code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowercase_ (unittest.TestCase ): snake_case =StableDiffusionLDMaDPipeline snake_case =TEXT_TO_IMAGE_PARAMS snake_case =TEXT_TO_IMAGE_BATCH_PARAMS snake_case =TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a__ =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0) a__ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a__ =CLIPTextModel(lowercase_) a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') a__ ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> List[str]: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self) -> Any: a__ ='cpu' # ensure determinism for the device-dependent torch.Generator a__ =self.get_dummy_components() a__ =StableDiffusionLDMaDPipeline(**lowercase_) a__ =ldmad_pipe.to(lowercase_) ldmad_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ =ldmad_pipe(**lowercase_) a__ , a__ =output.rgb, output.depth a__ =rgb[0, -3:, -3:, -1] a__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a__ =np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62]) a__ =np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36]) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2 def __UpperCamelCase ( self) -> Optional[int]: a__ =self.get_dummy_components() a__ =StableDiffusionLDMaDPipeline(**lowercase_) a__ =ldmad_pipe.to(lowercase_) ldmad_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ =3 * [inputs['prompt']] # forward a__ =ldmad_pipe(**lowercase_) a__ , a__ =output.rgb, output.depth a__ =rgb_slice_a[0, -3:, -3:, -1] a__ =depth_slice_a[0, -3:, -1] a__ =self.get_dummy_inputs(lowercase_) a__ =3 * [inputs.pop('prompt')] a__ =ldmad_pipe.tokenizer( lowercase_ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowercase_ , return_tensors='pt' , ) a__ =text_inputs['input_ids'].to(lowercase_) a__ =ldmad_pipe.text_encoder(lowercase_)[0] a__ =prompt_embeds # forward a__ =ldmad_pipe(**lowercase_) a__ , a__ =output.rgb, output.depth a__ =rgb_slice_a[0, -3:, -3:, -1] a__ =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten()).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten()).max() < 1e-4 def __UpperCamelCase ( self) -> Dict: a__ ='cpu' # ensure determinism for the device-dependent torch.Generator a__ =self.get_dummy_components() a__ =PNDMScheduler(skip_prk_steps=lowercase_) a__ =StableDiffusionLDMaDPipeline(**lowercase_) a__ =ldmad_pipe.to(lowercase_) ldmad_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ ='french fries' a__ =ldmad_pipe(**lowercase_ , negative_prompt=lowercase_) a__ , a__ =output.rgb, output.depth a__ =rgb[0, -3:, -3:, -1] a__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a__ =np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17]) a__ =np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35]) assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2 @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , lowercase_ , lowercase_="cpu" , lowercase_=torch.floataa , lowercase_=0) -> Optional[Any]: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ =np.random.RandomState(lowercase_).standard_normal((1, 4, 64, 64)) a__ =torch.from_numpy(lowercase_).to(device=lowercase_ , dtype=lowercase_) a__ ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self) -> List[Any]: a__ =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d') a__ =ldmad_pipe.to(lowercase_) ldmad_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_inputs(lowercase_) a__ =ldmad_pipe(**lowercase_) a__ , a__ =output.rgb, output.depth a__ =rgb[0, -3:, -3:, -1].flatten() a__ =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a__ =np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06]) a__ =np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06]) assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3 @nightly @require_torch_gpu class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , lowercase_ , lowercase_="cpu" , lowercase_=torch.floataa , lowercase_=0) -> List[str]: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ =np.random.RandomState(lowercase_).standard_normal((1, 4, 64, 64)) a__ =torch.from_numpy(lowercase_).to(device=lowercase_ , dtype=lowercase_) a__ ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self) -> List[Any]: a__ =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d').to(lowercase_) ldmad_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_inputs(lowercase_) a__ =ldmad_pipe(**lowercase_) a__ , a__ =output.rgb, output.depth a__ =0.49_55_86 a__ =0.33_79_55_15 a__ =1_12.4_85_18 a__ =98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 assert np.abs(expected_depth_std - depth.std()) < 1e-3 def __UpperCamelCase ( self) -> Optional[int]: a__ =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c').to(lowercase_) ldmad_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_inputs(lowercase_) a__ =ldmad_pipe(**lowercase_) a__ , a__ =output.rgb, output.depth a__ =0.4_19_41_27 a__ =0.35_37_55_86 a__ =0.5_63_85_02 a__ =0.34_68_61_03 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 assert np.abs(expected_depth_std - depth.std()) < 1e-3
20
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class __A ( UpperCamelCase__ ): UpperCamelCase = """gptsan-japanese""" UpperCamelCase = [ """past_key_values""", ] UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :str , __snake_case :str=3_60_00 , __snake_case :List[Any]=12_80 , __snake_case :Tuple=10_24 , __snake_case :Union[str, Any]=81_92 , __snake_case :Dict=40_96 , __snake_case :Tuple=1_28 , __snake_case :Union[str, Any]=10 , __snake_case :List[Any]=0 , __snake_case :int=16 , __snake_case :Tuple=16 , __snake_case :int=1_28 , __snake_case :Optional[Any]=0.0 , __snake_case :Any=1E-5 , __snake_case :str=False , __snake_case :Dict=0.0 , __snake_case :str="float32" , __snake_case :int=False , __snake_case :int=False , __snake_case :Optional[int]=False , __snake_case :Tuple=0.002 , __snake_case :Any=False , __snake_case :Optional[Any]=True , __snake_case :Optional[int]=3_59_98 , __snake_case :Dict=3_59_95 , __snake_case :Optional[int]=3_59_99 , **__snake_case :Union[str, Any] , ): '''simple docstring''' __magic_name__ : List[str] =vocab_size __magic_name__ : Any =max_position_embeddings __magic_name__ : int =d_model __magic_name__ : Any =d_ff __magic_name__ : Dict =d_ext __magic_name__ : Union[str, Any] =d_spout __magic_name__ : List[Any] =num_switch_layers __magic_name__ : int =num_ext_layers __magic_name__ : Optional[int] =num_switch_layers + num_ext_layers __magic_name__ : Union[str, Any] =num_heads __magic_name__ : Any =num_experts __magic_name__ : Optional[int] =expert_capacity __magic_name__ : Union[str, Any] =dropout_rate __magic_name__ : Any =layer_norm_epsilon __magic_name__ : Union[str, Any] =router_bias __magic_name__ : int =router_jitter_noise __magic_name__ : str =router_dtype __magic_name__ : Optional[int] =router_ignore_padding_tokens __magic_name__ : str =output_hidden_states __magic_name__ : Dict =output_attentions __magic_name__ : Dict =initializer_factor __magic_name__ : List[str] =output_router_logits __magic_name__ : int =use_cache super().__init__( separator_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , )
21
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def snake_case_ (UpperCamelCase : Callable[[int | float], int | float] , UpperCamelCase : int | float , UpperCamelCase : int | float , UpperCamelCase : int = 100 , ): '''simple docstring''' _a = x_start _a = fnc(UpperCamelCase ) _a = 0.0 for _ in range(UpperCamelCase ): # Approximates curve as a sequence of linear lines and sums their length _a = (x_end - x_start) / steps + xa _a = fnc(UpperCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _a = xa _a = fxa return length if __name__ == "__main__": def snake_case_ (UpperCamelCase : str ): '''simple docstring''' return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _snake_case : Dict = 10 while i <= 100000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
22
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } UpperCamelCase_ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_UpperCAmelCase ) , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , x.transpose() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , np.asarray(transpose(_UpperCAmelCase ) ) ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.reshape(_UpperCAmelCase , (4, 3) ) ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.reshape(_UpperCAmelCase , (12, 5) ) ) ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.asarray(reshape(_UpperCAmelCase , (4, 3) ) ) ) ) UpperCamelCase_ = np.random.randn(3 , 4 , 5 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.asarray(reshape(_UpperCAmelCase , (12, 5) ) ) ) ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.squeeze(_UpperCAmelCase ) ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.squeeze(_UpperCAmelCase , axis=2 ) ) ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = np.random.randn(1 , 3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.asarray(squeeze(_UpperCAmelCase ) ) ) ) UpperCamelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.asarray(squeeze(_UpperCAmelCase , axis=2 ) ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.expand_dims(_UpperCAmelCase , axis=1 ) ) ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = np.random.randn(3 , 4 ) UpperCamelCase_ = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(_UpperCAmelCase , axis=1 ) ) ) )
23
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
0
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _UpperCamelCase (_lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : bool = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(_lowerCamelCase ), magnitude * sin(_lowerCamelCase )] return [magnitude * cos(radians(_lowerCamelCase ) ), magnitude * sin(radians(_lowerCamelCase ) )] def _UpperCamelCase (_lowerCamelCase : NDArray[floataa] , _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : float = 10**-1 )-> bool: '''simple docstring''' __snake_case = cross(_lowerCamelCase , _lowerCamelCase ) __snake_case = sum(_lowerCamelCase ) return abs(_lowerCamelCase ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase_ : List[str] = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) UpperCAmelCase_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase_ : str = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) UpperCAmelCase_ : Optional[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase_ : List[Any] = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) UpperCAmelCase_ : int = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
24
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(_a , _a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = emb.weight.shape SCREAMING_SNAKE_CASE : int = nn.Linear(_a , _a , bias=_a) SCREAMING_SNAKE_CASE : str = emb.weight.data return lin_layer def lowerCamelCase__ ( _a , _a="facebook/mbart-large-en-ro" , _a=False , _a=False): SCREAMING_SNAKE_CASE : List[str] = torch.load(_a , map_location="cpu")["model"] remove_ignore_keys_(_a) SCREAMING_SNAKE_CASE : List[Any] = state_dict["encoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE : Optional[int] = MBartConfig.from_pretrained(_a , vocab_size=_a) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE : int = "relu" SCREAMING_SNAKE_CASE : Optional[Any] = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE : Optional[Any] = MBartForConditionalGeneration(_a) model.model.load_state_dict(_a) if finetuned: SCREAMING_SNAKE_CASE : str = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
25
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A : def __init__( self : List[Any] , __magic_name__ : Collection[float] | None = None ) -> None: """simple docstring""" if components is None: __snake_case : Tuple = [] __snake_case : List[str] = list(__magic_name__ ) def __len__( self : Optional[Any] ) -> int: """simple docstring""" return len(self.__components ) def __str__( self : str ) -> str: """simple docstring""" return "(" + ",".join(map(__magic_name__ , self.__components ) ) + ")" def __add__( self : int , __magic_name__ : Vector ) -> Vector: """simple docstring""" __snake_case : List[str] = len(self ) if size == len(__magic_name__ ): __snake_case : Any = [self.__components[i] + other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: raise Exception("""must have the same size""" ) def __sub__( self : List[Any] , __magic_name__ : Vector ) -> Vector: """simple docstring""" __snake_case : Union[str, Any] = len(self ) if size == len(__magic_name__ ): __snake_case : Dict = [self.__components[i] - other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : List[Any] , __magic_name__ : float ) -> Vector: """simple docstring""" ... @overload def __mul__( self : Any , __magic_name__ : Vector ) -> float: """simple docstring""" ... def __mul__( self : Dict , __magic_name__ : float | Vector ) -> float | Vector: """simple docstring""" if isinstance(__magic_name__ , (float, int) ): __snake_case : Optional[int] = [c * other for c in self.__components] return Vector(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ) and len(self ) == len(__magic_name__ ): __snake_case : Tuple = len(self ) __snake_case : int = [self.__components[i] * other.component(__magic_name__ ) for i in range(__magic_name__ )] return sum(__magic_name__ ) else: # error case raise Exception("""invalid operand!""" ) def lowercase__ ( self : Dict ) -> Vector: """simple docstring""" return Vector(self.__components ) def lowercase__ ( self : List[str] , __magic_name__ : int ) -> float: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : float ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __snake_case : str = value def lowercase__ ( self : Any ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __snake_case : str = [c**2 for c in self.__components] return math.sqrt(sum(__magic_name__ ) ) def lowercase__ ( self : Tuple , __magic_name__ : Vector , __magic_name__ : bool = False ) -> float: """simple docstring""" __snake_case : Tuple = self * other __snake_case : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _lowerCamelCase ) -> Vector: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) return Vector([0] * dimension ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , _lowerCamelCase )) __snake_case : List[Any] = [0] * dimension __snake_case : Union[str, Any] = 1 return Vector(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , (int, float) )) ) return x * scalar + y def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" random.seed(_lowerCamelCase ) __snake_case : List[Any] = [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) class _A : def __init__( self : List[Any] , __magic_name__ : list[list[float]] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Tuple = matrix __snake_case : List[str] = w __snake_case : Union[str, Any] = h def __str__( self : str ) -> str: """simple docstring""" __snake_case : Optional[int] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Tuple , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __snake_case : Tuple = [] for i in range(self.__height ): __snake_case : Optional[Any] = [ self.__matrix[i][j] + other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : int , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __snake_case : Optional[Any] = [] for i in range(self.__height ): __snake_case : Union[str, Any] = [ self.__matrix[i][j] - other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : int , __magic_name__ : float ) -> Matrix: """simple docstring""" ... @overload def __mul__( self : List[Any] , __magic_name__ : Vector ) -> Vector: """simple docstring""" ... def __mul__( self : Dict , __magic_name__ : float | Vector ) -> Vector | Matrix: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): # matrix-vector if len(__magic_name__ ) == self.__width: __snake_case : Optional[int] = zero_vector(self.__height ) for i in range(self.__height ): __snake_case : List[Any] = [ self.__matrix[i][j] * other.component(__magic_name__ ) for j in range(self.__width ) ] ans.change_component(__magic_name__ , sum(__magic_name__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__magic_name__ , (int, float) ): # matrix-scalar __snake_case : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__magic_name__ , self.__width , self.__height ) return None def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self.__height def lowercase__ ( self : int ) -> int: """simple docstring""" return self.__width def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __snake_case : Optional[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __snake_case : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__magic_name__ ) ): __snake_case : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(__magic_name__ , self.__width - 1 , self.__height - 1 ).determinant() def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__magic_name__ , __magic_name__ ) else: raise Exception("""Indices out of bounds""" ) def lowercase__ ( self : Optional[int] ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __snake_case : Tuple = [ self.__matrix[0][y] * self.cofactor(0 , __magic_name__ ) for y in range(self.__width ) ] return sum(__magic_name__ ) def _a ( _lowerCamelCase ) -> Matrix: """simple docstring""" __snake_case : list[list[float]] = [[0] * n for _ in range(_lowerCamelCase )] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Matrix: """simple docstring""" random.seed(_lowerCamelCase ) __snake_case : list[list[float]] = [ [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase ) ] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
