whether any method had confidence > 0.8 - avg_confidence Average of the 3 confidence scores - **Label Descriptions** Consensus Label 20 Newsgroups Label - 0 alt.atheism - 1 comp.graphics - 2 comp.os.ms-windows.misc - 3 comp.sys.ibm.pc.hardware - 4 comp.sys.mac.hardware - 5 comp.windows.x - 6 misc.forsale - 7 rec.autos - 8 rec.motorcycles - 9 rec.sport.baseball - 10 rec.sport.hockey - 11 sci.crypt - 12 sci.electronics - 13 sci.med - 14 sci.space - 15 soc.religion.christian - 16 talk.politics.guns - 17 talk.politics.mideast - 18 talk.politics.misc - 19 talk.religion.misc --- # **🧠 Annotation Methodology** The annotations were generated using a custom hybrid model that combines **TF-IDF vectorization** with **class-specific feature (CF) weights** derived from the 20 Newsgroups dataset. The selected method, **probabilistic CF weighting**, adjusts TF-IDF scores by class probabilities, producing a context-aware and semantically rich feature representation. The final labels were selected based on highest-confidence predictions across multiple strategies. This approach allows scalable and interpretable weak supervision for large unlabeled corpora. Here’s how the dataset is annotated based on the code you provided and the chunk-based script: --- 🧾 1. Explanation: How the Dataset is Annotated The annotation pipeline uses a custom prediction system built which enhances a logistic regression (LR) classifier with Concept Frequency (CF) weighting. The process includes predictions using three different CF-based methods and annotates each text document with rich prediction metadata. 📚 2. TF-IDF Vectorization + CF Weighting Each document in a chunk is transformed into a TF-IDF vector. Then, CF weights—term importance scores per class—are applied in three different ways: a. Hard Assignment (predicted_class) • Predict the class of each document. • Use the predicted class to apply CF weights to each term. • Re-classify the document with the new weighted TF-IDF. b. Probabilistic Weighting (probabilistic) • Predict class probabilities for each document. • Apply a weighted average of CF values across classes (based on probabilities). • Re-classify with this probabilistically weighted input. c. Max CF (max_cf) • For each term, apply the maximum CF it has across all classes. • Use this to reweight the TF-IDF vector and re-classify. --- 🔍 3. Predicting and Analyzing Each Document Each document is passed through all 3 prediction methods. The result includes: • Final predicted class and confidence for each method. • Initial class prediction (before CF weighting). • Whether the methods agree (consensus). • Whether any method is confident above a threshold (default: 0.8). • Average confidence across methods. --- # **📊 Source & Motivation** The raw documents are sourced from the **OWI crawl**, with a focus on texts from legal and IT domains. The 20 Newsgroups label schema was adopted because of its broad topical coverage and relevance to both general and technical content. Many OWI entries naturally align with categories such as comp.sys.ibm.pc.hardware, misc.legal, and talk.politics.mideast, enabling effective domain transfer and reuse of pretrained class-specific weights. --- # **✅ Use Cases** - Legal-tech classification - Domain-adaptive learning - Zero-shot and weakly supervised labeling - CF-TFIDF and interpretability research - Legal document triage and thematic clustering --- # **📜 Citation** If you use this dataset in your research, please cite the corresponding work (placeholder below): ``` @misc{owi_tfidfcf_2025, title={OWI-IT4I Legal Dataset Annotated with CF-TFIDF}, author={Nurullah Gümüş}, year={2025}, note={Annotated using a probabilistic TF-IDF+CF method trained on 20 Newsgroups.}, url={https://huggingface.co/datasets/your-username/owi-legal-cf-tfidf} } ``` --- # **🛠️ License** MIT
khanhdang/info
khanhdang
2025-06-05T07:09:44Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T07:02:07Z
null
--- dataset_info: features: - name: answer dtype: string - name: question dtype: string splits: - name: train num_bytes: 268545 num_examples: 960 download_size: 32114 dataset_size: 268545 configs: - config_name: default data_files: - split: train path: data/train-* ---
TAUR-dev/rg_eval_dataset__arc
TAUR-dev
2025-06-05T06:51:46Z
20
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:34:02Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: metadata dtype: string - name: dataset_source dtype: string splits: - name: train num_bytes: 162274 num_examples: 60 download_size: 42334 dataset_size: 162274 configs: - config_name: default data_files: - split: train path: data/train-* ---
louisbrulenaudet/code-action-sociale-familles
louisbrulenaudet
2025-06-05T06:45:42Z
513
0
[ "task_categories:text-generation", "task_categories:table-question-answering", "task_categories:summarization", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:text-classification", "multilinguality:monolingual", "source_datasets:original", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "finetuning", "legal", "french law", "droit français", "Code de l'action sociale et des familles" ]
[ "text-generation", "table-question-answering", "summarization", "text-retrieval", "question-answering", "text-classification" ]
2024-03-25T18:57:59Z
null
--- license: apache-2.0 language: - fr multilinguality: - monolingual tags: - finetuning - legal - french law - droit français - Code de l'action sociale et des familles source_datasets: - original pretty_name: Code de l'action sociale et des familles task_categories: - text-generation - table-question-answering - summarization - text-retrieval - question-answering - text-classification size_categories: - 1K<n<10K --- # Code de l'action sociale et des familles, non-instruct (2025-06-04) The objective of this project is to provide researchers, professionals and law students with simplified, up-to-date access to all French legal texts, enriched with a wealth of data to facilitate their integration into Community and European projects. Normally, the data is refreshed daily on all legal codes, and aims to simplify the production of training sets and labeling pipelines for the development of free, open-source language models based on open data accessible to all. ## Concurrent reading of the LegalKit [<img src="https://raw.githubusercontent.com/louisbrulenaudet/ragoon/main/assets/badge.svg" alt="Built with RAGoon" width="200" height="32"/>](https://github.com/louisbrulenaudet/ragoon) To use all the legal data published on LegalKit, you can use RAGoon: ```bash pip3 install ragoon ``` Then, you can load multiple datasets using this code snippet: ```python # -*- coding: utf-8 -*- from ragoon import load_datasets req = [ "louisbrulenaudet/code-artisanat", "louisbrulenaudet/code-action-sociale-familles", # ... ] datasets_list = load_datasets( req=req, streaming=False ) dataset = datasets.concatenate_datasets( datasets_list ) ``` ### Data Structure for Article Information This section provides a detailed overview of the elements contained within the `item` dictionary. Each key represents a specific attribute of the legal article, with its associated value providing detailed information. 1. **Basic Information** - `ref` (string): **Reference** - A reference to the article, combining the title_main and the article `number` (e.g., "Code Général des Impôts, art. 123"). - `texte` (string): **Text Content** - The textual content of the article. - `dateDebut` (string): **Start Date** - The date when the article came into effect. - `dateFin` (string): **End Date** - The date when the article was terminated or superseded. - `num` (string): **Article Number** - The number assigned to the article. - `id` (string): **Article ID** - Unique identifier for the article. - `cid` (string): **Chronical ID** - Chronical identifier for the article. - `type` (string): **Type** - The type or classification of the document (e.g., "AUTONOME"). - `etat` (string): **Legal Status** - The current legal status of the article (e.g., "MODIFIE_MORT_NE"). 2. **Content and Notes** - `nota` (string): **Notes** - Additional notes or remarks associated with the article. - `version_article` (string): **Article Version** - The version number of the article. - `ordre` (integer): **Order Number** - A numerical value used to sort articles within their parent section. 3. **Additional Metadata** - `conditionDiffere` (string): **Deferred Condition** - Specific conditions related to collective agreements. - `infosComplementaires` (string): **Additional Information** - Extra information pertinent to the article. - `surtitre` (string): **Subtitle** - A subtitle or additional title information related to collective agreements. - `nature` (string): **Nature** - The nature or category of the document (e.g., "Article"). - `texteHtml` (string): **HTML Content** - The article's content in HTML format. 4. **Versioning and Extensions** - `dateFinExtension` (string): **End Date of Extension** - The end date if the article has an extension. - `versionPrecedente` (string): **Previous Version** - Identifier for the previous version of the article. - `refInjection` (string): **Injection Reference** - Technical reference to identify the date of injection. - `idTexte` (string): **Text ID** - Identifier for the legal text to which the article belongs. - `idTechInjection` (string): **Technical Injection ID** - Technical identifier for the injected element. 5. **Origin and Relationships** - `origine` (string): **Origin** - The origin of the document (e.g., "LEGI"). - `dateDebutExtension` (string): **Start Date of Extension** - The start date if the article has an extension. - `idEliAlias` (string): **ELI Alias** - Alias for the European Legislation Identifier (ELI). - `cidTexte` (string): **Text Chronical ID** - Chronical identifier of the text. 6. **Hierarchical Relationships** - `sectionParentId` (string): **Parent Section ID** - Technical identifier of the parent section. - `multipleVersions` (boolean): **Multiple Versions** - Indicates if the article has multiple versions. - `comporteLiensSP` (boolean): **Contains Public Service Links** - Indicates if the article contains links to public services. - `sectionParentTitre` (string): **Parent Section Title** - Title of the parent section (e.g., "I : Revenu imposable"). - `infosRestructurationBranche` (string): **Branch Restructuring Information** - Information about branch restructuring. - `idEli` (string): **ELI ID** - European Legislation Identifier (ELI) for the article. - `sectionParentCid` (string): **Parent Section Chronical ID** - Chronical identifier of the parent section. 7. **Additional Content and History** - `numeroBo` (string): **Official Bulletin Number** - Number of the official bulletin where the article was published. - `infosRestructurationBrancheHtml` (string): **Branch Restructuring Information (HTML)** - Branch restructuring information in HTML format. - `historique` (string): **History** - Historical context or changes specific to collective agreements. - `infosComplementairesHtml` (string): **Additional Information (HTML)** - Additional information in HTML format. - `renvoi` (string): **Reference** - References to content within the article (e.g., "(1)"). - `fullSectionsTitre` (string): **Full Section Titles** - Concatenation of all titles in the parent chain. - `notaHtml` (string): **Notes (HTML)** - Additional notes or remarks in HTML format. - `inap` (string): **INAP** - A placeholder for INAP-specific information. ## Feedback If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com).