26
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'char' __magic_name__ = 'bpe' __magic_name__ = 'wp' __A : int = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['image_processor', 'char_tokenizer'] __magic_name__ = 'ViTImageProcessor' __magic_name__ = 'MgpstrTokenizer' def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) _A = tokenizer _A = AutoTokenizer.from_pretrained('gpt2' ) _A = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(snake_case_ , snake_case_ ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ): if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _A = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None: _A = self.char_tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is None: return inputs elif images is None: return encodings else: _A = encodings['input_ids'] return inputs def lowerCAmelCase__ ( self , snake_case_ ): _A, _A, _A = sequences _A = char_preds.size(0 ) _A, _A = self._decode_helper(snake_case_ , 'char' ) _A, _A = self._decode_helper(snake_case_ , 'bpe' ) _A, _A = self._decode_helper(snake_case_ , 'wp' ) _A = [] _A = [] for i in range(snake_case_ ): _A = [char_scores[i], bpe_scores[i], wp_scores[i]] _A = [char_strs[i], bpe_strs[i], wp_strs[i]] _A = scores.index(max(snake_case_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _A = {} _A = final_strs _A = final_scores _A = char_strs _A = bpe_strs _A = wp_strs return out def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): if format == DecodeType.CHARACTER: _A = self.char_decode _A = 1 _A = '[s]' elif format == DecodeType.BPE: _A = self.bpe_decode _A = 2 _A = '#' elif format == DecodeType.WORDPIECE: _A = self.wp_decode _A = 102 _A = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) _A, _A = [], [] _A = pred_logits.size(0 ) _A = pred_logits.size(1 ) _A, _A = pred_logits.topk(1 , dim=-1 , largest=snake_case_ , sorted=snake_case_ ) _A = preds_index.view(-1 , snake_case_ )[:, 1:] _A = decoder(snake_case_ ) _A, _A = torch.nn.functional.softmax(snake_case_ , dim=2 ).max(dim=2 ) _A = preds_max_prob[:, 1:] for index in range(snake_case_ ): _A = preds_str[index].find(snake_case_ ) _A = preds_str[index][:pred_eos] _A = preds_index[index].cpu().tolist() _A = pred_index.index(snake_case_ ) if eos_token in pred_index else -1 _A = preds_max_prob[index][: pred_eos_index + 1] _A = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(snake_case_ ) conf_scores.append(snake_case_ ) return dec_strs, conf_scores def lowerCAmelCase__ ( self , snake_case_ ): _A = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(snake_case_ )] return decode_strs def lowerCAmelCase__ ( self , snake_case_ ): return self.bpe_tokenizer.batch_decode(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): _A = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(snake_case_ )] return decode_strs
27
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github UpperCamelCase_ = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Github(os.environ['GITHUB_TOKEN'] ) SCREAMING_SNAKE_CASE : Tuple = g.get_repo('huggingface/transformers' ) SCREAMING_SNAKE_CASE : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: SCREAMING_SNAKE_CASE : Any = sorted([comment for comment in issue.get_comments()] ,key=lambda __UpperCamelCase : i.created_at ,reverse=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = comments[0] if len(__UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
28
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ ,lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) benchmark()
29
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
def lowerCamelCase__ ( _lowercase , _lowercase = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis UpperCAmelCase_ : Tuple = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] UpperCAmelCase_ : Dict = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowercase , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase_ : Dict = primes[:idx] break UpperCAmelCase_, UpperCAmelCase_ : Dict = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase_ : Any = False for r in range(_lowercase ): UpperCAmelCase_ : Optional[int] = pow(_lowercase , d * 2**r , _lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase_ : int = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase__ ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
30
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["YolosFeatureExtractor"] UpperCAmelCase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCamelCase__ : List[str] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Dict , *_a:Union[str, Any] , **_a:List[Any] ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case_ : """simple docstring""" A_ = 42 # [batch_size x 3] A_ = 42 # [batch_size x 3] A_ = 42 # [batch_size x 3] A_ = 42 # [batch_size x 3] A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 def UpperCAmelCase__ ( self) -> List[Any]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def UpperCAmelCase__ ( self) -> Optional[int]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def UpperCAmelCase__ ( self) -> Any: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def UpperCAmelCase__ ( self) -> torch.Tensor: UpperCamelCase = torch.arange(self.height * self.width) UpperCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase_ , self.width , rounding_mode='''trunc'''), ] , axis=1 , ) return coords @property def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase , *UpperCamelCase = self.shape UpperCamelCase = int(np.prod(lowerCamelCase_)) UpperCamelCase = self.get_image_coords() UpperCamelCase = torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) UpperCamelCase = self.get_camera_rays(lowerCamelCase_) UpperCamelCase = rays.view(lowerCamelCase_ , inner_batch_size * self.height * self.width , 2 , 3) return rays def UpperCAmelCase__ ( self , lowerCamelCase_) -> torch.Tensor: UpperCamelCase , *UpperCamelCase , UpperCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCamelCase = coords.view(lowerCamelCase_ , -1 , 2) UpperCamelCase = self.resolution() UpperCamelCase = self.fov() UpperCamelCase = (flat.float() / (res - 1)) * 2 - 1 UpperCamelCase = fracs * torch.tan(fov / 2) UpperCamelCase = fracs.view(lowerCamelCase_ , -1 , 2) UpperCamelCase = ( self.z.view(lowerCamelCase_ , 1 , 3) + self.x.view(lowerCamelCase_ , 1 , 3) * fracs[:, :, :1] + self.y.view(lowerCamelCase_ , 1 , 3) * fracs[:, :, 1:] ) UpperCamelCase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase_) UpperCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase_ , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(lowerCamelCase_ , *lowerCamelCase_ , 2 , 3) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase_ , height=lowerCamelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): UpperCamelCase = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCamelCase = -z * 4 UpperCamelCase = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) UpperCamelCase = np.cross(_lowercase ,_lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,width=_lowercase ,height=_lowercase ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(_lowercase )) ,)
34
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
0
from __future__ import annotations def a ( A__ ) -> bool: '''simple docstring''' if len(A__ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) SCREAMING_SNAKE_CASE__ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
0
def lowercase ( __A : int , __A : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def lowercase ( ) -> None: '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
0
def UpperCamelCase_ ( __a , __a , __a=False ) -> Optional[int]: if isinstance(__a , __a ) and isinstance(__a , __a ): a__ : Union[str, Any] = len(set_a.intersection(__a ) ) if alternative_union: a__ : List[Any] = len(__a ) + len(__a ) else: a__ : List[str] = len(set_a.union(__a ) ) return intersection / union if isinstance(__a , (list, tuple) ) and isinstance(__a , (list, tuple) ): a__ : Tuple = [element for element in set_a if element in set_b] if alternative_union: a__ : Tuple = len(__a ) + len(__a ) return len(__a ) / union else: a__ : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(__a ) / len(__a ) return len(__a ) / len(__a ) return None if __name__ == "__main__": UpperCamelCase : int = {"""a""", """b""", """c""", """d""", """e"""} UpperCamelCase : Union[str, Any] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
37
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CodeGenTokenizer lowerCamelCase__ = CodeGenTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {'''add_prefix_space''': True} lowerCamelCase__ = False def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] snake_case__ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : str = {"""unk_token""": """<unk>"""} snake_case__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : Tuple = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : str = """lower newer""" snake_case__ : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Union[str, Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokens + [tokenizer.unk_token] snake_case__ : Any = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): if not self.test_rust_tokenizer: return snake_case__ : int = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = """lower newer""" # Testing tokenization snake_case__ : Optional[Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens snake_case__ : Any = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens snake_case__ : str = self.get_rust_tokenizer(add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : int = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing the unknown token snake_case__ : Dict = tokens + [rust_tokenizer.unk_token] snake_case__ : int = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # Simple input snake_case__ : str = """This is a simple input""" snake_case__ : Any = ["""This is a simple input 1""", """This is a simple input 2"""] snake_case__ : Optional[int] = ("""This is a simple input""", """This is a pair""") snake_case__ : Union[str, Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" , ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" , ) def __UpperCamelCase ( self ): snake_case__ : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input snake_case__ : int = """This is a simple input""" snake_case__ : List[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] snake_case__ : List[str] = ("""This is a simple input""", """This is a pair""") snake_case__ : List[str] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] snake_case__ : Optional[Any] = tokenizer.pad_token_id snake_case__ : int = tokenizer(__SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=3_0 , return_tensors="""np""" ) snake_case__ : str = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncate=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) snake_case__ : Tuple = tokenizer(*__SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=6_0 , return_tensors="""np""" ) snake_case__ : Optional[Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncate=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __UpperCamelCase ( self ): snake_case__ : str = """$$$""" snake_case__ : Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__SCREAMING_SNAKE_CASE , add_bos_token=__SCREAMING_SNAKE_CASE ) snake_case__ : int = """This is a simple input""" snake_case__ : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] snake_case__ : List[str] = tokenizer.bos_token_id snake_case__ : List[str] = tokenizer(__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] , __SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case__ : str = tokenizer.decode(out_s.input_ids ) snake_case__ : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) snake_case__ : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" snake_case__ : List[str] = """\nif len_a > len_b: result = a\nelse: result = b""" snake_case__ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] snake_case__ : Any = tokenizer.decode(__SCREAMING_SNAKE_CASE , truncate_before_pattern=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass
38
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] snake_case_ = True if '''large''' in model_name or '''huge''' in model_name else False snake_case_ = True if '''large''' in model_name or '''huge''' in model_name else False snake_case_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: snake_case_ = [3, 3, 3, 3] snake_case_ = [5, 5, 5, 5] elif "fl4" in model_name: snake_case_ = [4, 4, 4, 4] snake_case_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: snake_case_ = [3, 3, 3, 3] if "lrf" in model_name: snake_case_ = [3, 3, 3, 3] else: snake_case_ = [2, 2, 2, 2] if "tiny" in model_name: snake_case_ = 96 elif "small" in model_name: snake_case_ = 96 elif "base" in model_name: snake_case_ = 128 elif "large" in model_name: snake_case_ = 192 elif "xlarge" in model_name: snake_case_ = 256 elif "huge" in model_name: snake_case_ = 352 # set label information snake_case_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: snake_case_ = '''imagenet-22k-id2label.json''' else: snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , focal_levels=SCREAMING_SNAKE_CASE__ , focal_windows=SCREAMING_SNAKE_CASE__ , use_conv_embed=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , use_post_layernorm=SCREAMING_SNAKE_CASE__ , use_layerscale=SCREAMING_SNAKE_CASE__ , ) return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: snake_case_ = '''encoder.''' + name if "encoder.layers" in name: snake_case_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: snake_case_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: snake_case_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: snake_case_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: snake_case_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": snake_case_ = '''layernorm.weight''' if name == "norm.bias": snake_case_ = '''layernorm.bias''' if "head" in name: snake_case_ = name.replace('''head''' , '''classifier''' ) else: snake_case_ = '''focalnet.''' + name return name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): # fmt: off snake_case_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on snake_case_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val snake_case_ = get_focalnet_config(SCREAMING_SNAKE_CASE__ ) snake_case_ = FocalNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify conversion snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE__ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE__ , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ , ) snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) snake_case_ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) snake_case_ = image_transforms(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) snake_case_ = model(**SCREAMING_SNAKE_CASE__ ) snake_case_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": snake_case_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": snake_case_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": snake_case_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": snake_case_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": snake_case_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": snake_case_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
39
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = torch.nn.Linear(2 , 4 ) UpperCamelCase : Optional[int] = torch.optim.AdamW(model.parameters() , lr=1.0 ) UpperCamelCase : str = torch.optim.lr_scheduler.OneCycleLR(snake_case__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) UpperCamelCase : Dict = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCamelCase : Optional[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCamelCase ( snake_case__ : List[str] ) -> Any: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCamelCase ( snake_case__ : List[str] ) -> Union[str, Any]: UpperCamelCase : Tuple = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(snake_case__ ) class lowerCAmelCase_ ( a__ ): @require_cuda def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = Accelerator(cpu=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase : Any = GradientState() assert state.num_steps == 1 UpperCamelCase : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCamelCase : Dict = False assert state.sync_gradients is False GradientState._reset_state() def snake_case_ ( self ) -> Dict: UpperCamelCase : Optional[Any] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = create_components() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : int = accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def snake_case_ ( self ) -> str: UpperCamelCase : Any = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def snake_case_ ( self ) -> List[str]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ): pass with patch('torch.cuda.set_device', SCREAMING_SNAKE_CASE_ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): UpperCamelCase : int = Accelerator() self.assertEqual(str(accelerator.state.device ), 'cuda:64' ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = get_signature(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # make sure random weights don't match load_random_weights(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) < 1e-3 ) def snake_case_ ( self ) -> Any: UpperCamelCase : int = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = get_signature(SCREAMING_SNAKE_CASE_ ) # saving hook def save_config(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = {'class_name': models[0].__class__.__name__} with open(os.path.join(SCREAMING_SNAKE_CASE_, 'data.json' ), 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # loading hook def load_config(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): with open(os.path.join(SCREAMING_SNAKE_CASE_, 'data.json' ), 'r' ) as f: UpperCamelCase : str = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = config['class_name'] UpperCamelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = accelerator.register_load_state_pre_hook(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # make sure random weights don't match with hooks load_random_weights(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCamelCase : List[Any] = 'random' # make sure loaded weights match with hooks accelerator.load_state(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # make sure random weights don't match with hooks removed load_random_weights(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCamelCase : List[str] = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = create_components() UpperCamelCase : Optional[int] = None # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertTrue(dummy_obj is None ) def snake_case_ ( self ) -> str: UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = create_components() UpperCamelCase : Union[str, Any] = [1, 2, 3] # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Dummy object should have `_is_accelerate_prepared` set to `True`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Model is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`', ) @slow @require_bnb def snake_case_ ( self ) -> List[Any]: from transformers import AutoModelForCausalLM UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', load_in_abit=SCREAMING_SNAKE_CASE_, device_map={'': 0}, ) UpperCamelCase : Optional[int] = Accelerator() # This should work UpperCamelCase : Tuple = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) @slow @require_bnb def snake_case_ ( self ) -> Any: from transformers import AutoModelForCausalLM UpperCamelCase : Dict = Accelerator() with init_empty_weights(): UpperCamelCase : int = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', ) model.tie_weights() UpperCamelCase : List[str] = infer_auto_device_map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = 'cpu' UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', device_map=SCREAMING_SNAKE_CASE_, load_in_abit=SCREAMING_SNAKE_CASE_, llm_inta_enable_fpaa_cpu_offload=SCREAMING_SNAKE_CASE_ ) # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) @slow @require_bnb @require_multi_gpu def snake_case_ ( self ) -> Union[str, Any]: from transformers import AutoModelForCausalLM UpperCamelCase : Tuple = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', ) model.tie_weights() UpperCamelCase : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = 1 UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', load_in_abit=SCREAMING_SNAKE_CASE_, device_map=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[int] = Accelerator() # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def snake_case_ ( self ) -> int: from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', ) UpperCamelCase : str = infer_auto_device_map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = 1 UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', load_in_abit=SCREAMING_SNAKE_CASE_, device_map=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = Accelerator() # This should work UpperCamelCase : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) @require_cuda def snake_case_ ( self ) -> int: UpperCamelCase : Tuple = torch.nn.Linear(10, 10 ) UpperCamelCase : Any = torch.optim.SGD(model.parameters(), lr=0.01 ) UpperCamelCase : Union[str, Any] = Accelerator(cpu=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ )
40
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" __lowercase = [1] for i in range(2 , A__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowercase = [] __lowercase = list(range(A__ ) ) # Find permutation while factorials: __lowercase = factorials.pop() __lowercase , __lowercase = divmod(A__ , A__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> np.array: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' lowerCamelCase_ = 'f32le' lowerCamelCase_ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase_ = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCamelCase_ = output_stream[0] lowerCamelCase_ = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = "f32le" ,) -> Union[str, Any]: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' if format_for_conversion == "s16le": lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCamelCase_ = platform.system() if system == "Linux": lowerCamelCase_ = 'alsa' lowerCamelCase_ = 'default' elif system == "Darwin": lowerCamelCase_ = 'avfoundation' lowerCamelCase_ = ':0' elif system == "Windows": lowerCamelCase_ = 'dshow' lowerCamelCase_ = 'default' lowerCamelCase_ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase_ = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "f32le" ,) -> Any: if stream_chunk_s is not None: lowerCamelCase_ = stream_chunk_s else: lowerCamelCase_ = chunk_length_s lowerCamelCase_ = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": lowerCamelCase_ = np.intaa lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = np.floataa lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCamelCase_ = chunk_length_s / 6 lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): lowerCamelCase_ = [stride_length_s, stride_length_s] lowerCamelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase_ = datetime.datetime.now() lowerCamelCase_ = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale lowerCamelCase_ = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) lowerCamelCase_ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCamelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = False ) -> Optional[Any]: lowerCamelCase_ = b'' lowerCamelCase_ ,lowerCamelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCamelCase_ = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: lowerCamelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator lowerCamelCase_ = (_stride_left, stride_right) lowerCamelCase_ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCamelCase_ = False yield item lowerCamelCase_ = stride_left lowerCamelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: lowerCamelCase_ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCamelCase_ = False yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: lowerCamelCase_ = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
42
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
0
# using dfs for finding eulerian path traversal def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase__ , lowercase__ = True, True lowercase__ = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = -1 for i in range(SCREAMING_SNAKE_CASE ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase__ , lowercase__ = check_circuit_or_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowercase__ = 1 if check == 2: lowercase__ = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowercase__ = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase__ = { 1: [], 2: [] # all degree is zero } lowercase__ = 10 check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaControlnetImgaImgPipeline lowerCAmelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCAmelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCAmelCase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase_ = False @property def lowerCamelCase_ ( self : Any ): return 3_2 @property def lowerCamelCase_ ( self : List[str] ): return 3_2 @property def lowerCamelCase_ ( self : Union[str, Any] ): return self.time_input_dim @property def lowerCamelCase_ ( self : Any ): return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): return 1_0_0 @property def lowerCamelCase_ ( self : Optional[Any] ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _lowerCamelCase : Any = UNetaDConditionModel(**__A ) return model @property def lowerCamelCase_ ( self : Any ): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self : Optional[Any] ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = self.dummy_unet _lowerCamelCase : int = self.dummy_movq _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _lowerCamelCase : Optional[Any] = DDIMScheduler(**__A ) _lowerCamelCase : Dict = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCamelCase_ ( self : Dict,__A : List[Any],__A : int=0 ): _lowerCamelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __A ) # create init_image _lowerCamelCase : Any = floats_tensor((1, 3, 6_4, 6_4),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Optional[Any] = image.cpu().permute(0,2,3,1 )[0] _lowerCamelCase : List[Any] = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create hint _lowerCamelCase : str = floats_tensor((1, 3, 6_4, 6_4),rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith("mps" ): _lowerCamelCase : int = torch.manual_seed(__A ) else: _lowerCamelCase : Union[str, Any] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : Optional[Any] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = "cpu" _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : Any = self.pipeline_class(**__A ) _lowerCamelCase : Optional[int] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(__A ) ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : Optional[Any] = pipe( **self.get_dummy_inputs(__A ),return_dict=__A,)[0] _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase : Any = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) _lowerCamelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _lowerCamelCase : Any = init_image.resize((5_1_2, 5_1_2) ) _lowerCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) _lowerCamelCase : List[str] = torch.from_numpy(np.array(__A ) ).float() / 255.0 _lowerCamelCase : Union[str, Any] = hint.permute(2,0,1 ).unsqueeze(0 ) _lowerCamelCase : int = "A robot, 4k photo" _lowerCamelCase : Optional[Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior",torch_dtype=torch.floataa ) pipe_prior.to(__A ) _lowerCamelCase : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth",torch_dtype=torch.floataa ) _lowerCamelCase : Optional[int] = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) _lowerCamelCase , _lowerCamelCase : List[Any] = pipe_prior( __A,image=__A,strength=0.85,generator=__A,negative_prompt="",).to_tuple() _lowerCamelCase : Any = pipeline( image=__A,image_embeds=__A,negative_image_embeds=__A,hint=__A,generator=__A,num_inference_steps=1_0_0,height=5_1_2,width=5_1_2,strength=0.5,output_type="np",) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__A,__A )
44
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : List[str] ) -> str: # Initialise PyTorch model UpperCamelCase__ :Tuple = FunnelConfig.from_json_file(lowercase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase__ :int = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
45
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : Optional[int] = 16 _lowerCAmelCase : List[Any] = 32 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 16 ) -> List[str]: '''simple docstring''' _lowerCamelCase : int = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Optional[Any] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : Any = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : Dict = 8 else: _lowerCamelCase : Optional[int] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCamelCase : int = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : Dict = mocked_dataloaders # noqa: F811 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCamelCase : Optional[Any] = 2 # Initialize accelerator _lowerCamelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : Any = config["lr"] _lowerCamelCase : Tuple = int(config["num_epochs"] ) _lowerCamelCase : Union[str, Any] = int(config["seed"] ) _lowerCamelCase : Optional[Any] = int(config["batch_size"] ) _lowerCamelCase : Tuple = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _lowerCamelCase : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase : Dict = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Any = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : Any = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCamelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase : Dict = model(**_lowerCamelCase ) _lowerCamelCase : List[str] = outputs.loss _lowerCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _lowerCamelCase : Any = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : str = model(**_lowerCamelCase ) _lowerCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) _lowerCamelCase, _lowerCamelCase : int = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_lowerCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _lowerCamelCase : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCamelCase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCamelCase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _lowerCamelCase ) def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : int = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
46
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = '''glpn''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : List[Any]=[8, 4, 2, 1] , SCREAMING_SNAKE_CASE__ : str=[3_2, 6_4, 1_6_0, 2_5_6] , SCREAMING_SNAKE_CASE__ : Dict=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE__ : Tuple=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 2, 5, 8] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[4, 4, 4, 4] , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : int=6_4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE__ : Any=-1 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : List[str] = num_channels __a : Dict = num_encoder_blocks __a : List[str] = depths __a : Optional[int] = sr_ratios __a : int = hidden_sizes __a : str = patch_sizes __a : Union[str, Any] = strides __a : str = mlp_ratios __a : Optional[int] = num_attention_heads __a : List[Any] = hidden_act __a : Any = hidden_dropout_prob __a : List[Any] = attention_probs_dropout_prob __a : str = initializer_range __a : int = drop_path_rate __a : int = layer_norm_eps __a : Optional[Any] = decoder_hidden_size __a : Dict = max_depth __a : Union[str, Any] = head_in_index
47
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase__ : Optional[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
"""simple docstring""" def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = 0 for ch in input_str: __UpperCAmelCase = ord(snake_case_ ) __UpperCAmelCase = pow(2 , snake_case_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
49
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets UpperCamelCase : Tuple = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' UpperCamelCase : str = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' UpperCamelCase : Union[str, Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=1 ,_lowerCAmelCase="binary" ,_lowerCAmelCase=None ): lowerCamelCase__ = fa_score( _lowerCAmelCase ,_lowerCAmelCase ,labels=_lowerCAmelCase ,pos_label=_lowerCAmelCase ,average=_lowerCAmelCase ,sample_weight=_lowerCAmelCase ) return {"f1": float(_lowerCAmelCase ) if score.size == 1 else score}
50
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file a__ : Union[str, Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" if subparsers is not None: UpperCAmelCase = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=SCREAMING_SNAKE_CASE_ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=SCREAMING_SNAKE_CASE_ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=SCREAMING_SNAKE_CASE_ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase = defaults.commands if not args.tpu_name: UpperCAmelCase = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command UpperCAmelCase = '''; '''.join(SCREAMING_SNAKE_CASE_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(SCREAMING_SNAKE_CASE_ )}" ) return subprocess.run(SCREAMING_SNAKE_CASE_ ) print('''Successfully setup pod.''' ) def __snake_case ( ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = tpu_command_parser() UpperCAmelCase = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE_ )