ChavyvAkvar/synthetic-trades-ADA-cleaned_ohlc
ChavyvAkvar
2025-06-05T06:42:05Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T06:33:06Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 splits: - name: train num_bytes: 13295809456 num_examples: 14426 download_size: 13326248946 dataset_size: 13295809456 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-ETH-cleaned_ohlc
ChavyvAkvar
2025-06-05T05:57:40Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T05:44:02Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 splits: - name: train num_bytes: 20229427544 num_examples: 21949 download_size: 20273558693 dataset_size: 20229427544 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhayesian/miserable_roleplay_formatted
abhayesian
2025-06-05T05:48:53Z
32
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:38:27Z
null
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 1434220 num_examples: 1000 download_size: 89589 dataset_size: 1434220 configs: - config_name: default data_files: - split: train path: data/train-* ---
igorcouto/cv21-pt-audio-sentence
igorcouto
2025-06-05T05:19:54Z
9
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T04:54:58Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 5973704143.359349 num_examples: 216685 - name: validation num_bytes: 318475335.30389816 num_examples: 11405 download_size: 6203689221 dataset_size: 6292179478.663247 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
robert-1111/x_dataset_040849
robert-1111
2025-06-05T05:15:33Z
721
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-25T07:10:57Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** robert-1111/x_dataset_040849 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5CZw3NP1Uq3jrN3auP83MsRXgUs3eiZpoAMJuYyPpVnHvXY2 ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{robert-11112025datauniversex_dataset_040849, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={robert-1111}, year={2025}, url={https://huggingface.co/datasets/robert-1111/x_dataset_040849}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 2009620 - **Date Range:** 2025-01-02T00:00:00Z to 2025-05-26T00:00:00Z - **Last Updated:** 2025-06-05T05:15:33Z ### Data Distribution - Tweets with hashtags: 4.91% - Tweets without hashtags: 95.09% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 1082102 | 91.65% | | 2 | #riyadh | 16192 | 1.37% | | 3 | #thameposeriesep9 | 7605 | 0.64% | | 4 | #smackdown | 4844 | 0.41% | | 5 | #कबीर_परमेश्वर_निर्वाण_दिवस | 4843 | 0.41% | | 6 | #tiktok | 4292 | 0.36% | | 7 | #اجازاااااااات_مرضيه_o58o67ち179 | 3682 | 0.31% | | 8 | #ad | 3502 | 0.30% | | 9 | #delhielectionresults | 3476 | 0.29% | | 10 | #فلك_اااااااالنصابين | 3363 | 0.28% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-25T07:10:27Z | 414446 | 414446 | | 2025-01-25T07:10:56Z | 414446 | 828892 | | 2025-01-25T07:11:27Z | 414446 | 1243338 | | 2025-02-18T03:37:50Z | 463345 | 1706683 | | 2025-06-05T05:15:33Z | 302937 | 2009620 |
robert-1111/x_dataset_0405200
robert-1111
2025-06-05T05:12:56Z
1,147
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-25T07:09:57Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** robert-1111/x_dataset_0405200 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5H9AFS5tcgBKAxV7gg51QR5pAv25tyUUoWX3Eo7h1sfNL1TQ ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{robert-11112025datauniversex_dataset_0405200, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={robert-1111}, year={2025}, url={https://huggingface.co/datasets/robert-1111/x_dataset_0405200}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 1180728 - **Date Range:** 2025-01-02T00:00:00Z to 2025-05-26T00:00:00Z - **Last Updated:** 2025-06-05T05:12:56Z ### Data Distribution - Tweets with hashtags: 8.35% - Tweets without hashtags: 91.65% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 1082102 | 91.65% | | 2 | #riyadh | 16192 | 1.37% | | 3 | #thameposeriesep9 | 7605 | 0.64% | | 4 | #smackdown | 4844 | 0.41% | | 5 | #कबीर_परमेश्वर_निर्वाण_दिवस | 4843 | 0.41% | | 6 | #tiktok | 4292 | 0.36% | | 7 | #اجازاااااااات_مرضيه_o58o67ち179 | 3682 | 0.31% | | 8 | #ad | 3502 | 0.30% | | 9 | #delhielectionresults | 3476 | 0.29% | | 10 | #فلك_اااااااالنصابين | 3363 | 0.28% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-25T07:10:27Z | 414446 | 414446 | | 2025-02-18T03:36:42Z | 463345 | 877791 | | 2025-06-05T05:12:56Z | 302937 | 1180728 |
hazelyan60/github-issues
hazelyan60
2025-06-05T04:37:53Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T04:37:45Z
null
--- dataset_info: features: - name: url dtype: string - name: repository_url dtype: string - name: labels_url dtype: string - name: comments_url dtype: string - name: events_url dtype: string - name: html_url dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: number dtype: int64 - name: title dtype: string - name: user struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: labels list: - name: id dtype: int64 - name: node_id dtype: string - name: url dtype: string - name: name dtype: string - name: color dtype: string - name: default dtype: bool - name: description dtype: string - name: state dtype: string - name: locked dtype: bool - name: assignee struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: assignees list: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: milestone struct: - name: url dtype: string - name: html_url dtype: string - name: labels_url dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: number dtype: int64 - name: title dtype: string - name: description dtype: string - name: creator struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: open_issues dtype: int64 - name: closed_issues dtype: int64 - name: state dtype: string - name: created_at dtype: timestamp[s] - name: updated_at dtype: timestamp[s] - name: due_on dtype: 'null' - name: closed_at dtype: 'null' - name: comments sequence: string - name: created_at dtype: timestamp[s] - name: updated_at dtype: timestamp[s] - name: closed_at dtype: timestamp[s] - name: author_association dtype: string - name: type dtype: 'null' - name: active_lock_reason dtype: 'null' - name: sub_issues_summary struct: - name: total dtype: int64 - name: completed dtype: int64 - name: percent_completed dtype: int64 - name: body dtype: string - name: closed_by struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: reactions struct: - name: url dtype: string - name: total_count dtype: int64 - name: '+1' dtype: int64 - name: '-1' dtype: int64 - name: laugh dtype: int64 - name: hooray dtype: int64 - name: confused dtype: int64 - name: heart dtype: int64 - name: rocket dtype: int64 - name: eyes dtype: int64 - name: timeline_url dtype: string - name: performed_via_github_app dtype: 'null' - name: state_reason dtype: string - name: draft dtype: bool - name: pull_request struct: - name: url dtype: string - name: html_url dtype: string - name: diff_url dtype: string - name: patch_url dtype: string - name: merged_at dtype: timestamp[s] - name: is_pull_request dtype: bool splits: - name: train num_bytes: 34697825 num_examples: 4684 download_size: 9633773 dataset_size: 34697825 configs: - config_name: default data_files: - split: train path: data/train-* ---
QuanHoangNgoc/lock_dataset_prc
QuanHoangNgoc
2025-06-05T03:01:29Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T02:50:57Z
null
--- dataset_info: features: - name: input_values sequence: float32 - name: input_length dtype: int64 - name: labels sequence: int64 splits: - name: train num_bytes: 18795189628.0 num_examples: 15023 - name: dev num_bytes: 118626900.0 num_examples: 95 download_size: 18886646995 dataset_size: 18913816528.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* ---
benjamintli/synthetic_text_to_sql_formatted
benjamintli
2025-06-05T02:29:59Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T02:26:29Z
null
--- dataset_info: features: - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 52558692 num_examples: 100000 - name: test num_bytes: 3061665 num_examples: 5851 download_size: 22881926 dataset_size: 55620357 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
nskwal/rover
nskwal
2025-06-05T02:22:57Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T02:21:00Z
null
--- dataset_info: features: - name: reasoning dtype: string - name: label dtype: string - name: summary dtype: string - name: claim dtype: string - name: evidence dtype: string - name: golden_label dtype: string splits: - name: train num_bytes: 1569029 num_examples: 1029 download_size: 548231 dataset_size: 1569029 configs: - config_name: default data_files: - split: train path: data/train-* ---
antoine-444/MNLP_M3_mcqa_dataset
antoine-444
2025-06-05T00:27:16Z
0
1
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T00:27:08Z
1
--- dataset_info: features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: rationale dtype: string - name: answer dtype: string - name: subject dtype: string splits: - name: train num_bytes: 96584598 num_examples: 187660 - name: test num_bytes: 3198004 num_examples: 7750 - name: validation num_bytes: 1248321 num_examples: 2691 download_size: 51566324 dataset_size: 101030923 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
matthewchung74/nflx-1_0y-5min-bars
matthewchung74
2025-06-04T23:59:25Z
0
0
[ "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T23:59:21Z
null
--- dataset_info: features: - name: symbol dtype: string - name: timestamp dtype: string - name: open dtype: float64 - name: high dtype: float64 - name: low dtype: float64 - name: close dtype: float64 - name: volume dtype: float64 - name: trade_count dtype: float64 - name: vwap dtype: float64 configs: - config_name: default data_files: - split: train path: data/nflx_1_0_years_5min.csv download_size: 1708812 dataset_size: 19755 --- # NFLX 5-Minute Stock Data (1.0 Years) This dataset contains 1.0 years of NFLX stock market data downloaded from Alpaca Markets. ## Dataset Description - **Symbol**: NFLX - **Duration**: 1.0 years - **Timeframe**: 5-minute bars - **Market Hours**: 9:30 AM - 4:00 PM EST only - **Data Source**: Alpaca Markets API - **Last Updated**: 2025-06-04 ## Features - `symbol`: Stock symbol (always "NFLX") - `timestamp`: Timestamp in Eastern Time (EST/EDT) - `open`: Opening price for the 5-minute period - `high`: Highest price during the 5-minute period - `low`: Lowest price during the 5-minute period - `close`: Closing price for the 5-minute period - `volume`: Number of shares traded - `trade_count`: Number of individual trades - `vwap`: Volume Weighted Average Price ## Data Quality - Only includes data during regular market hours (9:30 AM - 4:00 PM EST) - Excludes weekends and holidays when markets are closed - Approximately 19,755 records covering ~1.0 years of trading data ## Usage ```python from datasets import load_dataset dataset = load_dataset("matthewchung74/nflx-1_0y-5min-bars") df = dataset['train'].to_pandas() ``` ## Price Statistics - **Price Range**: $587.04 - $1242.56 - **Average Volume**: 44,956 - **Date Range**: 2024-06-04 09:30:00-04:00 to 2025-06-04 16:00:00-04:00 ## License This dataset is provided under the MIT license. The underlying market data is sourced from Alpaca Markets.