51
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __A ( a_ :BertModel , a_ :str , a_ :str) -> str: __a : List[str] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __a : Any = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(a_): os.makedirs(a_) __a : List[Any] = model.state_dict() def to_tf_var_name(a_ :str): for patt, repl in iter(a_): __a : int = name.replace(a_ , a_) return F"""bert/{name}""" def create_tf_var(a_ :np.ndarray , a_ :str , a_ :tf.Session): __a : int = tf.dtypes.as_dtype(tensor.dtype) __a : Optional[int] = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer()) session.run(tf.variables_initializer([tf_var])) session.run(a_) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __a : Any = to_tf_var_name(a_) __a : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose): __a : List[Any] = torch_tensor.T __a : Optional[Any] = create_tf_var(tensor=a_ , name=a_ , session=a_) tf.keras.backend.set_value(a_ , a_) __a : int = session.run(a_) print(F"""Successfully created {tf_name}: {np.allclose(a_ , a_)}""") __a : Tuple = tf.train.Saver(tf.trainable_variables()) saver.save(a_ , os.path.join(a_ , model_name.replace('''-''' , '''_''') + '''.ckpt''')) def __A ( a_ :int=None) -> str: __a : str = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , required=a_ , help='''model name e.g. bert-base-uncased''') parser.add_argument( '''--cache_dir''' , type=a_ , default=a_ , required=a_ , help='''Directory containing pytorch model''') parser.add_argument('''--pytorch_model_path''' , type=a_ , required=a_ , help='''/path/to/<pytorch-model-name>.bin''') parser.add_argument('''--tf_cache_dir''' , type=a_ , required=a_ , help='''Directory in which to save tensorflow model''') __a : Optional[Any] = parser.parse_args(a_) __a : Optional[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name) if __name__ == "__main__": main()
52
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[str] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = RobertaPreLayerNormConfig.from_pretrained( lowerCAmelCase_, architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __lowerCAmelCase = torch.load(hf_hub_download(repo_id=lowerCAmelCase_, filename='pytorch_model.bin' ) ) __lowerCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __lowerCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __lowerCAmelCase = tensor_value __lowerCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCAmelCase_, config=lowerCAmelCase_, state_dict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) # convert tokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Union[str, Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0
from dataclasses import dataclass, field from typing import Optional @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) _snake_case =field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _snake_case =field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) _snake_case =field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) _snake_case =field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) _snake_case =field( default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) _snake_case =field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) _snake_case =field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) _snake_case =field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) _snake_case =field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) _snake_case =field( default=__lowercase , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) _snake_case =field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} ) _snake_case =field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _snake_case =field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) _snake_case =field(default=1 , metadata={'''help''': '''Training seed.'''} ) _snake_case =field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) _snake_case =field( default=__lowercase , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _snake_case =field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) _snake_case =field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _snake_case =field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) _snake_case =field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) _snake_case =field( default=__lowercase , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) _snake_case =field( default=__lowercase , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) _snake_case =field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) _snake_case =field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) _snake_case =field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) _snake_case =field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) _snake_case =field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) _snake_case =field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) _snake_case =field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) _snake_case =field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) _snake_case =field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) _snake_case =field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class A : _snake_case =field( default=__lowercase , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) _snake_case =field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) _snake_case =field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) _snake_case =field( default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) _snake_case =field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _snake_case =field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) _snake_case =field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) _snake_case =field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) _snake_case =field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) _snake_case =field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) _snake_case =field( default=__lowercase , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) _snake_case =field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class A : _snake_case =field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) _snake_case =field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) _snake_case =field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _snake_case =field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) _snake_case =field( default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) _snake_case =field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) _snake_case =field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class A : _snake_case =field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) _snake_case =field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
54
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "ibert" def __init__( self : Union[str, Any] ,A : Tuple=3_05_22 ,A : Optional[Any]=7_68 ,A : List[Any]=12 ,A : Optional[Any]=12 ,A : List[str]=30_72 ,A : Union[str, Any]="gelu" ,A : str=0.1 ,A : int=0.1 ,A : Dict=5_12 ,A : str=2 ,A : Any=0.02 ,A : str=1E-12 ,A : List[str]=1 ,A : str=0 ,A : Optional[Any]=2 ,A : Union[str, Any]="absolute" ,A : Optional[int]=False ,A : Any="none" ,**A : str ,): super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = quant_mode __A = force_dequant class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self : Tuple ): if self.task == "multiple-choice": __A = {0: "batch", 1: "choice", 2: "sequence"} else: __A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
55
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : List[Any] = {"vocab_file": "spiece.model"} _a : Tuple = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } _a : Optional[Any] = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int="<unk>" , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE_ : Any="[MASK]" , SCREAMING_SNAKE_CASE_ : Dict="[CLS]" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> None: __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def a ( self : List[str] ) -> int: return self.sp_model.get_piece_size() def a ( self : Dict ) -> str: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> str: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : Any ) -> str: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: __snake_case = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: __snake_case = [] __snake_case = '' __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __snake_case = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : int , ) -> str: __snake_case = kwargs.pop('use_source_tokenizer' , SCREAMING_SNAKE_CASE_ ) __snake_case = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case = [] __snake_case = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) ) __snake_case = [] sub_texts.append(SCREAMING_SNAKE_CASE_ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __snake_case = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(SCREAMING_SNAKE_CASE_ ) ) else: __snake_case = ''.join(SCREAMING_SNAKE_CASE_ ) __snake_case = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case = self.clean_up_tokenization(SCREAMING_SNAKE_CASE_ ) return clean_text else: return text def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
56
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
0
def snake_case (UpperCAmelCase__ ) -> list: UpperCamelCase_: Optional[Any] = int(UpperCAmelCase__ ) if n_element < 1: UpperCamelCase_: List[str] = ValueError('a should be a positive number' ) raise my_error UpperCamelCase_: List[Any] = [1] UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Any = (0, 0, 0) UpperCamelCase_: Optional[Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": A_ : Optional[Any] = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') A_ : int = hamming(int(n)) print('-----------------------------------------------------') print(F'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
57
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[str] = WavaVecaForSequenceClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : int = downstream_dict["""projector.weight"""] snake_case_ : Optional[int] = downstream_dict["""projector.bias"""] snake_case_ : List[Any] = downstream_dict["""model.post_net.linear.weight"""] snake_case_ : Union[str, Any] = downstream_dict["""model.post_net.linear.bias"""] return model def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : Any = downstream_dict["""model.linear.weight"""] snake_case_ : int = downstream_dict["""model.linear.bias"""] return model def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[int] = WavaVecaForXVector.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : Any = downstream_dict["""connector.weight"""] snake_case_ : str = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case_ : Dict = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] snake_case_ : int = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] snake_case_ : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case_ : int = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case_ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case_ : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case_ : List[str] = downstream_dict["""objective.W"""] return model @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case_ : Any = checkpoint["""Downstream"""] snake_case_ : Optional[Any] = WavaVecaConfig.from_pretrained(__UpperCamelCase ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase , return_attention_mask=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case_ : Optional[Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case_ : Tuple = convert_classification(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case_ : Union[str, Any] = convert_diarization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForXVector""" ): snake_case_ : List[str] = convert_xvector(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: snake_case_ : List[Any] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __lowerCAmelCase : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
58
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
0
from __future__ import annotations def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" lowerCamelCase__: Union[str, Any] =len(__a ) # We need to create solution object to save path. lowerCamelCase__: Optional[Any] =[[0 for _ in range(__a )] for _ in range(__a )] lowerCamelCase__: int =run_maze(__a , 0 , 0 , __a ) if solved: print("\n".join(str(__a ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" lowerCamelCase__: List[str] =len(__a ) # Final check point. if i == j == (size - 1): lowerCamelCase__: List[str] =1 return True lowerCamelCase__: Optional[int] =(not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase__: Dict =(i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase__: Optional[Any] =(not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase__: Optional[Any] =1 # check for directions if ( run_maze(__a , i + 1 , __a , __a ) or run_maze(__a , __a , j + 1 , __a ) or run_maze(__a , i - 1 , __a , __a ) or run_maze(__a , __a , j - 1 , __a ) ): return True lowerCamelCase__: List[Any] =0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
59
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
0
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCamelCase_ ( _UpperCamelCase ) -> list[list[float]]: """simple docstring""" snake_case_ : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case_ : Any = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements snake_case_ : List[str] = [[0.0, 0.0], [0.0, 0.0]] snake_case_ , snake_case_ : Tuple = matrix[1][1], matrix[0][0] snake_case_ , snake_case_ : Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case_ : Tuple = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix snake_case_ : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case_ : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case_ : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case_ : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case_ : str = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case_ : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case_ : Any = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case_ : str = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case_ : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case_ : int = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case_ : Tuple = array(_UpperCamelCase ) for i in range(3 ): for j in range(3 ): snake_case_ : Tuple = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case_ : Any = array(_UpperCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCamelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
60