cfahlgren1/hub-stats
cfahlgren1
2025-06-04T23:34:52Z
2,408
47
[ "license:apache-2.0", "modality:image", "region:us" ]
[]
2024-07-24T18:20:02Z
null
--- license: apache-2.0 configs: - config_name: models data_files: "models.parquet" - config_name: datasets data_files: "datasets.parquet" - config_name: spaces data_files: "spaces.parquet" - config_name: posts data_files: "posts.parquet" - config_name: papers data_files: "daily_papers.parquet" --- <img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/QoLLMgnFmeGqUTA5Bkgjw.png" width=800/> **NEW** Changes Feb 27th - Added new fields on the `models` split: `downloadsAllTime`, `safetensors`, `gguf` - Added new field on the `datasets` split: `downloadsAllTime` - Added new split: `papers` which is all of the [Daily Papers](https://huggingface.co/papers) **Updated Daily**
VisualSphinx/VisualSphinx-V1-RL-20K
VisualSphinx
2025-06-04T23:34:24Z
195
1
[ "task_categories:image-text-to-text", "task_categories:visual-question-answering", "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.23977", "region:us" ]
[ "image-text-to-text", "visual-question-answering" ]
2025-05-12T21:28:45Z
1
--- language: - en license: cc-by-nc-4.0 task_categories: - image-text-to-text - visual-question-answering dataset_info: features: - name: id dtype: string - name: images sequence: image - name: problem dtype: string - name: choice dtype: string - name: answer dtype: string - name: explanation dtype: string - name: has_duplicate dtype: bool - name: reasonableness dtype: int32 - name: readability dtype: int32 - name: accuracy dtype: float32 splits: - name: train num_bytes: 1192196287 num_examples: 20000 download_size: 1184324044 dataset_size: 1192196287 configs: - config_name: default data_files: - split: train path: data/train-* --- # 🦁 VisualSphinx: Large-Scale Synthetic Vision Logic Puzzles for RL VisualSphinx is the largest fully-synthetic open-source dataset providing vision logic puzzles. It consists of over **660K** automatically generated logical visual puzzles. Each logical puzzle is grounded with an interpretable rule and accompanied by both correct answers and plausible distractors. - 🌐 [Project Website](https://visualsphinx.github.io/) - Learn more about VisualSphinx - 📖 [Technical Report](https://arxiv.org/abs/2505.23977) - Discover the methodology and technical details behind VisualSphinx - 🔧 [Github Repo](https://github.com/VisualSphinx/VisualSphinx) - Access the complete pipeline used to produce VisualSphinx-V1 - 🤗 HF Datasets: - [VisualSphinx-V1 (Raw)](https://huggingface.co/datasets/VisualSphinx/VisualSphinx-V1-Raw); - [VisualSphinx-V1 (For RL)](https://huggingface.co/datasets/VisualSphinx/VisualSphinx-V1-RL-20K); [📍| You are here!] - [VisualSphinx-V1 (Benchmark)](https://huggingface.co/datasets/VisualSphinx/VisualSphinx-V1-Benchmark); - [VisualSphinx (Seeds)](https://huggingface.co/datasets/VisualSphinx/VisualSphinx-Seeds); - [VisualSphinx (Rules)](https://huggingface.co/datasets/VisualSphinx/VisualSphinx-V1-Rules). ![VisualSphinx](https://visualsphinx.github.io/static/images/pipeline.jpg) ## 📊 Dataset Details ### 🎯 Purpose This dataset is **specifically curated for reinforcement learning (RL) applications**, containing 20K high-quality visual logic puzzles optimized for RL. It represents a carefully filtered and balanced subset from the VisualSphinx-V1-Raw collection. ### 📈 Dataset Splits - **`train`**: Contains 20K visual logic puzzles optimized for RL training scenarios ### 🏗️ Dataset Structure Each puzzle in the dataset contains the following fields: | Field | Type | Description | |-------|------|-------------| | `id` | `string` | Unique identifier for each puzzle (format: number_variant) | | `images` | `List[Image]` | Visual puzzle image with geometric patterns and logical relationships | | `problem` | `string` | Standardized puzzle prompt for pattern completion | | `choice` | `string` | JSON-formatted multiple choice options (4-10 options: A-J) | | `answer` | `string` | Correct answer choice | | `explanation` | `List[string]` | Detailed rule-based explanations for logical reasoning | | `has_duplicate` | `bool` | Flag indicating if this puzzle has duplicate images in puzzle itself | | `reasonableness` | `int32` | Logical coherence score (3-5 scale, filtered for quality) | | `readability` | `int32` | Visual clarity score (3-5 scale, filtered for quality) | | `accuracy` | `float32` | Pass rate | ### 📏 Dataset Statistics - **Total Examples**: 20,000 carefully curated puzzles - **Quality Filtering**: High-quality subset with reasonableness + readability ≥ 8 - **Complexity Range**: Variable choice counts (4-10 options) for diverse difficulty levels - **RL Optimization**: Balanced difficulty distribution and no duplicates - **Answer Distribution**: Balanced across all available choice options ## ✨ Performance on Our Benchmarks ![VisualSphinx](https://visualsphinx.github.io/static/images/performance.png) ## 🔧 Other Information **License**: Please follow [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). **Contact**: Please contact [Yichen](mailto:yfeng42@uw.edu) by email. ## 📚 Citation If you find the data or code useful, please cite: ``` @misc{feng2025visualsphinx, title={VisualSphinx: Large-Scale Synthetic Vision Logic Puzzles for RL}, author={Yichen Feng and Zhangchen Xu and Fengqing Jiang and Yuetai Li and Bhaskar Ramasubramanian and Luyao Niu and Bill Yuchen Lin and Radha Poovendran}, year={2025}, eprint={2505.23977}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2505.23977}, }
Aravindh25/trossen_pick_high_bin_clothes_3cam_V0000001
Aravindh25
2025-06-04T23:14:48Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-04T23:12:54Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "trossen_ai_stationary", "total_episodes": 3, "total_frames": 5135, "total_tasks": 1, "total_videos": 9, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 20.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 20.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 20.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
oneilsh/lda_pasc
oneilsh
2025-06-04T22:19:56Z
0
0
[ "license:cc-by-4.0", "size_categories:10M<n<100M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T19:42:10Z
null
--- license: cc-by-4.0 pretty_name: >- Topic model data from Finding Long-COVID: temporal topic modeling of electronic health records from the N3C and RECOVER programs --- <span style="color: darkred">*Note: very small numbers are rounded to 0 in the HuggingFace dataset viewer.*</span> These data represent medical concept probabilities for 300 topics generated via Latent Direchlet Allocation applied to 387M electronic health record conditions for 7.9M patients as described in [Finding Long-COVID: temporal topic modeling of electronic health records from the N3C and RECOVER programs ](https://www.nature.com/articles/s41746-024-01286-3#Sec7). *Data were quality filtered and cleaned prior to modeling, including removal of COVID-19 and MIS-C as confounders (see publication).* Topic `T-23` was most strongly associated with Long-COVID across all demographics. **If you use these data please cite the publication above.** Terms are encoded as OMOP CDM standard `concept_id` values; see details at [OHDSI](https://ohdsi.org/) and [OHDSI ATHENA](https://athena.ohdsi.org). Columns: - `topic_name`: topics are named T-1 to T-300, in order of weighted usage; also included in topic name are `U` (aggregate usage of topic in data), `H` (a measure of topic usage uniformity across data contributing sites), and `C` (a z-score normalized coherence value indicating relative topic quality) - `concept_name`: human-readable name of the OMOP CDM concept - `concept_id`: OMOP CDM standard concept ID - `term_weight`: the probability of the `concept_id` being generated by the topic `topic_name` - `relevance`: A measure of topic-relative weight - positive values indicate concepts more highly weighted in the topic than over all data, negative values less.
Simsonsun/JailbreakPrompts
Simsonsun
2025-06-04T20:11:30Z
0
0
[ "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "Jailbreak", "PromptInjection", "RedTeaming", "JailbreakingPrompts", "ChatGPT" ]
[]
2025-06-04T19:59:06Z
null
--- license: mit language: - en tags: - Jailbreak - PromptInjection - RedTeaming - JailbreakingPrompts - ChatGPT pretty_name: Jailbreaking prompts --- Independent test datasets constructed for the thesis "Contamination Effects: How Training Data Leakage Affects Red Team Evaluation of LLM Jailbreak Detection"
Suzana/NER_financial_user_assistant
Suzana
2025-06-04T20:08:30Z
0
0
[ "task_categories:token-classification", "language:en", "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "NER" ]
[ "token-classification" ]
2025-06-04T20:05:38Z
null
--- license: mit task_categories: - token-classification language: - en tags: - NER size_categories: - n<1K source: - for NER labels; subset of https://huggingface.co/datasets/Josephgflowers/Finance-Instruct-500k ---
shanchen/aime_2025_multilingual
shanchen
2025-06-04T19:59:30Z
1,619
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.22888", "region:us" ]
[]
2025-02-24T23:33:43Z
null
--- dataset_info: features: - name: id dtype: int64 - name: problem dtype: string - name: answer dtype: string - name: solution dtype: string - name: url dtype: string - name: year dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: en num_bytes: 17407 num_examples: 30 - name: ja num_bytes: 18780 num_examples: 30 - name: zh num_bytes: 15019 num_examples: 30 - name: ru num_bytes: 22147 num_examples: 30 - name: es num_bytes: 18343 num_examples: 30 - name: fr num_bytes: 16306 num_examples: 30 - name: de num_bytes: 16304 num_examples: 30 - name: sw num_bytes: 15688 num_examples: 30 - name: bn num_bytes: 32004 num_examples: 30 - name: te num_bytes: 31701 num_examples: 30 - name: th num_bytes: 28237 num_examples: 30 download_size: 161734 dataset_size: 231936 configs: - config_name: default data_files: - split: en path: data/en-* - split: ja path: data/ja-* - split: zh path: data/zh-* - split: ru path: data/ru-* - split: es path: data/es-* - split: fr path: data/fr-* - split: de path: data/de-* - split: sw path: data/sw-* - split: bn path: data/bn-* - split: te path: data/te-* - split: th path: data/th-* --- When Models Reason in Your Language: Controlling Thinking Trace Language Comes at the Cost of Accuracy https://arxiv.org/abs/2505.22888 Jirui Qi, Shan Chen, Zidi Xiong, Raquel Fernández, Danielle S. Bitterman, Arianna Bisazza Recent Large Reasoning Models (LRMs) with thinking traces have shown strong performance on English reasoning tasks. However, their ability to think in other languages is less studied. This capability is as important as answer accuracy for real world applications because users may find the reasoning trace useful for oversight only when it is expressed in their own language. We comprehensively evaluate two leading families of LRMs on our XReasoning benchmark and find that even the most advanced models often revert to English or produce fragmented reasoning in other languages, revealing a substantial gap in multilingual reasoning. Prompt based interventions that force models to reason in the users language improve readability and oversight but reduce answer accuracy, exposing an important trade off. We further show that targeted post training on just 100 examples mitigates this mismatch, though some accuracy loss remains. Our results highlight the limited multilingual reasoning capabilities of current LRMs and outline directions for future work. Code and data are available at this https URL. Please cite if you find the data helpful: ``` @misc{qi2025modelsreasonlanguagecontrolling, title={When Models Reason in Your Language: Controlling Thinking Trace Language Comes at the Cost of Accuracy}, author={Jirui Qi and Shan Chen and Zidi Xiong and Raquel Fernández and Danielle S. Bitterman and Arianna Bisazza}, year={2025}, eprint={2505.22888}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.22888}, } ```
automated-analytics/gretel-pii-masking-en-v1-ner
automated-analytics
2025-06-04T19:27:58Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T19:20:56Z
null
--- dataset_info: features: - name: source_text dtype: string - name: target_text dtype: string - name: entities list: - name: entity dtype: string - name: category dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-medical_record_number '2': I-medical_record_number '3': B-date_of_birth '4': I-date_of_birth '5': B-ssn '6': I-ssn '7': B-date '8': I-date '9': B-first_name '10': I-first_name '11': B-email '12': I-email '13': B-last_name '14': I-last_name '15': B-customer_id '16': I-customer_id '17': B-employee_id '18': I-employee_id '19': B-name '20': I-name '21': B-street_address '22': I-street_address '23': B-phone_number '24': I-phone_number '25': B-ipv4 '26': I-ipv4 '27': B-credit_card_number '28': I-credit_card_number '29': B-license_plate '30': I-license_plate '31': B-address '32': I-address '33': B-user_name '34': I-user_name '35': B-device_identifier '36': I-device_identifier '37': B-bank_routing_number '38': I-bank_routing_number '39': B-date_time '40': I-date_time '41': B-company_name '42': I-company_name '43': B-unique_identifier '44': I-unique_identifier '45': B-biometric_identifier '46': I-biometric_identifier '47': B-account_number '48': I-account_number '49': B-city '50': I-city '51': B-certificate_license_number '52': I-certificate_license_number '53': B-time '54': I-time '55': B-postcode '56': I-postcode '57': B-vehicle_identifier '58': I-vehicle_identifier '59': B-coordinate '60': I-coordinate '61': B-country '62': I-country '63': B-api_key '64': I-api_key '65': B-ipv6 '66': I-ipv6 '67': B-password '68': I-password '69': B-health_plan_beneficiary_number '70': I-health_plan_beneficiary_number '71': B-national_id '72': I-national_id '73': B-tax_id '74': I-tax_id '75': B-url '76': I-url '77': B-state '78': I-state '79': B-swift_bic '80': I-swift_bic '81': B-cvv '82': I-cvv '83': B-pin '84': I-pin splits: - name: train num_bytes: 72231616 num_examples: 50000 - name: validation num_bytes: 7185881 num_examples: 5000 - name: test num_bytes: 7224032 num_examples: 5000 download_size: 30904311 dataset_size: 86641529 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
automated-analytics/ai4privacy-pii-masking-en-v1-ner
automated-analytics
2025-06-04T18:56:31Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T18:56:20Z
null
--- dataset_info: features: - name: source_text dtype: string - name: target_text dtype: string - name: entities list: - name: entity dtype: string - name: category dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-medical_record_number '2': I-medical_record_number '3': B-date_of_birth '4': I-date_of_birth '5': B-ssn '6': I-ssn '7': B-date '8': I-date '9': B-first_name '10': I-first_name '11': B-email '12': I-email '13': B-last_name '14': I-last_name '15': B-customer_id '16': I-customer_id '17': B-employee_id '18': I-employee_id '19': B-name '20': I-name '21': B-street_address '22': I-street_address '23': B-phone_number '24': I-phone_number '25': B-ipv4 '26': I-ipv4 '27': B-credit_card_number '28': I-credit_card_number '29': B-license_plate '30': I-license_plate '31': B-address '32': I-address '33': B-user_name '34': I-user_name '35': B-device_identifier '36': I-device_identifier '37': B-bank_routing_number '38': I-bank_routing_number '39': B-date_time '40': I-date_time '41': B-company_name '42': I-company_name '43': B-unique_identifier '44': I-unique_identifier '45': B-biometric_identifier '46': I-biometric_identifier '47': B-account_number '48': I-account_number '49': B-city '50': I-city '51': B-certificate_license_number '52': I-certificate_license_number '53': B-time '54': I-time '55': B-postcode '56': I-postcode '57': B-vehicle_identifier '58': I-vehicle_identifier '59': B-coordinate '60': I-coordinate '61': B-country '62': I-country '63': B-api_key '64': I-api_key '65': B-ipv6 '66': I-ipv6 '67': B-password '68': I-password '69': B-health_plan_beneficiary_number '70': I-health_plan_beneficiary_number '71': B-national_id '72': I-national_id '73': B-tax_id '74': I-tax_id '75': B-url '76': I-url '77': B-state '78': I-state '79': B-swift_bic '80': I-swift_bic '81': B-cvv '82': I-cvv '83': B-pin '84': I-pin splits: - name: train num_bytes: 61529999 num_examples: 68275 - name: validation num_bytes: 15380998 num_examples: 17046 download_size: 27101158 dataset_size: 76910997 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
anirudhb11/star-graph-deg-12-path-3-nodes-300
anirudhb11
2025-06-04T18:15:24Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T18:15:20Z
null
--- dataset_info: features: - name: graph dtype: string - name: source dtype: string - name: destination dtype: string - name: path dtype: string splits: - name: train num_bytes: 40915619 num_examples: 200000 - name: test num_bytes: 4091831 num_examples: 20000 download_size: 29477161 dataset_size: 45007450 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
erdem-erdem/24-puzzle-game-8k-multisol
erdem-erdem
2025-06-04T17:40:47Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T17:40:43Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 7223678 num_examples: 7688 download_size: 2751178 dataset_size: 7223678 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "24-puzzle-game-8k-multisol" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tsilva/GymnasiumRecording__VizdoomDeathmatch_v0
tsilva
2025-06-04T17:28:49Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T17:08:01Z
null
--- dataset_info: features: - name: episode_id dtype: int64 - name: image dtype: image - name: step dtype: int64 - name: action struct: - name: binary sequence: int64 - name: continuous sequence: float64 splits: - name: train num_bytes: 66980919.0 num_examples: 2277 download_size: 87602123 dataset_size: 66980919.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
birsapula/so101_test
birsapula
2025-06-04T17:24:48Z
0
0
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-04T17:17:31Z
null
--- license: cc-by-nc-4.0 ---
SaketR1/bbq_unique_contexts_Religion
SaketR1
2025-06-04T17:18:25Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T17:18:24Z
null
--- dataset_info: features: - name: category dtype: string - name: context dtype: string - name: group1 dtype: string - name: group2 dtype: string splits: - name: test num_bytes: 58064 num_examples: 300 download_size: 10341 dataset_size: 58064 configs: - config_name: default data_files: - split: test path: data/test-* ---
SaketR1/bbq_unique_contexts_Physical_appearance
SaketR1
2025-06-04T17:18:06Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T17:18:05Z
null
--- dataset_info: features: - name: category dtype: string - name: context dtype: string - name: group1 dtype: string - name: group2 dtype: string splits: - name: test num_bytes: 87102 num_examples: 394 download_size: 14420 dataset_size: 87102 configs: - config_name: default data_files: - split: test path: data/test-* ---
Jensen-holm/statcast-era-pitches
Jensen-holm
2025-06-04T17:13:41Z
390
2
[ "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "baseball", "sports-analytics" ]
[]
2024-04-24T13:32:40Z
null
--- license: mit tags: - baseball - sports-analytics pretty_name: Don't scrape statcast data anymore size_categories: - 1M<n<10M --- # statcast-pitches [![Latest Update](https://github.com/Jensen-holm/statcast-era-pitches/actions/workflows/update_statcast_data.yml/badge.svg)](https://github.com/Jensen-holm/statcast-era-pitches/actions/workflows/update_statcast_data.yml) [pybaseball](https://github.com/jldbc/pybaseball) is a great tool for downloading baseball data. Even though the library is optimized and scrapes this data in parallel, it can be time consuming. The point of this repository is to utilize GitHub Actions to scrape new baseball data weekly during the MLB season, and update a parquet file hosted as a huggingface dataset. Reading this data as a huggingface dataset is much faster than scraping the new data each time you re run your code, or just want updated statcast pitch data in general. The `update.py` script updates each week during the MLB season, updating the [statcast-era-pitches HuggingFace Dataset](https://huggingface.co/datasets/Jensen-holm/statcast-era-pitches) so that you don't have to re scrape this data yourself. You can explore the entire dataset in your browser [at this link](https://huggingface.co/datasets/Jensen-holm/statcast-era-pitches/viewer/default/train) # Installation ```bash pip install statcast-pitches ``` # Usage ### With statcast_pitches package **Example 1 w/ polars (suggested)** ```python import statcast_pitches import polars as pl # load all pitches from 2015-present pitches_lf = statcast_pitches.load() # filter to get 2024 bat speed data bat_speed_24_df = (pitches_lf .filter(pl.col("game_date").dt.year() == 2024) .select("bat_speed", "swing_length") .collect()) print(bat_speed_24_df.head(3)) ``` output: | | bat_speed | swing_length | |-|------------|--------------| | 0 | 73.61710 | 6.92448 | | 1 | 58.63812 | 7.56904 | | 2 | 71.71226 | 6.46088 | **Notes** - Because `statcast_pitches.load()` uses a LazyFrame, we can load it much faster and even perform operations on it before 'collecting' it into memory. If it were loaded as a DataFrame, this code would execute in ~30-60 seconds, instead it runs between 2-8 seconds. **Example 2 Duckdb** ```python import statcast_pitches # get bat tracking data from 2024 params = ("2024",) query_2024_bat_speed = f""" SELECT bat_speed, swing_length FROM pitches WHERE YEAR(game_date) =? AND bat_speed IS NOT NULL; """ bat_speed_24_df = statcast_pitches.load( query=query_2024_bat_speed, params=params, ).collect() print(bat_speed_24_df.head(3)) ``` output: | | bat_speed | swing_length | |-|------------|--------------| | 0 | 73.61710 | 6.92448 | | 1 | 58.63812 | 7.56904 | | 2 | 71.71226 | 6.46088 | **Notes**: - If no query is specified, all data from 2015-present will be loaded into a DataFrame. - The table in your query MUST be called 'pitches', or it will fail. - Since `load()` returns a LazyFrame, notice that I had to call `pl.DataFrame.collect()` before calling `head()` - This is slower than the other polars approach, however sometimes using SQL is fun ### With HuggingFace API (not recommended) ***Pandas*** ```python import pandas as pd df = pd.read_parquet("hf://datasets/Jensen-holm/statcast-era-pitches/data/statcast_era_pitches.parquet") ``` ***Polars*** ```python import polars as pl df = pl.read_parquet('hf://datasets/Jensen-holm/statcast-era-pitches/data/statcast_era_pitches.parquet') ``` ***Duckdb*** ```sql SELECT * FROM 'hf://datasets/Jensen-holm/statcast-era-pitches/data/statcast_era_pitches.parquet'; ``` ***HuggingFace Dataset*** ```python from datasets import load_dataset ds = load_dataset("Jensen-holm/statcast-era-pitches") ``` ***Tidyverse*** ```r library(tidyverse) statcast_pitches <- read_parquet( "https://huggingface.co/datasets/Jensen-holm/statcast-era-pitches/resolve/main/data/statcast_era_pitches.parquet" ) ``` see the [dataset](https://huggingface.co/datasets/Jensen-holm/statcast-era-pitches) on HugingFace itself for more details. ## Eager Benchmarking ![dataset_load_times](dataset_load_times.png) | Eager Load Time (s) | API | |---------------|-----| | 1421.103 | pybaseball | | 26.899 | polars | | 33.093 | pandas | | 68.692 | duckdb | # ⚠️ Data-Quality Warning ⚠️ MLB states that real time `pitch_type` classification is automated and subject to change as data gets reviewed. This is currently not taken into account as the huggingface dataset gets updated. `pitch_type` is the only column that is affected by this. # Contributing Feel free to submit issues and PR's if you have a contribution you would like to make.
cristiano-sartori/college_chemistry
cristiano-sartori
2025-06-04T16:59:26Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T16:59:23Z
null
--- dataset_info: features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: string splits: - name: test num_bytes: 26496 num_examples: 100 download_size: 17169 dataset_size: 26496 configs: - config_name: default data_files: - split: test path: data/test-* ---
emiliensilly/rag_data_gpt
emiliensilly
2025-06-04T16:27:46Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T16:23:54Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 2041614 num_examples: 770 download_size: 1014945 dataset_size: 2041614 configs: - config_name: default data_files: - split: train path: data/train-* ---
fh1628/open_answer
fh1628
2025-06-04T16:25:23Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T15:46:32Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: openr1_source dtype: string - name: id dtype: string - name: dataset dtype: string - name: choices sequence: string splits: - name: train num_bytes: 261029707.08138365 num_examples: 209224 - name: eval num_bytes: 261029707.08138365 num_examples: 209224 download_size: 418683482 dataset_size: 522059414.1627673 configs: - config_name: default data_files: - split: train path: data/train-* - split: eval path: data/eval-* ---
zuozhuan/so100_catch_test
zuozhuan
2025-06-04T16:22:19Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-04T16:22:03Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1792, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ainewtrend01/HTrade_Analyze
ainewtrend01
2025-06-04T16:17:10Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T16:17:02Z
null
--- dataset_info: features: - name: Question dtype: string - name: Answer dtype: string splits: - name: train num_bytes: 128389288 num_examples: 36588 download_size: 56595815 dataset_size: 128389288 configs: - config_name: default data_files: - split: train path: data/train-* ---
ML5562/M3_Documents_BestPerf_david_test
ML5562
2025-06-04T16:15:09Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T16:15:05Z
null
--- dataset_info: features: - name: source dtype: string - name: text dtype: string splits: - name: train num_bytes: 23808661 num_examples: 32986 download_size: 11764839 dataset_size: 23808661 configs: - config_name: default data_files: - split: train path: data/train-* ---
mih12345/spanish_04_june
mih12345
2025-06-04T16:15:08Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T14:46:35Z
null
--- dataset_info: features: - name: text dtype: string - name: stringlengths dtype: int64 - name: audio dtype: audio - name: audioduration(s) dtype: float64 splits: - name: train num_bytes: 282198402.0 num_examples: 511 download_size: 244100623 dataset_size: 282198402.0 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "spanish_04_june" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
moazeldegwy/CoachAgentDataset
moazeldegwy
2025-06-04T16:08:44Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:10:34Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 11803239 num_examples: 1925 download_size: 1669560 dataset_size: 11803239 configs: - config_name: default data_files: - split: train path: data/train-* ---
kreasof-ai/KAC-QuantFin-1M
kreasof-ai
2025-06-04T16:04:25Z
52
0
[ "license:cc-by-nc-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "finance" ]
[]
2025-06-01T08:18:54Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlcv_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 9935009874 num_examples: 1000000 download_size: 0 dataset_size: 9935009874 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-nc-sa-4.0 tags: - finance --- # Kreasof AI Capital (KAC) QuantFin-1M We employ GARCH-based synthetic price generation, combined with our proprietary trading algorithm. The synthetic price path originally length in 28800 steps with 1-minute interval, but subsampled to 1028 steps with 28-minutes interval to save storage. **License:** cc-by-nc-sa-4.0 (non-commercial)
mahdilotfi/IR-LPR-corners
mahdilotfi
2025-06-04T15:54:30Z
0
0
[ "license:gpl-3.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-04T15:34:37Z
null
--- license: gpl-3.0 pretty_name: f size_categories: - 1K<n<10K --- # Iranian Car Plate Corner Detection Dataset This dataset contains **1,883 manually annotated images** of Iranian vehicles, each labeled with the **4 corner points of the license plate**. For more information see [github repository](https://github.com/mahdilotfi167/IR-LPR-corners).