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCamelCase = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _A ( lowerCAmelCase_ : Any ): """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: lowerCAmelCase__ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: lowerCAmelCase__ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: lowerCAmelCase__ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: lowerCAmelCase__ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: lowerCAmelCase__ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: lowerCAmelCase__ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase__ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: lowerCAmelCase__ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" lowerCAmelCase__ = {} import re lowerCAmelCase__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCAmelCase__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCAmelCase__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) lowerCAmelCase__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_encoder_block_conv_in.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowerCAmelCase__ = re_encoder_block_conv_in.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_encoder_block_resnet.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase__ = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowerCAmelCase__ = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_encoder_block_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_encoder_block_proj_out.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowerCAmelCase__ = re_encoder_block_proj_out.sub(lowerCAmelCase_ , lowerCAmelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_decoder_block_conv_out.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase__ = re_decoder_block_conv_out.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_decoder_block_resnet.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase__ = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowerCAmelCase__ = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_decoder_block_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_decoder_block_proj_in.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowerCAmelCase__ = re_decoder_block_proj_in.sub(lowerCAmelCase_ , lowerCAmelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_prior_cond_conv_out.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowerCAmelCase__ = re_prior_cond_conv_out.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_prior_cond_resnet.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase__ = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowerCAmelCase__ = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_prior_cond_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase_ ): lowerCAmelCase__ = re_prior_cond_proj_in.match(lowerCAmelCase_ ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowerCAmelCase__ = re_prior_cond_proj_in.sub(lowerCAmelCase_ , lowerCAmelCase_ ) # keep original key else: lowerCAmelCase__ = original_key lowerCAmelCase__ = replace_key(lowerCAmelCase_ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: lowerCAmelCase__ = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowerCAmelCase__ = original_key lowerCAmelCase__ = original_key lowerCAmelCase__ = value return new_dict @torch.no_grad() def _A ( lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowerCAmelCase__ = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCAmelCase_ ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCAmelCase_ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content ) lowerCAmelCase__ = MODEL_MAPPING[model_name.split("/" )[-1]] lowerCAmelCase__ = JukeboxConfig.from_pretrained(lowerCAmelCase_ ) lowerCAmelCase__ = JukeboxModel(lowerCAmelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = {} for i, dict_name in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"] lowerCAmelCase__ = {} for k in old_dic.keys(): if k.endswith(".b" ): lowerCAmelCase__ = old_dic[k] elif k.endswith(".w" ): lowerCAmelCase__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase__ = old_dic[k] else: lowerCAmelCase__ = old_dic[k] lowerCAmelCase__ = "vqvae" if i == 0 else F'priors.{3 - i}' lowerCAmelCase__ = fix_jukebox_keys(lowerCAmelCase_ , model.state_dict() , lowerCAmelCase_ , lowerCAmelCase_ ) weight_dict.append(lowerCAmelCase_ ) lowerCAmelCase__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) with open(F'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase_ ) return weight_dict if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCamelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
61
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } snake_case = { """facebook/mbart-large-50-one-to-many-mmt""": 1_024, } # fmt: off snake_case = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : Optional[int]="</s>" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : List[Any]="<unk>" , UpperCAmelCase_ : List[str]="<pad>" , UpperCAmelCase_ : Any="<mask>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE : Dict = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Any = len(self.sp_model ) SCREAMING_SNAKE_CASE : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase_ ) } SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else "en_XX" SCREAMING_SNAKE_CASE : Tuple = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _A ( self : Tuple ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _A ( self : List[Any] ): return self._src_lang @src_lang.setter def _A ( self : Optional[int] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple ): SCREAMING_SNAKE_CASE : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Dict = None return state def __setstate__( self : List[Any] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : List[str] , UpperCAmelCase_ : str ): return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _A ( self : int , UpperCAmelCase_ : int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _A ( self : List[str] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = "" SCREAMING_SNAKE_CASE : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[int] = [] else: current_sub_tokens.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , "wb" ) as fi: SCREAMING_SNAKE_CASE : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def _A ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def _A ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] , UpperCAmelCase_ : Optional[str] , **UpperCAmelCase_ : Any ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) SCREAMING_SNAKE_CASE : List[Any] = src_lang SCREAMING_SNAKE_CASE : str = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = tgt_lang_id return inputs def _A ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "en_XX" , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "ro_RO" , **UpperCAmelCase_ : Union[str, Any] , ): SCREAMING_SNAKE_CASE : Dict = src_lang SCREAMING_SNAKE_CASE : Dict = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self : Any , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : List[Any] = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE : Dict = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE : str = [self.eos_token_id] def _A ( self : Tuple , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE : List[Any] = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id]
62
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
from manim import * class a ( lowercase__ ): """simple docstring""" def UpperCAmelCase ( self : Optional[Any] ) -> str: __UpperCAmelCase : Tuple = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCAmelCase : Any = [mem.copy() for i in range(6 )] __UpperCAmelCase : str = [mem.copy() for i in range(6 )] __UpperCAmelCase : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[str] = VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Dict = Text("""CPU""" , font_size=24 ) __UpperCAmelCase : Union[str, Any] = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) __UpperCAmelCase : List[str] = [mem.copy() for i in range(4 )] __UpperCAmelCase : str = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[Any] = Text("""GPU""" , font_size=24 ) __UpperCAmelCase : Any = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) __UpperCAmelCase : Dict = [mem.copy() for i in range(6 )] __UpperCAmelCase : int = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[Any] = Text("""Model""" , font_size=24 ) __UpperCAmelCase : str = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) __UpperCAmelCase : Any = [] for i, rect in enumerate(__lowercase ): rect.set_stroke(__lowercase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __UpperCAmelCase : List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowercase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowercase , buff=0.0 ) self.add(__lowercase ) cpu_targs.append(__lowercase ) __UpperCAmelCase : Any = [mem.copy() for i in range(6 )] __UpperCAmelCase : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[str] = Text("""Loaded Checkpoint""" , font_size=24 ) __UpperCAmelCase : List[str] = Group(__lowercase , __lowercase ).arrange(__lowercase , aligned_edge=__lowercase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __UpperCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase : int = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase , __lowercase ) __UpperCAmelCase : str = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __UpperCAmelCase : Optional[Any] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ) , Write(__lowercase ) ) self.play(Write(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) ) __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = [] for i, rect in enumerate(__lowercase ): __UpperCAmelCase : List[Any] = fill.copy().set_fill(__lowercase , opacity=0.7 ) target.move_to(__lowercase ) first_animations.append(GrowFromCenter(__lowercase , run_time=1 ) ) __UpperCAmelCase : Any = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowercase , run_time=1.5 ) ) self.play(*__lowercase ) self.play(*__lowercase ) self.wait()
63
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase_ : List[Any] = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
64
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : def __init__( self : List[str] ,A : List[Any] ,A : List[str]=13 ,A : Any=32 ,A : List[str]=3 ,A : Optional[int]=4 ,A : Optional[int]=[10, 20, 30, 40] ,A : str=[2, 2, 3, 2] ,A : Optional[Any]=True ,A : Dict=True ,A : Tuple=37 ,A : List[str]="gelu" ,A : Optional[int]=10 ,A : List[Any]=0.0_2 ,A : Optional[int]=["stage2", "stage3", "stage4"] ,A : List[Any]=[2, 3, 4] ,A : List[Any]=None ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Optional[int] = num_stages UpperCAmelCase__ : str = hidden_sizes UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : str = is_training UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : List[Any] = out_features UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : Any = scope def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : int ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=A ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : str ,A : List[Any] ,A : Union[str, Any] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Union[str, Any] ,A : Union[str, Any] ,A : Optional[Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase__ : Optional[int] = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : int ,A : Optional[int] ,A : Optional[int] ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Tuple = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : str = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = config_and_inputs UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : Dict = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) snake_case_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = ConvNextVaModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __lowercase ( self : str ): '''simple docstring''' pass def __lowercase ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase__ : int = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase__ : Tuple = model_class(A ) model.to(A ) model.train() UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase__ : Optional[int] = model(**A ).loss loss.backward() def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase__ : int = False UpperCAmelCase__ : List[Any] = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase__ : Tuple = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase__ : Optional[Any] = model(**A ).loss loss.backward() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(A ) UpperCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowercase ( self : Any ): '''simple docstring''' def check_hidden_states_output(A : Optional[Any] ,A : Union[str, Any] ,A : str ): UpperCAmelCase__ : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : List[str] = self.model_tester.num_stages self.assertEqual(len(A ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Tuple = True check_hidden_states_output(A ,A ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __lowercase ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : List[Any] = preprocessor(images=A ,return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**A ) # verify the logits UpperCAmelCase__ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1e-4 ) )
65
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
0
import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : List[str] = str(id_ ) _lowercase : Tuple = None _lowercase : Optional[Any] = None _lowercase : List[Any] = [] _lowercase : List[str] = {} # {vertex:distance} def __lt__( self , _lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def __a ( self , _lowerCAmelCase ): self.neighbors.append(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = weight def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: _lowercase : str = [] for u in graph: _lowercase : Optional[Any] = math.inf _lowercase : List[str] = None _lowercase : str = 0 _lowercase : Any = graph[:] while q: _lowercase : str = min(SCREAMING_SNAKE_CASE ) q.remove(SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase : Any = u _lowercase : Dict = u.edges[v.id] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: _lowercase : Optional[Any] = math.inf _lowercase : Optional[int] = None _lowercase : Tuple = 0 _lowercase : Optional[int] = list(SCREAMING_SNAKE_CASE ) hq.heapify(SCREAMING_SNAKE_CASE ) while h: _lowercase : List[Any] = hq.heappop(SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase : Any = u _lowercase : List[Any] = u.edges[v.id] hq.heapify(SCREAMING_SNAKE_CASE ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
66
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
0
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 50 ) -> int: _lowercase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
67
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]=99 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : int=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : str=37 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=512 , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=4 , ) -> Optional[Any]: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =seq_length __UpperCAmelCase =is_training __UpperCAmelCase =use_attention_mask __UpperCAmelCase =use_token_type_ids __UpperCAmelCase =use_labels __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =type_sequence_label_size __UpperCAmelCase =initializer_range __UpperCAmelCase =num_choices def _a ( self : List[Any] ) -> List[str]: __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase =None if self.use_attention_mask: __UpperCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase =None if self.use_token_type_ids: __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self : List[str] ) -> Dict: __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase =True __UpperCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : List[Any] ) -> List[str]: __UpperCAmelCase =FlaxRobertaModelTester(self ) @slow def _a ( self : Optional[Any] ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase =model_class_name.from_pretrained("""roberta-base""" , from_pt=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
68
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int = 50 ) -> int: __snake_case = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
69
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Dict = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
70
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