casimiir/openr1_mot
casimiir
2025-06-04T15:53:55Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T15:50:10Z
null
--- dataset_info: features: - name: dataset dtype: string - name: id dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 7066517987 num_examples: 349317 download_size: 3065153327 dataset_size: 7066517987 configs: - config_name: default data_files: - split: train path: data/train-* ---
NFX74/SFT_STEM_100k-test
NFX74
2025-06-04T15:50:00Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T15:49:42Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 925969706 num_examples: 100000 download_size: 414237251 dataset_size: 925969706 configs: - config_name: default data_files: - split: train path: data/train-* ---
hirundo-io/FaithEval-unanswerable-train
hirundo-io
2025-06-04T15:08:59Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T15:08:56Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 3887207.341894061 num_examples: 1993 download_size: 2280309 dataset_size: 3887207.341894061 configs: - config_name: default data_files: - split: test path: data/test-* ---
IbratDO/cv_malemaleb7808eea_dataset_splitted
IbratDO
2025-06-04T15:03:07Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T15:02:24Z
null
--- dataset_info: features: - name: audio_filepath dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 528697488.0 num_examples: 4800 - name: validation num_bytes: 135098148.0 num_examples: 1200 download_size: 483125637 dataset_size: 663795636.0 --- # Dataset Card for "cv_malemaleb7808eea_dataset_splitted" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Slicky325/IQTest
Slicky325
2025-06-04T14:56:14Z
65
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T14:25:26Z
null
--- dataset_info: features: - name: pid dtype: string - name: question dtype: string - name: image dtype: string - name: decoded_image dtype: image - name: choices sequence: string - name: unit dtype: string - name: precision dtype: float64 - name: answer dtype: string - name: question_type dtype: string - name: answer_type dtype: string - name: metadata struct: - name: category dtype: string - name: context dtype: string - name: grade dtype: string - name: img_height dtype: int64 - name: img_width dtype: int64 - name: language dtype: string - name: skills sequence: string - name: source dtype: string - name: split dtype: string - name: task dtype: string - name: query dtype: string - name: subquestions dtype: string splits: - name: train num_bytes: 17443717.0 num_examples: 228 download_size: 16770435 dataset_size: 17443717.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
anas-gouda/MTevent
anas-gouda
2025-06-04T14:39:17Z
723
1
[ "language:en", "arxiv:2505.11282", "region:us", "EventCamera", "6DPose", "3DboundingBox", "StereoEventCamera" ]
[]
2025-04-01T09:45:58Z
null
--- language: - en tags: - EventCamera - 6DPose - 3DboundingBox - StereoEventCamera --- # MTevent: A Multi-Task Event Camera Dataset for 6D Pose Estimation and Moving Object Detection Read the scenes_info.docx and scenes_info.xlsx to get an overview of the recorded scenes. A sampßle scene_data.json file has been added. The github repository the code: https://github.com/shrutarv/MTevent_toolkit/tree/main The full paper can be viewed at: https://arxiv.org/abs/2505.11282
sysuyy/ImgEdit
sysuyy
2025-06-04T14:35:02Z
14,876
7
[ "license:apache-2.0", "arxiv:2505.20275", "region:us" ]
[]
2025-05-14T10:47:47Z
null
--- license: apache-2.0 --- [ImgEdit: A Unified Image Editing Dataset and Benchmark](https://huggingface.co/papers/2505.20275) # 🌍 Introduction **ImgEdit** is a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs, which contain both novel and complex single-turn edits, as well as challenging multi-turn tasks. To ensure the data quality, we employ a multi-stage pipeline that integrates a cutting-edge vision-language model, a detection model, a segmentation model, alongside task-specific in-painting procedures and strict post-processing. ImgEdit surpasses existing datasets in both task novelty and data quality. Using ImgEdit, we train **ImgEdit-E1**, an editing model using Vision Language Model to process the reference image and editing prompt, which outperforms existing open-source models on multiple tasks, highlighting the value of ImgEdit and model design. For comprehensive evaluation, we introduce **ImgEdit-Bench**, a benchmark designed to evaluate image editing performance in terms of instruction adherence, editing quality, and detail preservation. It includes a basic testsuite, a challenging single-turn suite, and a dedicated multi-turn suite. We evaluate both open-source and proprietary models, as well as ImgEdit-E1. # 📜 Citation If you find our paper and code useful in your research, please consider giving a star ⭐ and citation 📝. ```bibtex @article{ye2025imgedit, title={ImgEdit: A Unified Image Editing Dataset and Benchmark}, author={Ye, Yang and He, Xianyi and Li, Zongjian and Lin, Bin and Yuan, Shenghai and Yan, Zhiyuan and Hou, Bohan and Yuan, Li}, journal={arXiv preprint arXiv:2505.20275}, year={2025} } ```
Kgshop/Soola
Kgshop
2025-06-04T14:30:10Z
354
0
[ "license:apache-2.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-08T07:55:53Z
null
--- license: apache-2.0 ---
MossProphet/so100_folding_testrun2
MossProphet
2025-06-04T14:24:24Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-04T14:24:21Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 113, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.images.External": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.Arm_left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.Arm_right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
qualifire/ai-grounding-benchmark
qualifire
2025-06-04T14:22:07Z
0
0
[ "task_categories:text-classification", "language:en", "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "claim-grounding", "natural-language-inference", "reasoning", "classification", "grounding", "hallucination" ]
[ "text-classification" ]
2025-06-04T14:08:53Z
null
--- language: en tags: - claim-grounding - natural-language-inference - reasoning - classification - grounding - hallucination pretty_name: Grounding Claims Dataset license: cc-by-nc-4.0 task_categories: - text-classification --- The **Grounding Claims Dataset** is a multi-domain dataset for evaluating whether a natural language **claim** is grounded (i.e., supported or entailed) by a **document**. The dataset is organized into four subsets, each requiring different types of reasoning: - **general** (1500 examples): Broad, everyday reasoning - **logical** (1000 examples): Logical consistency and inference - **time_and_dates** (100 examples): Temporal reasoning - **prices_and_math** (100 examples): Numerical and mathematical reasoning Each entry consists of: - `doc`: A short context or passage - `claim`: A natural language statement to verify against the `doc` - `label`: A binary label indicating whether the claim is grounded in the document (`1` for grounded, `0` for ungrounded) - `dataset`: The source subset name (e.g., `"general"`) --- ## 📌 Features | Feature | Type | Description | |----------|---------|------------------------------------------------| | `doc` | string | The document or passage providing the context | | `claim` | string | A statement to verify against the document | | `label` | string | grounded or ungrounded | | `dataset`| string | The domain/subset the instance belongs to | --- ## 📊 Usage This dataset can be used to train and evaluate models on factual verification, natural language inference (NLI), and claim grounding tasks across multiple domains. --- ## 🏷️ Labels - `grounded` — The claim is grounded in the document. - `ungrounded` — The claim is ungrounded or contradicted by the document.
thucdangvan020999/singaporean_accent_district_names_continuation
thucdangvan020999
2025-06-04T14:12:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T13:56:50Z
null
--- dataset_info: features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: audio_length_s dtype: float32 - name: text dtype: string - name: continuation dtype: string - name: voices dtype: string - name: district dtype: string splits: - name: train num_bytes: 569458317.909 num_examples: 2161 - name: validation num_bytes: 33835383.0 num_examples: 130 - name: test num_bytes: 65495484.0 num_examples: 252 download_size: 656368555 dataset_size: 668789184.909 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
deeshan-ai/nih-chest-xray-224
deeshan-ai
2025-06-04T14:09:08Z
26
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T12:52:59Z
null
--- dataset_info: features: - name: filename dtype: string - name: Atelectasis dtype: int64 - name: Cardiomegaly dtype: int64 - name: Consolidation dtype: int64 - name: Edema dtype: int64 - name: Effusion dtype: int64 - name: Emphysema dtype: int64 - name: Fibrosis dtype: int64 - name: Hernia dtype: int64 - name: Infiltration dtype: int64 - name: Mass dtype: int64 - name: No Finding dtype: int64 - name: Nodule dtype: int64 - name: Pleural_Thickening dtype: int64 - name: Pneumonia dtype: int64 - name: Pneumothorax dtype: int64 splits: - name: train num_bytes: 15696800 num_examples: 112120 download_size: 1189640 dataset_size: 15696800 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "nih-chest-xray-224" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ChavyvAkvar/synthetic-trades-BTC-cleaned
ChavyvAkvar
2025-06-04T14:03:10Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T13:47:02Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 22342892199.3927 num_examples: 24195 download_size: 22367441905 dataset_size: 22342892199.3927 configs: - config_name: default data_files: - split: train path: data/train-* ---
interstellarninja/salesforce_hermes_thinking
interstellarninja
2025-06-04T13:41:37Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T12:45:25Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: task dtype: string - name: category dtype: string - name: source dtype: string splits: - name: train num_bytes: 11804051 num_examples: 2325 download_size: 3422733 dataset_size: 11804051 configs: - config_name: default data_files: - split: train path: data/train-* ---
Quantamhash/Deployments
Quantamhash
2025-06-04T13:36:37Z
52
0
[ "license:apache-2.0", "size_categories:n<1K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-02T07:07:44Z
null
--- license: apache-2.0 ---
nik658/xarm_lift_datasett
nik658
2025-06-04T13:32:05Z
111
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-03T13:12:43Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 3, "total_frames": 916, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 15, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.image": { "dtype": "video", "shape": [ 680, 680, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 680, "video.width": 680, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 15, "video.channels": 3, "has_audio": false } }, "observation.state": { "dtype": "float32", "shape": [ 28 ], "names": null }, "action": { "dtype": "float32", "shape": [ 4 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
sghosts/bigjob_1-4
sghosts
2025-06-04T13:21:40Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:44:07Z
null
--- dataset_info: features: - name: image_data dtype: image - name: document_id dtype: string - name: page_num dtype: int64 - name: total_pages dtype: int64 - name: predictions struct: - name: labels list: - name: class dtype: string - name: confidence dtype: float64 - name: polygon sequence: sequence: int64 - name: title dtype: string - name: abstract_tr dtype: string - name: abstract_en dtype: string - name: author dtype: string - name: thesis_id dtype: string - name: university dtype: string - name: department dtype: string - name: year dtype: string - name: language dtype: string - name: thesis_type dtype: string - name: keyword_abd dtype: string - name: original_url dtype: string - name: file_path dtype: string - name: file_size_bytes dtype: int64 - name: download_success dtype: bool - name: extraction_success dtype: bool - name: prediction_success dtype: bool - name: download_timestamp dtype: string - name: extraction_timestamp dtype: string - name: prediction_timestamp dtype: string - name: hf_processing_timestamp dtype: string splits: - name: timestamp_2025_06_04T11_44_06_996234 num_bytes: 417396305.0 num_examples: 1000 - name: timestamp_2025_06_04T11_53_16_274210 num_bytes: 374787319.0 num_examples: 1000 - name: timestamp_2025_06_04T12_01_45_768150 num_bytes: 361684328.0 num_examples: 1000 - name: timestamp_2025_06_04T12_11_41_104561 num_bytes: 457153700.0 num_examples: 1000 - name: timestamp_2025_06_04T12_21_46_449968 num_bytes: 427414168.0 num_examples: 1000 - name: timestamp_2025_06_04T12_32_25_308062 num_bytes: 399793024.0 num_examples: 1000 - name: timestamp_2025_06_04T12_42_03_173228 num_bytes: 352752149.0 num_examples: 1000 - name: timestamp_2025_06_04T12_51_36_550461 num_bytes: 428877476.0 num_examples: 1000 - name: timestamp_2025_06_04T13_01_32_708789 num_bytes: 380216468.0 num_examples: 1000 - name: timestamp_2025_06_04T13_11_21_752856 num_bytes: 353682909.0 num_examples: 1000 - name: timestamp_2025_06_04T13_21_11_340676 num_bytes: 465946214.0 num_examples: 1000 download_size: 4313108360 dataset_size: 4419704060.0 configs: - config_name: default data_files: - split: timestamp_2025_06_04T11_44_06_996234 path: data/timestamp_2025_06_04T11_44_06_996234-* - split: timestamp_2025_06_04T11_53_16_274210 path: data/timestamp_2025_06_04T11_53_16_274210-* - split: timestamp_2025_06_04T12_01_45_768150 path: data/timestamp_2025_06_04T12_01_45_768150-* - split: timestamp_2025_06_04T12_11_41_104561 path: data/timestamp_2025_06_04T12_11_41_104561-* - split: timestamp_2025_06_04T12_21_46_449968 path: data/timestamp_2025_06_04T12_21_46_449968-* - split: timestamp_2025_06_04T12_32_25_308062 path: data/timestamp_2025_06_04T12_32_25_308062-* - split: timestamp_2025_06_04T12_42_03_173228 path: data/timestamp_2025_06_04T12_42_03_173228-* - split: timestamp_2025_06_04T12_51_36_550461 path: data/timestamp_2025_06_04T12_51_36_550461-* - split: timestamp_2025_06_04T13_01_32_708789 path: data/timestamp_2025_06_04T13_01_32_708789-* - split: timestamp_2025_06_04T13_11_21_752856 path: data/timestamp_2025_06_04T13_11_21_752856-* - split: timestamp_2025_06_04T13_21_11_340676 path: data/timestamp_2025_06_04T13_21_11_340676-* ---
motigupta/mnist_mlops
motigupta
2025-06-04T13:09:28Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T13:04:32Z
null
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' splits: - name: train num_bytes: 17223300.0 num_examples: 60000 - name: test num_bytes: 2875182.0 num_examples: 10000 download_size: 17619501 dataset_size: 20098482.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
GingerBled/M3_mcqa_context_m1
GingerBled
2025-06-04T13:03:58Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T13:03:37Z
null
--- dataset_info: features: - name: id dtype: string - name: dataset dtype: string - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: explanation dtype: string splits: - name: train num_bytes: 421977660.0 num_examples: 47469 download_size: 236386582 dataset_size: 421977660.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
jlbaker361/clip-art_coco_captioned-500
jlbaker361
2025-06-04T12:56:37Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T12:56:29Z
null
--- dataset_info: features: - name: image dtype: image - name: embedding sequence: sequence: sequence: float32 - name: text sequence: sequence: sequence: float16 - name: prompt dtype: string - name: posterior sequence: sequence: sequence: float16 splits: - name: train num_bytes: 124953660.0 num_examples: 500 download_size: 121455869 dataset_size: 124953660.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
jlbaker361/ssl-league_captioned_splash-500
jlbaker361
2025-06-04T12:47:02Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T12:46:54Z
null
--- dataset_info: features: - name: image dtype: image - name: embedding sequence: sequence: sequence: float32 - name: text sequence: sequence: sequence: float16 - name: prompt dtype: string - name: posterior sequence: sequence: sequence: float16 splits: - name: train num_bytes: 115289757.0 num_examples: 500 download_size: 112584575 dataset_size: 115289757.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
jlbaker361/siglip2-coco_captioned-500
jlbaker361
2025-06-04T12:41:44Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T12:41:37Z
null
--- dataset_info: features: - name: image dtype: image - name: embedding sequence: sequence: sequence: float16 - name: text sequence: sequence: sequence: float16 - name: prompt dtype: string - name: posterior sequence: sequence: sequence: float16 splits: - name: train num_bytes: 126980671.0 num_examples: 500 download_size: 122691287 dataset_size: 126980671.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
huggingface-legal/takedown-notices
huggingface-legal
2025-06-04T12:39:53Z
652
24
[ "license:cc-by-nc-nd-4.0", "size_categories:n<1K", "modality:document", "library:datasets", "library:mlcroissant", "region:us", "legal" ]
[]
2022-06-28T09:04:19Z
null
--- license: cc-by-nc-nd-4.0 tags: - legal --- ### Takedown notices received by the Hugging Face team Please click on Files and versions to browse them Also check out our: - [Terms of Service](https://huggingface.co/terms-of-service) - [Community Code of Conduct](https://huggingface.co/code-of-conduct) - [Content Guidelines](https://huggingface.co/content-guidelines)
CoffeBank/Ru-hard-detection-dataset
CoffeBank
2025-06-04T12:27:13Z
0
0
[ "task_categories:text-classification", "task_categories:zero-shot-classification", "language:ru", "license:mit", "region:us" ]
[ "text-classification", "zero-shot-classification" ]
2025-06-04T12:23:20Z
null
--- license: mit task_categories: - text-classification - zero-shot-classification language: - ru ---
Jakumetsu/A-MMK12-8K
Jakumetsu
2025-06-04T12:19:33Z
15
0
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.02096", "region:us" ]
[ "question-answering" ]
2025-05-30T15:56:13Z
null
--- license: mit task_categories: - question-answering language: - en --- # A-MMK12-8K This dataset is created using the SynthRL pipeline to synthesize 3,380 challenging questions from 8,072 seed samples. ## Dataset Details - **Synthesis Method**: SynthRL pipeline - **Total Samples**: 11,452 (8,072 seed + 3,380 synthesized) - **Seed Data**: MMK12 dataset - **Purpose**: Training data for VLM reinforcement learning with verifiable rewards (RLVR) ## Data Sources - **Original MMK12**: Proposed in [MM-EUREKA](https://huggingface.co/datasets/FanqingM/MMK12) (thanks to the MM-EUREKA authors) - **Processed Seed Data**: Our free-form version is available at [K12-Freeform-8K](https://huggingface.co/datasets/Jakumetsu/K12-Freeform-8K) ## Citation If you use this dataset, please cite our paper: ```bibtex @misc{wu2025synthrl, title={SynthRL: Scaling Visual Reasoning with Verifiable Data Synthesis}, author={Zijian Wu and Jinjie Ni and Xiangyan Liu and Zichen Liu and Hang Yan and Michael Qizhe Shieh}, year={2025}, eprint={2506.02096}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2506.02096}, } ```
alozowski/python_test_open
alozowski
2025-06-04T11:57:13Z
82
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-07T14:16:55Z
null
--- dataset_info: - config_name: chunked features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_chunk_summaries sequence: string - name: chunk_summaries sequence: string - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string - name: chunks list: - name: chunk_id dtype: string - name: chunk_text dtype: string - name: multihop_chunks list: - name: chunk_ids sequence: string - name: chunks_text sequence: string splits: - name: train num_bytes: 400219 num_examples: 1 download_size: 244712 dataset_size: 400219 - config_name: ingested features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 splits: - name: train num_bytes: 139027 num_examples: 1 download_size: 73224 dataset_size: 139027 - config_name: lighteval features: - name: question dtype: string - name: additional_instructions dtype: string - name: ground_truth_answer dtype: string - name: gold sequence: string - name: choices sequence: string - name: question_category dtype: string - name: kind dtype: string - name: estimated_difficulty dtype: int64 - name: citations sequence: string - name: document_id dtype: string - name: chunk_ids sequence: string - name: question_generating_model dtype: string - name: chunks sequence: string - name: document dtype: string - name: document_summary dtype: string - name: answer_citation_score dtype: float64 - name: chunk_citation_score dtype: float64 - name: citation_score dtype: float64 splits: - name: train num_bytes: 3926271 num_examples: 27 download_size: 119383 dataset_size: 3926271 - config_name: multi_hop_questions features: - name: document_id dtype: string - name: source_chunk_ids sequence: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: choices sequence: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: citations sequence: string - name: raw_response dtype: string splits: - name: train num_bytes: 250791 num_examples: 17 download_size: 40909 dataset_size: 250791 - config_name: single_shot_questions features: - name: chunk_id dtype: string - name: document_id dtype: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: choices sequence: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: raw_response dtype: string - name: citations sequence: string splits: - name: train num_bytes: 97680 num_examples: 10 download_size: 20170 dataset_size: 97680 - config_name: summarized features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_chunk_summaries sequence: string - name: chunk_summaries sequence: string - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string splits: - name: train num_bytes: 161855 num_examples: 1 download_size: 106135 dataset_size: 161855 configs: - config_name: chunked data_files: - split: train path: chunked/train-* - config_name: ingested data_files: - split: train path: ingested/train-* - config_name: lighteval data_files: - split: train path: lighteval/train-* - config_name: multi_hop_questions data_files: - split: train path: multi_hop_questions/train-* - config_name: single_shot_questions data_files: - split: train path: single_shot_questions/train-* - config_name: summarized data_files: - split: train path: summarized/train-* ---
Eathus/github-issues-vul-detection-gpt-few-vul-desc-gpt-enhanced-prompt-results
Eathus
2025-06-04T11:44:02Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T12:17:50Z
null
--- dataset_info: features: - name: cve_id dtype: string - name: cve_published dtype: string - name: cve_descriptions dtype: string - name: cve_metrics struct: - name: cvssMetricV2 list: - name: acInsufInfo dtype: bool - name: baseSeverity dtype: string - name: cvssData struct: - name: accessComplexity dtype: string - name: accessVector dtype: string - name: authentication dtype: string - name: availabilityImpact dtype: string - name: baseScore dtype: float64 - name: confidentialityImpact dtype: string - name: integrityImpact dtype: string - name: vectorString dtype: string - name: version dtype: string - name: exploitabilityScore dtype: float64 - name: impactScore dtype: float64 - name: obtainAllPrivilege dtype: bool - name: obtainOtherPrivilege dtype: bool - name: obtainUserPrivilege dtype: bool - name: source dtype: string - name: type dtype: string - name: userInteractionRequired dtype: bool - name: cvssMetricV30 list: - name: cvssData struct: - name: attackComplexity dtype: string - name: attackVector dtype: string - name: availabilityImpact dtype: string - name: baseScore dtype: float64 - name: baseSeverity dtype: string - name: confidentialityImpact dtype: string - name: integrityImpact dtype: string - name: privilegesRequired dtype: string - name: scope dtype: string - name: userInteraction dtype: string - name: vectorString dtype: string - name: version dtype: string - name: exploitabilityScore dtype: float64 - name: impactScore dtype: float64 - name: source dtype: string - name: type dtype: string - name: cvssMetricV31 list: - name: cvssData struct: - name: attackComplexity dtype: string - name: attackVector dtype: string - name: availabilityImpact dtype: string - name: baseScore dtype: float64 - name: baseSeverity dtype: string - name: confidentialityImpact dtype: string - name: integrityImpact dtype: string - name: privilegesRequired dtype: string - name: scope dtype: string - name: userInteraction dtype: string - name: vectorString dtype: string - name: version dtype: string - name: exploitabilityScore dtype: float64 - name: impactScore dtype: float64 - name: source dtype: string - name: type dtype: string - name: cvssMetricV40 list: - name: cvssData struct: - name: Automatable dtype: string - name: Recovery dtype: string - name: Safety dtype: string - name: attackComplexity dtype: string - name: attackRequirements dtype: string - name: attackVector dtype: string - name: availabilityRequirement dtype: string - name: baseScore dtype: float64 - name: baseSeverity dtype: string - name: confidentialityRequirement dtype: string - name: exploitMaturity dtype: string - name: integrityRequirement dtype: string - name: modifiedAttackComplexity dtype: string - name: modifiedAttackRequirements dtype: string - name: modifiedAttackVector dtype: string - name: modifiedPrivilegesRequired dtype: string - name: modifiedSubAvailabilityImpact dtype: string - name: modifiedSubConfidentialityImpact dtype: string - name: modifiedSubIntegrityImpact dtype: string - name: modifiedUserInteraction dtype: string - name: modifiedVulnAvailabilityImpact dtype: string - name: modifiedVulnConfidentialityImpact dtype: string - name: modifiedVulnIntegrityImpact dtype: string - name: privilegesRequired dtype: string - name: providerUrgency dtype: string - name: subAvailabilityImpact dtype: string - name: subConfidentialityImpact dtype: string - name: subIntegrityImpact dtype: string - name: userInteraction dtype: string - name: valueDensity dtype: string - name: vectorString dtype: string - name: version dtype: string - name: vulnAvailabilityImpact dtype: string - name: vulnConfidentialityImpact dtype: string - name: vulnIntegrityImpact dtype: string - name: vulnerabilityResponseEffort dtype: string - name: source dtype: string - name: type dtype: string - name: cve_references list: - name: source dtype: string - name: tags sequence: string - name: url dtype: string - name: cve_configurations list: - name: nodes list: - name: cpeMatch list: - name: criteria dtype: string - name: matchCriteriaId dtype: string - name: versionEndExcluding dtype: string - name: versionEndIncluding dtype: string - name: versionStartExcluding dtype: 'null' - name: versionStartIncluding dtype: string - name: vulnerable dtype: bool - name: negate dtype: bool - name: operator dtype: string - name: operator dtype: string - name: cve_primary_cwe dtype: string - name: cve_tags sequence: string - name: issue_owner_repo sequence: string - name: issue_body dtype: string - name: issue_title dtype: string - name: issue_comments_url dtype: string - name: issue_comments_count dtype: int64 - name: issue_created_at dtype: timestamp[ns] - name: issue_updated_at dtype: string - name: issue_html_url dtype: string - name: issue_github_id dtype: int64 - name: issue_number dtype: int64 - name: label dtype: bool - name: issue_msg dtype: string - name: issue_msg_n_tokens dtype: int64 - name: issue_embedding sequence: float64 - name: __index_level_0__ dtype: int64 - name: gpt_description dtype: string - name: gpt_vulnerability dtype: string - name: gpt_confidence dtype: int64 - name: gpt_is_relevant dtype: bool splits: - name: test num_bytes: 52929099 num_examples: 1778 download_size: 35896451 dataset_size: 52929099 configs: - config_name: default data_files: - split: test path: data/test-* ---
YYama0/RadFig-VQA
YYama0
2025-06-04T11:42:04Z
79
0
[ "task_categories:question-answering", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "medical" ]
[ "question-answering" ]
2025-05-31T02:44:35Z
null
--- license: cc-by-nc-sa-4.0 task_categories: - question-answering language: - en tags: - medical size_categories: - 100K<n<1M --- # RadFig-VQA Dataset ## Overview RadFig-VQA is a large-scale medical visual question answering dataset based on radiological figures from PubMed Central (PMC). The dataset comprises **70,550 images** and **238,294 question-answer pairs** - making it the **largest radiology-specific VQA dataset by number of QA pairs** - generated from radiological figures across diverse imaging modalities and clinical contexts, designed for comprehensive medical VQA evaluation. ## Dataset Structure - **Total images**: 70,550 - **Total QA pairs**: 238,294 - **Format**: CSV file with the following columns: - `file_path`: Path to the radiological image - `id`: Question identifier - `modality`: Medical imaging type (CT, MRI, X-ray, Ultrasound, PET, SPECT, Mammography, Angiography, Others, Multiple) - `difficulty`: Question difficulty (Easy, Medium, Hard) - `category`: Clinical category (Findings, Diagnosis, Treatment, Anatomy, Clinical Significance, Modality) - `question`: The question text - `option_A` to `option_F`: Six multiple choice options - `correct`: Correct answer (A-F) - `PMC_ID`: PubMed Central article identifier ## Imaging Modalities - **CT** (Computed Tomography) - **MRI** (Magnetic Resonance Imaging) - **X-ray** (Radiography) - **Ultrasound** - **PET** (Positron Emission Tomography) - **SPECT** (Single-Photon Emission Computed Tomography) - **Mammography** - **Angiography** - **Multiple** (Multiple modalities in single figure) - **Others** (Other imaging modalities) ## Clinical Categories - **Findings**: Identification of radiological observations and features - **Diagnosis**: Clinical interpretation and diagnostic conclusions - **Treatment**: Therapeutic recommendations and treatment planning - **Anatomy**: Anatomical structure identification and localization - **Clinical Significance**: Understanding of clinical implications and relevance - **Modality**: Imaging techniques and technical aspects ## Dataset Construction The dataset was constructed through a systematic multi-stage pipeline: 1. **Paper Selection**: From 6.28M PMC papers, we filtered to 40,850 radiology papers using keyword filtering and license restrictions (CC BY, CC BY-NC, CC BY-NC-SA, CC0) 2. **Figure Classification**: An EfficientNetV2-S CNN model with 0.990 ROC AUC was used to identify radiological figures from non-radiological content (RadFig-classifier: Available at [https://huggingface.co/YYama0/RadFig-classifier](https://huggingface.co/YYama0/RadFig-classifier)) 3. **VQA Generation**: A two-stage process using GPT-4o-mini for figure description extraction and GPT-4o for structured question generation Each question is formatted as a 6-option multiple-choice question with exactly one correct answer, systematically categorized across imaging modality, clinical category, and difficulty level. ## Usage RadFig-VQA is designed for training and evaluating medical VQA models on radiological image interpretation. The dataset supports diverse assessment scenarios from basic anatomical identification to complex clinical reasoning tasks across multiple imaging modalities. ## Zero-shot VLM Model Performance Comparison Results ### Accuracy by Clinical Category | Model | Anatomy | Clinical Significance | Diagnosis | Findings | Modality | Treatment | |-------|---------|----------------------|-----------|----------|----------|-----------| | **Llama3.2 11B Vision** | 51.83% | 63.05% | 52.36% | 54.37% | 68.20% | 58.77% | | **Gemma3 4B** | 46.78% | 62.23% | 50.91% | 51.63% | 61.22% | 56.14% | | **MedGemma 4B** | 50.44% | 69.12% | 56.43% | 57.16% | 61.84% | 59.65% | | **InternVL3 2B** | 52.46% | 71.79% | 58.79% | 60.20% | 69.88% | 67.54% | | **InternVL3 8B** | 58.13% | 78.51% | 66.49% | 66.80% | 77.56% | 78.95% | | **InternVL3 14B** | 60.78% | 81.91% | 70.56% | 69.88% | 78.98% | 77.19% | | **Qwen2.5-VL 3B** | 54.48% | 73.64% | 58.79% | 62.66% | 73.59% | 71.05% | | **Qwen2.5-VL 7B** | 53.34% | 73.77% | 57.61% | 60.33% | 73.14% | 61.40% | | **Qwen2.5-VL 3B (Fine-tuned)** | **78.44%** | **89.53%** | **86.14%** | **82.90%** | **88.52%** | **92.98%** | ### Accuracy by Modality | Model | Angiography | CT | MRI | Mammography | Multiple | Others | PET | SPECT | Ultrasound | X-ray | |-------|-------------|----|----|-------------|----------|--------|-----|-------|------------|-------| | **Llama3.2 11B Vision** | 63.88% | 57.01% | 57.85% | 52.35% | 60.74% | 53.59% | 57.24% | 50.00% | 55.94% | 60.37% | | **Gemma3 4B** | 57.74% | 54.95% | 53.18% | 50.34% | 60.74% | 51.95% | 54.64% | 50.00% | 56.07% | 53.46% | | **MedGemma 4B** | 63.88% | 61.47% | 56.90% | 49.66% | 65.76% | 56.87% | 60.91% | 61.45% | 58.97% | 59.96% | | **Qwen2.5-VL 3B** | 69.78% | 65.06% | 65.39% | 65.77% | 69.88% | 61.54% | 65.01% | 60.24% | 65.96% | 63.21% | | **Qwen2.5-VL 7B** | 69.53% | 63.03% | 64.01% | 59.06% | 67.57% | 63.30% | 62.42% | 55.42% | 64.91% | 64.02% | | **InternVL3 2B** | 67.08% | 63.13% | 61.40% | 57.05% | 69.48% | 61.92% | 63.93% | 59.64% | 64.51% | 62.20% | | **InternVL3 8B** | 74.20% | 68.91% | 69.42% | 62.42% | 76.31% | 68.35% | 70.41% | 72.89% | 70.98% | 68.29% | | **InternVL3 14B** | 74.69% | 72.32% | 71.65% | 67.11% | 78.92% | 71.63% | 73.65% | 75.90% | 74.54% | 74.19% | | **Qwen2.5-VL 3B (Fine-tuned)** | **90.66%** | **85.10%** | **85.83%** | **78.52%** | **87.25%** | **80.71%** | **84.23%** | **82.53%** | **86.41%** | **82.11%** | ### Accuracy by Difficulty | Model | Easy | Medium | Hard | |-------|------|--------|------| | **Llama3.2 11B Vision** | 60.02% | 57.46% | 56.96% | | **Gemma3 4B** | 56.83% | 53.67% | 55.80% | | **MedGemma 4B** | 59.32% | 59.57% | 60.41% | | **Qwen2.5-VL 3B** | 65.30% | 64.99% | 66.22% | | **Qwen2.5-VL 7B** | 64.81% | 63.04% | 65.35% | | **InternVL3 2B** | 63.41% | 62.52% | 64.39% | | **InternVL3 8B** | 70.29% | 69.31% | 71.34% | | **InternVL3 14B** | 75.07% | 72.92% | 72.86% | | **Qwen2.5-VL 3B (Fine-tuned)** | **86.04%** | **84.65%** | **85.77%** | ## Citation Citation information coming soon. ## License This dataset is released under **CC BY-NC-SA** (Creative Commons Attribution-NonCommercial-ShareAlike). Please note that the generated questions were created using OpenAI's GPT models. Users should consider OpenAI's Terms of Use when using this dataset in research or applications. ## Dataset Files - **Current release**: Question-answer pairs in `radfig-vqa_dataset.csv` (238,294 QA pairs) and `imgs.zip` (70,550 images). ## Data Split - Official train/test splits coming soon
NurErtug/MNLP_M3_mcqa_dataset_merged_v4_v2
NurErtug
2025-06-04T11:40:52Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:40:48Z
null
--- dataset_info: features: - name: question dtype: string - name: explanation dtype: string - name: options sequence: string - name: answer dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 1433629 num_examples: 1096 download_size: 773306 dataset_size: 1433629 configs: - config_name: default data_files: - split: train path: data/train-* ---
LIUMinghao/MedEBench
LIUMinghao
2025-06-04T11:39:37Z
122
0
[ "task_categories:image-to-image", "language:en", "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2506.01921", "region:us", "medical", "image-editing", "text-to-image", "medical-benchmark" ]
[ "image-to-image" ]
2025-05-11T07:35:51Z
null
--- pretty_name: MedEBench license: cc-by-nc-4.0 language: - en tags: - medical - image-editing - text-to-image - medical-benchmark task_categories: - image-to-image dataset_info: features: - name: id dtype: int32 - name: Organ dtype: string - name: Task dtype: string - name: prompt dtype: string - name: rephrased_prompt dtype: string - name: detailed_prompt dtype: string - name: previous_image dtype: image - name: changed_image dtype: image - name: previous_mask dtype: image - name: url dtype: string splits: - name: test num_bytes: 530316641.116 num_examples: 1182 download_size: 564678614 dataset_size: 530316641.116 configs: - config_name: default data_files: - split: test path: data/test-* --- # MedEBench 🩺 **MedEBench** is a comprehensive benchmark for text-guided image editing in the medical domain. It features over **1,200+ real-world medical operation samples** spanning **13 anatomical regions** and **70 clinically relevant editing operations**. --- ## 📁 Dataset Structure ``` MedEBench/ └── editing/ ├── changed/ # Ground truth images ├── previous/ # Original images ├── previous_mask/ # ROI masks └── editing_metadata.json # Metadata file ``` --- Each sample contains: - `id`: Unique identifier - `Organ`: Edited anatomical region (e.g., Teeth, Skin) - `prompt`: Natural language instruction - `rephrased_prompt`: Rewritten version - `detailed_prompt`: Detailed description of change and expected effect - `previous_image`: Path to original image - `changed_image`: Path to edited image - `previous_mask`: Binary mask of the target editing region --- ## 🔗 Links - **Project Website:** [https://mliuby.github.io/MedEBench_Website/](https://mliuby.github.io/MedEBench_Website/) - **arXiv Paper:** [https://arxiv.org/abs/2506.01921](https://arxiv.org/abs/2506.01921) --- ## 🏷️ License **License:** [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) – for research and non-commercial use only.