'''simple docstring''' import torch from torch import nn class _snake_case (nn.Module): def __init__( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case=1 ,_snake_case=False ): super().__init__() UpperCAmelCase_ : List[Any] = n_token UpperCAmelCase_ : int = d_embed UpperCAmelCase_ : Optional[Any] = d_proj UpperCAmelCase_ : Tuple = cutoffs + [n_token] UpperCAmelCase_ : List[str] = [0] + self.cutoffs UpperCAmelCase_ : str = div_val UpperCAmelCase_ : List[str] = self.cutoffs[0] UpperCAmelCase_ : Optional[int] = len(self.cutoffs ) - 1 UpperCAmelCase_ : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) UpperCAmelCase_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase_ : str = nn.ModuleList() UpperCAmelCase_ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) else: self.out_projs.append(_snake_case ) self.out_layers.append(nn.Linear(_snake_case ,_snake_case ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) self.out_layers.append(nn.Linear(_snake_case ,r_idx - l_idx ) ) UpperCAmelCase_ : Tuple = keep_order def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): if proj is None: UpperCAmelCase_ : int = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase_ : Tuple = nn.functional.linear(_snake_case ,proj.t().contiguous() ) UpperCAmelCase_ : Dict = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase__ ( self ,_snake_case ,_snake_case=None ,_snake_case=False ): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase_ : Optional[Any] = hidden[..., :-1, :].contiguous() UpperCAmelCase_ : Any = labels[..., 1:].contiguous() UpperCAmelCase_ : Dict = hidden.view(-1 ,hidden.size(-1 ) ) UpperCAmelCase_ : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCAmelCase_ : Optional[Any] = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase_ : Any = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: UpperCAmelCase_ : Any = labels != -1_00 UpperCAmelCase_ : Any = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) UpperCAmelCase_ : Union[str, Any] = ( -nn.functional.log_softmax(_snake_case ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase_ : Optional[int] = nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases UpperCAmelCase_ , UpperCAmelCase_ : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Any = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase_ : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase_ : Optional[Any] = self.out_layers[i].weight UpperCAmelCase_ : str = self.out_layers[i].bias if i == 0: UpperCAmelCase_ : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) UpperCAmelCase_ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = weights[0], biases[0], self.out_projs[0] UpperCAmelCase_ : Optional[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = nn.functional.log_softmax(_snake_case ,dim=1 ) if labels is None: UpperCAmelCase_ : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase_ : Any = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Optional[Any] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase_ : int = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase_ : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase_ : Dict = labels.index_select(0 ,_snake_case ) - l_idx UpperCAmelCase_ : List[Any] = head_logprob.index_select(0 ,_snake_case ) UpperCAmelCase_ : Optional[int] = hidden.index_select(0 ,_snake_case ) else: UpperCAmelCase_ : Optional[Any] = hidden if i == 0: if labels is not None: UpperCAmelCase_ : List[str] = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase_ : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = weights[i], biases[i], self.out_projs[i] UpperCAmelCase_ : Union[str, Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : int = nn.functional.log_softmax(_snake_case ,dim=1 ) UpperCAmelCase_ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase_ : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase_ : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase_ : Optional[int] = logprob_i if labels is not None: if (hasattr(self ,"keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 ,_snake_case ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase__ ( self ,_snake_case ): if self.n_clusters == 0: UpperCAmelCase_ : Dict = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Tuple = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase_ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase_ : str = self.out_layers[i].weight UpperCAmelCase_ : str = self.out_layers[i].bias if i == 0: UpperCAmelCase_ : List[Any] = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) UpperCAmelCase_ : List[str] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase_ : List[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase_ : List[Any] = nn.functional.log_softmax(_snake_case ,dim=1 ) UpperCAmelCase_ : Optional[int] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : int = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase_ : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase_ : int = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : int = nn.functional.log_softmax(_snake_case ,dim=1 ) UpperCAmelCase_ : Tuple = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase_ : Union[str, Any] = logprob_i return out
71
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCAmelCase : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } _UpperCAmelCase : List[str] = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } _UpperCAmelCase : Dict = '''▁''' class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] UpperCamelCase__ = BarthezTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) lowercase =vocab_file lowercase =False if not self.vocab_file else True def _A( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase =[self.cls_token_id] lowercase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A( self , snake_case_ , snake_case_ = None ): lowercase =[self.sep_token_id] lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A( self , snake_case_ , snake_case_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase =os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
72
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss a_ : Optional[Any] = pytest.mark.integration @require_faiss class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(a) for x in np.arange(30).tolist()]}) return dset def SCREAMING_SNAKE_CASE__ ( self) -> int: import faiss SCREAMING_SNAKE_CASE = self._create_dummy_dataset() SCREAMING_SNAKE_CASE = dset.map( lambda a , a: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=a , keep_in_memory=a) SCREAMING_SNAKE_CASE = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def SCREAMING_SNAKE_CASE__ ( self) -> Any: import faiss SCREAMING_SNAKE_CASE = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: import faiss SCREAMING_SNAKE_CASE = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: from elasticsearch import Elasticsearch SCREAMING_SNAKE_CASE = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: SCREAMING_SNAKE_CASE = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30) SCREAMING_SNAKE_CASE = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} SCREAMING_SNAKE_CASE = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> str: import faiss SCREAMING_SNAKE_CASE = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 10) # single query SCREAMING_SNAKE_CASE = np.zeros(5 , dtype=np.floataa) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search(a) self.assertRaises(a , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries SCREAMING_SNAKE_CASE = np.eye(5 , dtype=np.floataa)[::-1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search_batch(a) self.assertRaises(a , index.search_batch , queries[0]) SCREAMING_SNAKE_CASE = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE = [indices[0] for indices in total_indices] self.assertGreater(np.min(a) , 0) self.assertListEqual([4, 3, 2, 1, 0] , a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: import faiss SCREAMING_SNAKE_CASE = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) SCREAMING_SNAKE_CASE = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(a): SCREAMING_SNAKE_CASE = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: import faiss SCREAMING_SNAKE_CASE = faiss.IndexFlat(5) SCREAMING_SNAKE_CASE = FaissIndex(custom_index=a) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: import faiss SCREAMING_SNAKE_CASE = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a) as tmp_file: index.save(tmp_file.name) SCREAMING_SNAKE_CASE = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) SCREAMING_SNAKE_CASE = np.zeros(5 , dtype=np.floataa) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search(a) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def lowerCamelCase__ (_UpperCAmelCase): import faiss SCREAMING_SNAKE_CASE = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) SCREAMING_SNAKE_CASE = 'index.faiss' SCREAMING_SNAKE_CASE = F'''mock://{index_name}''' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options) SCREAMING_SNAKE_CASE = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options) SCREAMING_SNAKE_CASE = np.zeros(5 , dtype=np.floataa) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search(_UpperCAmelCase) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: SCREAMING_SNAKE_CASE = Elasticsearch() SCREAMING_SNAKE_CASE = {'acknowledged': True} SCREAMING_SNAKE_CASE = ElasticSearchIndex(es_client=a) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query SCREAMING_SNAKE_CASE = 'foo' SCREAMING_SNAKE_CASE = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search(a) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout SCREAMING_SNAKE_CASE = 'foo' SCREAMING_SNAKE_CASE = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search(a , request_timeout=30) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries SCREAMING_SNAKE_CASE = ['foo', 'bar', 'foobar'] SCREAMING_SNAKE_CASE = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search_batch(a) SCREAMING_SNAKE_CASE = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE = [indices[0] for indices in total_indices] self.assertGreater(np.min(a) , 0) self.assertListEqual([1, 1, 1] , a) # batched queries with timeout SCREAMING_SNAKE_CASE = ['foo', 'bar', 'foobar'] SCREAMING_SNAKE_CASE = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = index.search_batch(a , request_timeout=30) SCREAMING_SNAKE_CASE = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE = [indices[0] for indices in total_indices] self.assertGreater(np.min(a) , 0) self.assertListEqual([1, 1, 1] , a)
73
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 384 if "tiny" in model_name: __SCREAMING_SNAKE_CASE : Tuple = [3, 3, 9, 3] __SCREAMING_SNAKE_CASE : Union[str, Any] = [96, 192, 384, 768] if "small" in model_name: __SCREAMING_SNAKE_CASE : int = [3, 3, 27, 3] __SCREAMING_SNAKE_CASE : List[str] = [96, 192, 384, 768] if "base" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 3, 27, 3] __SCREAMING_SNAKE_CASE : List[Any] = [128, 256, 512, 1_024] __SCREAMING_SNAKE_CASE : Tuple = 512 if "large" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = [3, 3, 27, 3] __SCREAMING_SNAKE_CASE : Dict = [192, 384, 768, 1_536] __SCREAMING_SNAKE_CASE : str = 768 if "xlarge" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 3, 27, 3] __SCREAMING_SNAKE_CASE : List[str] = [256, 512, 1_024, 2_048] __SCREAMING_SNAKE_CASE : str = 1_024 # set label information __SCREAMING_SNAKE_CASE : List[str] = 150 __SCREAMING_SNAKE_CASE : Tuple = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : List[Any] = '''ade20k-id2label.json''' __SCREAMING_SNAKE_CASE : Tuple = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Tuple = {int(snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = ConvNextConfig( depths=snake_case , hidden_sizes=snake_case , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __SCREAMING_SNAKE_CASE : int = UperNetConfig( backbone_config=snake_case , auxiliary_in_channels=snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case , ) return config def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = dct.pop(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = val def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __SCREAMING_SNAKE_CASE : Tuple = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE : Dict = torch.hub.load_state_dict_from_url(snake_case , map_location='''cpu''' )['''state_dict'''] __SCREAMING_SNAKE_CASE : Dict = get_upernet_config(snake_case ) __SCREAMING_SNAKE_CASE : Dict = UperNetForSemanticSegmentation(snake_case ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(snake_case ) if "bn" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''bn''' , '''batch_norm''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = val # rename keys __SCREAMING_SNAKE_CASE : int = create_rename_keys(snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) model.load_state_dict(snake_case ) # verify on image __SCREAMING_SNAKE_CASE : Optional[Any] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('''RGB''' ) __SCREAMING_SNAKE_CASE : Tuple = SegformerImageProcessor() __SCREAMING_SNAKE_CASE : Tuple = processor(snake_case , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case ) if model_name == "upernet-convnext-tiny": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __SCREAMING_SNAKE_CASE : int = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
74
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''nielsr/canine-s''': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” UpperCamelCase__ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCamelCase__ = 0 UpperCamelCase__ = 0Xe_000 UpperCamelCase__ = 0Xe_001 UpperCamelCase__ = 0Xe_002 UpperCamelCase__ = 0Xe_003 UpperCamelCase__ = 0Xe_004 # Maps special codepoints to human-readable names. UpperCamelCase__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCamelCase__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCamelCase_ ( __a ): lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , _A : List[Any]=chr(_A ) , _A : Optional[Any]=chr(_A ) , _A : Dict=chr(_A ) , _A : Optional[int]=chr(_A ) , _A : Optional[int]=chr(_A ) , _A : int=chr(_A ) , _A : Tuple=False , _A : str=2_048 , **_A : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token UpperCAmelCase__ : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token UpperCAmelCase__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token UpperCAmelCase__ : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token UpperCAmelCase__ : List[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , model_max_length=_A , **_A , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase__ : int = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase__ : Dict = UNICODE_VOCAB_SIZE UpperCAmelCase__ : List[Any] = len(self._special_codepoints ) @property def lowercase_ ( self : Dict ): '''simple docstring''' return self._unicode_vocab_size def lowercase_ ( self : Tuple , _A : str ): '''simple docstring''' return list(_A ) def lowercase_ ( self : int , _A : str ): '''simple docstring''' try: return ord(_A ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_A ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def lowercase_ ( self : Any , _A : Optional[Any] ): '''simple docstring''' return "".join(_A ) def lowercase_ ( self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : Any = [self.cls_token_id] UpperCAmelCase__ : Tuple = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowercase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) UpperCAmelCase__ : Tuple = [1] + ([0] * len(_A )) + [1] if token_ids_a is not None: result += ([0] * len(_A )) + [1] return result def lowercase_ ( self : List[str] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] UpperCAmelCase__ : Union[str, Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowercase_ ( self : Optional[Any] , _A : str , _A : Optional[str] = None ): '''simple docstring''' return ()
75
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase_ ( snake_case ): def _lowerCamelCase ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ) -> Union[str, Any]: if tokenize_kwargs is None: __lowercase : Union[str, Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __lowercase : str = truncation __lowercase : Optional[int] = tokenize_kwargs __lowercase : List[str] = {} if return_tensors is not None: __lowercase : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def _lowerCamelCase ( self , UpperCamelCase_ , **UpperCamelCase_ ) -> Dict[str, GenericTensor]: __lowercase : List[str] = self.framework __lowercase : Optional[int] = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) return model_inputs def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: __lowercase : Optional[Any] = self.model(**UpperCamelCase_ ) return model_outputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=False ) -> List[Any]: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: return super().__call__(*UpperCamelCase_ , **UpperCamelCase_ )
76
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) class a__ ( __magic_name__ ): lowercase_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : Tuple="<unk>" , UpperCamelCase_ : List[str]="<pad>" , UpperCamelCase_ : Union[str, Any]=125 , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : int = [F"<extra_id_{i}>" for i in range(UpperCamelCase_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase : Dict = len(set(filter(lambda UpperCamelCase_: bool("extra_id" in str(UpperCamelCase_)) , UpperCamelCase_))) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens") __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else pad_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else unk_token super().__init__( eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : List[str] = extra_ids __UpperCAmelCase : int = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase : Any = len(self.special_tokens_encoder) __UpperCAmelCase : List[Any] = len(UpperCamelCase_) for i, token in enumerate(UpperCamelCase_): __UpperCAmelCase : Union[str, Any] = self.vocab_size + i - n __UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def a_ ( self : List[Any]): """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def a_ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase_)) + [1] return ([0] * len(UpperCamelCase_)) + [1] + ([0] * len(UpperCamelCase_)) + [1] def a_ ( self : Optional[Any] , UpperCamelCase_ : List[int]): """simple docstring""" if len(UpperCamelCase_) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added.") return token_ids else: return token_ids + [self.eos_token_id] def a_ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def a_ ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : Optional[Any] = self._add_eos_if_not_present(UpperCamelCase_) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase : List[Any] = self._add_eos_if_not_present(UpperCamelCase_) return token_ids_a + token_ids_a def a_ ( self : List[str] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : Any = [chr(UpperCamelCase_) for i in text.encode("utf-8")] return tokens def a_ ( self : Tuple , UpperCamelCase_ : List[Any]): """simple docstring""" if token in self.special_tokens_encoder: __UpperCAmelCase : Any = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase : int = self.added_tokens_encoder[token] elif len(UpperCamelCase_) != 1: __UpperCAmelCase : Optional[Any] = self.unk_token_id else: __UpperCAmelCase : Any = ord(UpperCamelCase_) + self._num_special_tokens return token_id def a_ ( self : Any , UpperCamelCase_ : List[str]): """simple docstring""" if index in self.special_tokens_decoder: __UpperCAmelCase : Any = self.special_tokens_decoder[index] else: __UpperCAmelCase : List[str] = chr(index - self._num_special_tokens) return token def a_ ( self : Dict , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : str = b"" for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase : Tuple = self.special_tokens_decoder[token].encode("utf-8") elif token in self.added_tokens_decoder: __UpperCAmelCase : Any = self.special_tokens_decoder[token].encode("utf-8") elif token in self.special_tokens_encoder: __UpperCAmelCase : Optional[int] = token.encode("utf-8") elif token in self.added_tokens_encoder: __UpperCAmelCase : Optional[Any] = token.encode("utf-8") else: __UpperCAmelCase : Any = bytes([ord(UpperCamelCase_)]) bstring += tok_string __UpperCAmelCase : List[Any] = bstring.decode("utf-8" , errors="ignore") return string def a_ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" return ()