deeponh/codingdecodingtask
deeponh
2025-06-04T11:26:48Z
41
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-29T12:41:26Z
null
--- dataset_info: features: - name: set number dtype: string - name: question dtype: string - name: reasoning dtype: string - name: answer dtype: string splits: - name: train num_bytes: 101006 num_examples: 123 download_size: 41100 dataset_size: 101006 configs: - config_name: default data_files: - split: train path: data/train-* ---
nyuuzyou/Minecraft-Skins-20M
nyuuzyou
2025-06-04T11:16:46Z
0
0
[ "task_categories:image-classification", "task_categories:text-to-image", "annotations_creators:found", "multilinguality:monolingual", "source_datasets:original", "license:other", "size_categories:10M<n<100M", "format:json", "modality:text", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "image" ]
[ "image-classification", "text-to-image" ]
2025-06-03T21:17:18Z
null
--- pretty_name: Minecraft Skins Dataset size_categories: - 10M<n<100M task_categories: - image-classification - text-to-image annotations_creators: - found multilinguality: - monolingual source_datasets: - original configs: - config_name: default data_files: - split: train path: "dataset_*.jsonl.zst" default: true tags: - image license: - other --- # Dataset Card for Minecraft Skins ### Dataset Summary This dataset contains 19,973,928 unique Minecraft player skins collected from various sources. Each skin is stored as a base64-encoded image with a unique identifier. ## Dataset Structure ### Data Fields This dataset includes the following fields: - `id`: A randomly generated UUID for each skin entry. These UUIDs are not linked to any external APIs or services (such as Mojang's player UUIDs) and serve solely as unique identifiers within this dataset. - `image`: The skin image encoded in base64 format. ### Data Splits All examples are in the train split, there is no validation split. ### Data Format - **Format**: JSONL (JSON Lines) compressed with Zstandard (.jsonl.zst) - **File Structure**: Multiple files containing approximately 100,000 entries each - **Total Entries**: 19,973,928 unique skins - **Image Format**: Base64-encoded PNG images (64x64 pixels, standard Minecraft skin format) ### Disclaimer This dataset is not affiliated with, endorsed by, or associated with Microsoft Corporation or Mojang Studios. Minecraft is a trademark of Microsoft Corporation and Mojang Studios. This dataset is provided for research and educational purposes only.
myothiha/ontobench_path_vqa
myothiha
2025-06-04T11:16:15Z
48
0
[ "license:mit", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-28T09:51:18Z
null
--- license: mit dataset_info: features: [] splits: - name: train num_bytes: 0 num_examples: 0 download_size: 324 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
igzi/MNLP_M3_document_repo
igzi
2025-06-04T11:06:42Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:06:34Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 77874805 num_examples: 100000 download_size: 45295691 dataset_size: 77874805 configs: - config_name: default data_files: - split: train path: data/train-* ---
matthewchung74/mchp-1_0y-5min-bars
matthewchung74
2025-06-04T11:05:42Z
0
0
[ "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:05:39Z
null
--- dataset_info: features: - name: symbol dtype: string - name: timestamp dtype: string - name: open dtype: float64 - name: high dtype: float64 - name: low dtype: float64 - name: close dtype: float64 - name: volume dtype: float64 - name: trade_count dtype: float64 - name: vwap dtype: float64 configs: - config_name: default data_files: - split: train path: data/mchp_1_0_years_5min.csv download_size: 1572319 dataset_size: 19653 --- # MCHP 5-Minute Stock Data (1.0 Years) This dataset contains 1.0 years of MCHP stock market data downloaded from Alpaca Markets. ## Dataset Description - **Symbol**: MCHP - **Duration**: 1.0 years - **Timeframe**: 5-minute bars - **Market Hours**: 9:30 AM - 4:00 PM EST only - **Data Source**: Alpaca Markets API - **Last Updated**: 2025-06-04 ## Features - `symbol`: Stock symbol (always "MCHP") - `timestamp`: Timestamp in Eastern Time (EST/EDT) - `open`: Opening price for the 5-minute period - `high`: Highest price during the 5-minute period - `low`: Lowest price during the 5-minute period - `close`: Closing price for the 5-minute period - `volume`: Number of shares traded - `trade_count`: Number of individual trades - `vwap`: Volume Weighted Average Price ## Data Quality - Only includes data during regular market hours (9:30 AM - 4:00 PM EST) - Excludes weekends and holidays when markets are closed - Approximately 19,653 records covering ~1.0 years of trading data ## Usage ```python from datasets import load_dataset dataset = load_dataset("matthewchung74/mchp-1_0y-5min-bars") df = dataset['train'].to_pandas() ``` ## Price Statistics - **Price Range**: $34.12 - $96.98 - **Average Volume**: 105,885 - **Date Range**: 2024-06-04 09:30:00-04:00 to 2025-06-03 16:00:00-04:00 ## License This dataset is provided under the MIT license. The underlying market data is sourced from Alpaca Markets.
mansaripo/corpus_mcm_2023_2024
mansaripo
2025-06-04T11:04:50Z
102
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T18:53:53Z
null
--- dataset_info: features: - name: full_prefix dtype: string - name: completion dtype: string - name: contradiction_0 dtype: string - name: contradiction_1 dtype: string - name: contradiction_2 dtype: string - name: explanation dtype: string splits: - name: test num_bytes: 1359743 num_examples: 1000 download_size: 766717 dataset_size: 1359743 configs: - config_name: default data_files: - split: test path: data/test-* ---
pavan-naik/kan_to_eng_claude_v3
pavan-naik
2025-06-04T11:03:22Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:03:15Z
null
--- dataset_info: features: - name: id dtype: uint64 - name: word_range dtype: string - name: kannada dtype: string - name: english dtype: string - name: prompt dtype: string splits: - name: train num_bytes: 71194749 num_examples: 40000 - name: test num_bytes: 17950843 num_examples: 10000 - name: test_small num_bytes: 3590168.6 num_examples: 2000 download_size: 42234638 dataset_size: 92735760.6 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: test_small path: data/test_small-* ---
kaiserbuffle/hanoiv6
kaiserbuffle
2025-06-04T10:56:13Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "hanoi tower" ]
[ "robotics" ]
2025-06-03T14:50:54Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - hanoi tower configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 6, "total_frames": 37625, "total_tasks": 1, "total_videos": 12, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:6" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.base": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
nduque/robustness_e9_2
nduque
2025-06-04T10:55:49Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-04T10:54:57Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 130, "total_frames": 67302, "total_tasks": 1, "total_videos": 260, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:130" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.front": { "dtype": "video", "shape": [ 720, 1280, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 720, "video.width": 1280, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.above": { "dtype": "video", "shape": [ 720, 1280, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 720, "video.width": 1280, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ChavyvAkvar/synthetic-trades-BTC-batch-47
ChavyvAkvar
2025-06-04T10:49:41Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T10:48:38Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450989 num_examples: 1000 download_size: 924489649 dataset_size: 923450989 configs: - config_name: default data_files: - split: train path: data/train-* ---
french-datasets/rntc_tmp-multitask-fr-clinical-sft
french-datasets
2025-06-04T10:47:31Z
0
0
[ "language:fra", "region:us" ]
[]
2025-06-04T10:47:13Z
null
--- language: - fra viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [rntc/tmp-multitask-fr-clinical-sft](https://huggingface.co/datasets/rntc/tmp-multitask-fr-clinical-sft).
raresense/Bracelets_Dataset
raresense
2025-06-04T10:21:41Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T10:21:13Z
null
--- dataset_info: features: - name: target dtype: image - name: mask dtype: image - name: caption dtype: string splits: - name: train num_bytes: 305176549.0 num_examples: 632 download_size: 296134352 dataset_size: 305176549.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
french-datasets/ahmadSiddiqi_x-stance_fr
french-datasets
2025-06-04T10:20:21Z
0
0
[ "task_categories:text-classification", "language:fra", "region:us" ]
[ "text-classification" ]
2025-06-04T10:20:02Z
null
--- language: - fra viewer: false task_categories: - text-classification --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [ahmadSiddiqi/x-stance_fr](https://huggingface.co/datasets/ahmadSiddiqi/x-stance_fr).
french-datasets/ahmadSiddiqi_fr-retrieval-syntec-s2p
french-datasets
2025-06-04T10:18:43Z
0
0
[ "task_categories:text-retrieval", "language:fra", "region:us" ]
[ "text-retrieval" ]
2025-06-04T10:18:13Z
null
--- language: - fra viewer: false task_categories: - text-retrieval --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [ahmadSiddiqi/fr-retrieval-syntec-s2p](https://huggingface.co/datasets/ahmadSiddiqi/fr-retrieval-syntec-s2p).
vishwam-101/devanagariScripts
vishwam-101
2025-06-04T10:18:19Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-04T10:18:19Z
null
--- license: apache-2.0 ---
french-datasets/ahmadSiddiqi_mtop_domain_fr
french-datasets
2025-06-04T10:17:45Z
0
0
[ "task_categories:text-classification", "language:fra", "region:us" ]
[ "text-classification" ]
2025-06-04T10:17:30Z
null
--- language: - fra viewer: false task_categories: - text-classification --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [ahmadSiddiqi/mtop_domain_fr](https://huggingface.co/datasets/ahmadSiddiqi/mtop_domain_fr).
french-datasets/ahmadSiddiqi_sentiments_fr
french-datasets
2025-06-04T10:15:23Z
0
0
[ "task_categories:text-classification", "language:fra", "region:us" ]
[ "text-classification" ]
2025-06-04T10:14:34Z
null
--- language: - fra viewer: false task_categories: - text-classification --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [ahmadSiddiqi/sentiments_fr](https://huggingface.co/datasets/ahmadSiddiqi/sentiments_fr).
dwb2023/azure-ai-engineer-golden-dataset
dwb2023
2025-06-04T09:56:52Z
20
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T18:38:26Z
null
--- dataset_info: features: - name: user_input dtype: string - name: reference_contexts sequence: string - name: reference dtype: string - name: synthesizer_name dtype: string splits: - name: train num_bytes: 223514 num_examples: 34 download_size: 28373 dataset_size: 223514 configs: - config_name: default data_files: - split: train path: data/train-* ---