77
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("RGB" ) UpperCAmelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase_ = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) return image def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase_ = re.sub("visual_encoder*" , "vision_model.encoder" , snake_case_ ) if "blocks" in key: UpperCAmelCase_ = re.sub(R"blocks" , "layers" , snake_case_ ) if "attn" in key: UpperCAmelCase_ = re.sub(R"attn" , "self_attn" , snake_case_ ) if "norm1" in key: UpperCAmelCase_ = re.sub(R"norm1" , "layer_norm1" , snake_case_ ) if "norm2" in key: UpperCAmelCase_ = re.sub(R"norm2" , "layer_norm2" , snake_case_ ) if "encoder.norm" in key: UpperCAmelCase_ = re.sub(R"encoder.norm" , "post_layernorm" , snake_case_ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase_ = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , snake_case_ ) if "encoder.pos_embed" in key: UpperCAmelCase_ = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , snake_case_ ) if "encoder.cls_token" in key: UpperCAmelCase_ = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , snake_case_ ) if "self_attn" in key: UpperCAmelCase_ = re.sub(R"self_attn.proj" , "self_attn.projection" , snake_case_ ) return key @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = BlipConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) UpperCAmelCase_ = BlipForConditionalGeneration(snake_case_ ).eval() UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" UpperCAmelCase_ = blip_decoder(pretrained=snake_case_ , image_size=3_84 , vit="base" ) UpperCAmelCase_ = pt_model.eval() UpperCAmelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value hf_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = 3_84 UpperCAmelCase_ = load_demo_image(image_size=snake_case_ , device="cpu" ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = tokenizer(["a picture of"] ).input_ids UpperCAmelCase_ = hf_model.generate(snake_case_ , snake_case_ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] UpperCAmelCase_ = hf_model.generate(snake_case_ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase_ = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) UpperCAmelCase_ = blip_vqa(pretrained=snake_case_ , image_size=snake_case_ , vit="base" ) vqa_model.eval() UpperCAmelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForQuestionAnswering(snake_case_ ) hf_vqa_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = ["How many dogs are in this image?"] UpperCAmelCase_ = tokenizer(snake_case_ , return_tensors="pt" ).input_ids UpperCAmelCase_ = hf_vqa_model.generate(snake_case_ , snake_case_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" UpperCAmelCase_ = blip_itm(pretrained=snake_case_ , image_size=snake_case_ , vit="base" ) itm_model.eval() UpperCAmelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForImageTextRetrieval(snake_case_ ) UpperCAmelCase_ = ["A picture of a woman with a dog sitting in a beach"] UpperCAmelCase_ = tokenizer( snake_case_ , return_tensors="pt" , padding="max_length" , truncation=snake_case_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case_ ) hf_itm_model.eval() UpperCAmelCase_ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) UpperCAmelCase_ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[Any] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
78
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.dummy_uncond_unet UpperCAmelCase__ : Union[str, Any] = ScoreSdeVeScheduler() UpperCAmelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) sde_ve.to(_lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase__ : Any = torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_lowerCAmelCase ).images UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_lowerCAmelCase , return_dict=_lowerCAmelCase )[ 0 ] UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] UpperCAmelCase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = """google/ncsnpp-church-256""" UpperCAmelCase__ : str = UNetaDModel.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : int = ScoreSdeVeScheduler.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : Tuple = ScoreSdeVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) sde_ve.to(_lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase__ : List[str] = torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=_lowerCAmelCase ).images UpperCAmelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ : List[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
79
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Dict = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case : List[str] = logging.get_logger(__name__) _snake_case : str = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : str = "deformable_detr" __UpperCAmelCase : List[str] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , lowerCamelCase : int=True , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : str=300 , lowerCamelCase : Tuple=1024 , lowerCamelCase : Dict=6 , lowerCamelCase : Any=1024 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Any=6 , lowerCamelCase : Dict=1024 , lowerCamelCase : Dict=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]="relu" , lowerCamelCase : Optional[Any]=256 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : List[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : List[str]=0.02 , lowerCamelCase : Optional[Any]=1.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Any=False , lowerCamelCase : int="sine" , lowerCamelCase : Union[str, Any]="resnet50" , lowerCamelCase : int=True , lowerCamelCase : List[str]=False , lowerCamelCase : int=4 , lowerCamelCase : str=4 , lowerCamelCase : List[str]=4 , lowerCamelCase : Any=False , lowerCamelCase : Any=300 , lowerCamelCase : Dict=False , lowerCamelCase : List[Any]=1 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Any=2 , lowerCamelCase : Union[str, Any]=1 , lowerCamelCase : Optional[int]=1 , lowerCamelCase : Optional[Any]=5 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=0.1 , lowerCamelCase : List[str]=0.25 , lowerCamelCase : Optional[int]=False , **lowerCamelCase : int , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __snake_case : Optional[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[Any] = backbone_config.get("model_type" ) __snake_case : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __snake_case : str = config_class.from_dict(lowerCamelCase ) __snake_case : Union[str, Any] = use_timm_backbone __snake_case : List[str] = backbone_config __snake_case : Optional[int] = num_channels __snake_case : List[Any] = num_queries __snake_case : Tuple = max_position_embeddings __snake_case : Tuple = d_model __snake_case : List[str] = encoder_ffn_dim __snake_case : Tuple = encoder_layers __snake_case : Tuple = encoder_attention_heads __snake_case : Dict = decoder_ffn_dim __snake_case : int = decoder_layers __snake_case : Optional[int] = decoder_attention_heads __snake_case : Any = dropout __snake_case : List[Any] = attention_dropout __snake_case : List[str] = activation_dropout __snake_case : str = activation_function __snake_case : Optional[int] = init_std __snake_case : Any = init_xavier_std __snake_case : Optional[Any] = encoder_layerdrop __snake_case : Union[str, Any] = auxiliary_loss __snake_case : List[Any] = position_embedding_type __snake_case : List[str] = backbone __snake_case : Tuple = use_pretrained_backbone __snake_case : Dict = dilation # deformable attributes __snake_case : Any = num_feature_levels __snake_case : List[Any] = encoder_n_points __snake_case : List[Any] = decoder_n_points __snake_case : int = two_stage __snake_case : Any = two_stage_num_proposals __snake_case : List[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __snake_case : str = class_cost __snake_case : Union[str, Any] = bbox_cost __snake_case : str = giou_cost # Loss coefficients __snake_case : int = mask_loss_coefficient __snake_case : List[str] = dice_loss_coefficient __snake_case : Any = bbox_loss_coefficient __snake_case : List[Any] = giou_loss_coefficient __snake_case : Optional[Any] = eos_coefficient __snake_case : Optional[Any] = focal_alpha __snake_case : int = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Optional[int] ) -> int: return self.encoder_attention_heads @property def __snake_case ( self : Dict ) -> int: return self.d_model def __snake_case ( self : Tuple ) -> Optional[int]: __snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __snake_case : Union[str, Any] = self.backbone_config.to_dict() __snake_case : Optional[Any] = self.__class__.model_type return output
81
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "depth_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : int="relu6" , _UpperCAmelCase : Optional[int]=1280 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Optional[Any]=None , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = depth_divisible_by UpperCAmelCase_ = min_depth UpperCAmelCase_ = expand_ratio UpperCAmelCase_ = tf_padding UpperCAmelCase_ = output_stride UpperCAmelCase_ = first_layer_is_expansion UpperCAmelCase_ = finegrained_output UpperCAmelCase_ = hidden_act UpperCAmelCase_ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowercase__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModelTester(self ) UpperCAmelCase_ = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def lowercase__ ( self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 16 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __snake_case ( _lowercase , _lowercase , _lowercase): @register_to_config def __init__( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : bool = False , ): """simple docstring""" super().__init__() _lowerCamelCase : str = nn.Embedding(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = nn.Embedding(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : str = False _lowerCamelCase : List[Any] = nn.Dropout(p=__lowerCAmelCase ) _lowerCamelCase : Tuple = TaConfig( vocab_size=__lowerCAmelCase , d_model=__lowerCAmelCase , num_heads=__lowerCAmelCase , d_kv=__lowerCAmelCase , d_ff=__lowerCAmelCase , dropout_rate=__lowerCAmelCase , feed_forward_proj=__lowerCAmelCase , is_decoder=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , ) _lowerCamelCase : Union[str, Any] = nn.ModuleList() for lyr_num in range(__lowerCAmelCase ): _lowerCamelCase : str = TaBlock(__lowerCAmelCase ) self.encoders.append(__lowerCAmelCase ) _lowerCamelCase : List[Any] = TaLayerNorm(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = nn.Dropout(p=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : int = self.token_embedder(__lowerCAmelCase ) _lowerCamelCase : List[Any] = encoder_input_tokens.shape[1] _lowerCamelCase : int = torch.arange(__lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(__lowerCAmelCase ) _lowerCamelCase : Any = self.dropout_pre(__lowerCAmelCase ) # inverted the attention mask _lowerCamelCase : List[str] = encoder_input_tokens.size() _lowerCamelCase : Optional[int] = self.get_extended_attention_mask(__lowerCAmelCase , __lowerCAmelCase ) for lyr in self.encoders: _lowerCamelCase : Union[str, Any] = lyr(__lowerCAmelCase , __lowerCAmelCase )[0] _lowerCamelCase : Any = self.layer_norm(__lowerCAmelCase ) return self.dropout_post(__lowerCAmelCase ), encoder_inputs_mask
83
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case : lowercase_ = BlenderbotSmallConfig lowercase_ = {} lowercase_ = 'gelu' def __init__( self : List[Any] , a_ : int , a_ : Any=13 , a_ : List[str]=7 , a_ : Optional[int]=True , a_ : Tuple=False , a_ : Optional[int]=99 , a_ : Tuple=32 , a_ : Union[str, Any]=2 , a_ : Union[str, Any]=4 , a_ : str=37 , a_ : List[Any]=0.1 , a_ : int=0.1 , a_ : List[Any]=20 , a_ : Optional[Any]=2 , a_ : List[str]=1 , a_ : Tuple=0 , )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = eos_token_id SCREAMING_SNAKE_CASE__ : Any = pad_token_id SCREAMING_SNAKE_CASE__ : Optional[int] = bos_token_id def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_blenderbot_small_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def __lowercase( self : Dict , a_ : Dict , a_ : str )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFBlenderbotSmallModel(config=a_ ).get_decoder() SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : List[str] = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE__ : Any = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE__ : str = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , attention_mask=a_ , head_mask=a_ , use_cache=a_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a_ , attention_mask=a_ )[0] SCREAMING_SNAKE_CASE__ : int = model(a_ , attention_mask=a_ , past_key_values=a_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Any = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a_ , a_ , rtol=1e-3 ) def _a ( lowercase__ : Any , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Any=None , lowercase__ : str=None , lowercase__ : int=None , lowercase__ : str=None , lowercase__ : Tuple=None , ): '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowercase_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowercase_ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def __lowercase( self : Any )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = ConfigTester(self , config_class=a_ ) def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" self.config_tester.run_common_tests() def __lowercase( self : List[str] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_tokenizers @require_tf class snake_case ( unittest.TestCase ): lowercase_ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] lowercase_ = 'facebook/blenderbot_small-90M' @cached_property def __lowercase( self : int )-> Any: """simple docstring""" # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def __lowercase( self : Optional[int] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowercase( self : str )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE__ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=a_ , ) SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=a_ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
85
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __a :Optional[Any] = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __a :List[Any] = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = (images / 2 + 0.5).clamp(0 ,1 ) A_ = images.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() A_ = numpy_to_pil(__UpperCamelCase ) return images def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if images.ndim == 3: A_ = images[None, ...] A_ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images A_ = [Image.fromarray(image.squeeze() ,mode="L" ) for image in images] else: A_ = [Image.fromarray(__UpperCamelCase ) for image in images] return pil_images
86
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (PNDMScheduler,) UpperCAmelCase__ = (('''num_inference_steps''', 50),) def SCREAMING_SNAKE_CASE ( self : Dict , **UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : int=0 , **UpperCAmelCase__ : str) ->Tuple: '''simple docstring''' A__ = dict(self.forward_default_kwargs) A__ = kwargs.pop('''num_inference_steps''' , UpperCAmelCase__) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residuals A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__) A__ = scheduler_class.from_pretrained(UpperCAmelCase__) new_scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residuals A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = new_scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = new_scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]=0 , **UpperCAmelCase__ : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = dict(self.forward_default_kwargs) A__ = kwargs.pop('''num_inference_steps''' , UpperCAmelCase__) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__) A__ = scheduler_class.from_pretrained(UpperCAmelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = new_scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = new_scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Any , **UpperCAmelCase__ : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__) for i, t in enumerate(scheduler.prk_timesteps): A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample for i, t in enumerate(scheduler.plms_timesteps): A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' A__ = dict(self.forward_default_kwargs) A__ = kwargs.pop('''num_inference_steps''' , UpperCAmelCase__) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase__ , '''set_timesteps'''): scheduler.set_timesteps(UpperCAmelCase__) elif num_inference_steps is not None and not hasattr(UpperCAmelCase__ , '''set_timesteps'''): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(UpperCAmelCase__ , 0 , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = scheduler.step_prk(UpperCAmelCase__ , 1 , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) A__ = scheduler.step_plms(UpperCAmelCase__ , 0 , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = scheduler.step_plms(UpperCAmelCase__ , 1 , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase__) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1) A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = 27 for scheduler_class in self.scheduler_classes: A__ = self.dummy_sample A__ = 0.1 * sample A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(UpperCAmelCase__) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): A__ = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: '''simple docstring''' A__ = self.full_loop() A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any) ->Any: '''simple docstring''' A__ = self.full_loop(prediction_type='''v_prediction''') A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
87
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class lowercase__ ( A_ ): __UpperCAmelCase = '''markuplm''' def __init__( self , SCREAMING_SNAKE_CASE=3_0522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-1_2 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=216 , SCREAMING_SNAKE_CASE=1001 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> int: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _lowerCamelCase : str = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Tuple = classifier_dropout # additional properties _lowerCamelCase : Tuple = max_depth _lowerCamelCase : List[Any] = max_xpath_tag_unit_embeddings _lowerCamelCase : Optional[int] = max_xpath_subs_unit_embeddings _lowerCamelCase : Tuple = tag_pad_id _lowerCamelCase : int = subs_pad_id _lowerCamelCase : Optional[int] = xpath_unit_hidden_size
88
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE : Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : str = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) SCREAMING_SNAKE_CASE : Any = spec.loader.load_module() SCREAMING_SNAKE_CASE : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE : str = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") SCREAMING_SNAKE_CASE : Dict = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def UpperCamelCase_( ) -> List[Any]: _lowercase : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): _lowercase : Any = False # source code of `config_class` _lowercase : str = inspect.getsource(lowerCamelCase_ ) _lowercase : Optional[Any] = _re_checkpoint.findall(lowerCamelCase_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _lowercase , _lowercase : List[str] = checkpoint # verify the checkpoint name corresponds to the checkpoint link _lowercase : Union[str, Any] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _lowercase : List[Any] = True break _lowercase : List[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: _lowercase : Union[str, Any] = '\n'.join(sorted(lowerCamelCase_ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
89
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ) -> Tuple: lowerCAmelCase__ = HfArgumentParser(A ) lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ = TensorFlowBenchmark(args=A ) try: lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase__ = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowerCAmelCase__ = ''' '''.join(str(A ).split(''' ''' )[:-1] ) lowerCAmelCase__ = '''''' lowerCAmelCase__ = eval(str(A ).split(''' ''' )[-1] ) lowerCAmelCase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A ) if len(A ) > 0: lowerCAmelCase__ = full_error_msg + begin_error_msg + str(A ) raise ValueError(A ) benchmark.run() if __name__ == "__main__": main()
90
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowercase = float('''nan''') class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Tuple ) -> Any: A = sys.stdout A = open(A_ ,'a' ) def __getattr__( self : int ,A_ : Optional[Any] ) -> Tuple: return getattr(self.stdout ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> str: self.stdout.write(A_ ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' ,'' ,A_ ,0 ,re.M ) ) def _snake_case ( snake_case__ : Optional[Any]=80 , snake_case__ : List[str]=False ): A = [] # deal with critical env vars A = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: A = os.environ.get(snake_case__ , snake_case__ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) A = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A = [] A = '' while len(snake_case__ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) A = '' return "\\\n".join(snake_case__ ) def _snake_case ( snake_case__ : str , snake_case__ : str ): # unwrap multi-line input A = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own A = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) A = subprocess.run(snake_case__ , capture_output=snake_case__ , text=snake_case__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams A = variation.replace(' ' , '-' ) with open(Path(snake_case__ ) / F'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / F'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: A = json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[Any] , ): A = [] A = [] A = F'{id}: {variation:<{longest_variation_len}}' A = F'{preamble}: ' A = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ) , desc=snake_case__ , leave=snake_case__ ): A = process_run_single( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A = single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" A = F'\33[2K\r{outcome}' if len(snake_case__ ) > 0: A = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A = round(mean_metrics[target_metric_key] , 2 ) A = F'{outcome} {mean_target}' if len(snake_case__ ) > 1: results_str += F' {tuple(round(snake_case__ , 2 ) for x in results )}' print(snake_case__ ) A = variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def _snake_case ( ): A = torch.cuda.get_device_properties(torch.device('cuda' ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def _snake_case ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): A = pd.DataFrame(snake_case__ ) A = 'variation' A = 'diff_%' A = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel A = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): A = df.apply( lambda snake_case__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns A = [variation_key, target_metric_key, diff_key, *report_metric_keys] A = df.reindex(snake_case__ , axis='columns' ) # reorder cols # capitalize A = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible A = df.rename(lambda snake_case__ : c.replace('_' , '<br>' ) , axis='columns' ) A = df.rename(lambda snake_case__ : c.replace('_' , '\n' ) , axis='columns' ) A = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ , floatfmt='.2f' )] print('\n\n'.join(snake_case__ ) ) def _snake_case ( ): A = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=snake_case__ , type=snake_case__ , nargs='+' , required=snake_case__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=snake_case__ , type=snake_case__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=snake_case__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=snake_case__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=snake_case__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=snake_case__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) A = parser.parse_args() A = args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) A = get_base_command(snake_case__ , snake_case__ ) # split each dimension into its --foo variations A = [list(map(str.strip , re.split(r'\|' , snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A = list(map(str.strip , map(' '.join , itertools.product(*snake_case__ ) ) ) ) A = max(len(snake_case__ ) for x in variations ) # split wanted keys A = args.report_metric_keys.split() # capture prints into a log file for convenience A = F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) A = Tee(snake_case__ ) print(F'\n*** Running {len(snake_case__ )} benchmarks:' ) print(F'Base command: {" ".join(snake_case__ )}' ) A = 'variation' A = [] for id, variation in enumerate(tqdm(snake_case__ , desc='Total completion: ' , leave=snake_case__ ) ): A = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , args.target_metric_key , snake_case__ , args.repeat_times , snake_case__ , args.verbose , ) ) process_results(snake_case__ , args.target_metric_key , snake_case__ , args.base_variation , snake_case__ ) if __name__ == "__main__": main()
91
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : Any ) -> Union[str, Any]: # noqa: E741 lowercase : List[Any] =len(__magic_name__ ) lowercase : List[str] =0 lowercase : List[str] =[0] * n lowercase : List[Any] =[False] * n lowercase : List[str] =[False] * n def dfs(__magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : str ): if parent == root: out_edge_count += 1 lowercase : Dict =True lowercase : int =at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase : Optional[int] =dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase : int =min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase : str =True # AP found via cycle if at == low[to]: lowercase : str =True else: lowercase : Optional[Any] =min(low[at] , __magic_name__ ) return out_edge_count for i in range(__magic_name__ ): if not visited[i]: lowercase : Optional[Any] =0 lowercase : List[Any] =dfs(__magic_name__ , __magic_name__ , -1 , __magic_name__ ) lowercase : int =out_edge_count > 1 for x in range(len(__magic_name__ ) ): if is_art[x] is True: print(__magic_name__ ) # Adjacency list of graph UpperCamelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
92
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : str =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Tuple =2 lowercase : Dict =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase : List[Any] =i while n % i == 0: lowercase : str =n // i i += 1 return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
94
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ,A__ = None ,): UpperCAmelCase_ : int = {} if train_file is not None: UpperCAmelCase_ : Tuple = [train_file] if eval_file is not None: UpperCAmelCase_ : Union[str, Any] = [eval_file] if test_file is not None: UpperCAmelCase_ : Tuple = [test_file] UpperCAmelCase_ : Any = datasets.load_dataset("csv" ,data_files=A__ ) UpperCAmelCase_ : Optional[int] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase_ : List[str] = features_name.pop(A__ ) UpperCAmelCase_ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase_ : int = {label: i for i, label in enumerate(A__ )} UpperCAmelCase_ : int = tokenizer.model_input_names UpperCAmelCase_ : Tuple = {} if len(A__ ) == 1: for k in files.keys(): UpperCAmelCase_ : Any = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=A__ ,max_length=A__ ,padding="max_length" ) ,batched=A__ ,) elif len(A__ ) == 2: for k in files.keys(): UpperCAmelCase_ : Dict = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=A__ ,max_length=A__ ,padding="max_length" ,) ,batched=A__ ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase_ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase_ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase_ : str = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : int = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase_ : List[Any] = ( tf.data.Dataset.from_generator( A__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase_ : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase_ : Optional[Any] = ( tf.data.Dataset.from_generator( A__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase_ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase_ : Dict = ( tf.data.Dataset.from_generator( A__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase_ : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCamelCase_ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : __magic_name__ = field(metadata={'''help''': '''Which column contains the label'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''The path of the training file'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''The path of the development file'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''The path of the test file'''} ) __magic_name__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __magic_name__ = field( default=__A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class UpperCamelCase_ : __magic_name__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __magic_name__ = field( default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=A__ ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) UpperCAmelCase_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(A__ ) ,labelaid=A__ ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="text-classification" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): UpperCAmelCase_ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(".bin" in model_args.model_name_or_path ) ,config=A__ ,cache_dir=model_args.cache_dir ,) def compute_metrics(A__ ) -> Dict: UpperCAmelCase_ : Any = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase_ : Optional[int] = TFTrainer( model=A__ ,args=A__ ,train_dataset=A__ ,eval_dataset=A__ ,compute_metrics=A__ ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ : str = trainer.evaluate() UpperCAmelCase_ : Tuple = os.path.join(training_args.output_dir ,"eval_results.txt" ) with open(A__ ,"w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
95
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
"""simple docstring""" import math def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any ) -> int: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__UpperCAmelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __lowerCamelCase = 'Enter the base and the power separated by a comma: ' __lowerCamelCase , __lowerCamelCase = map(int, input(prompt).split(',')) __lowerCamelCase , __lowerCamelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. __lowerCamelCase = res(xa, ya) __lowerCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
96
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } __a = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } __a = '</w>' __a = '@@ ' def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char return pairs # Speech2Text2 has no max input length __a = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class lowercase__( UpperCAmelCase ): """simple docstring""" a :int = VOCAB_FILES_NAMES a :Optional[int] = PRETRAINED_VOCAB_FILES_MAP a :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :Tuple = ['input_ids', 'attention_mask'] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : Tuple="<pad>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : int="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , **SCREAMING_SNAKE_CASE_ : str , ) -> Optional[int]: super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = do_lower_case with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowercase_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) lowercase_ = None lowercase_ = None else: with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowercase_ = merges_handle.read().split('''\n''' )[:-1] lowercase_ = [tuple(merge.split()[:2] ) for merge in merges] lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase_ = {} @property def _lowercase ( self : Any ) -> int: return len(self.decoder ) def _lowercase ( self : List[str] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> int: lowercase_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowercase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowercase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ) if word == "\n " + BPE_TOKEN_MERGES: lowercase_ = '''\n''' + BPE_TOKEN_MERGES if word.endswith(SCREAMING_SNAKE_CASE_ ): lowercase_ = word.replace(SCREAMING_SNAKE_CASE_ , '''''' ) lowercase_ = word.replace(''' ''' , SCREAMING_SNAKE_CASE_ ) lowercase_ = word return word def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowercase_ = text.lower() lowercase_ = text.split() lowercase_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> int: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> str: lowercase_ = self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) return result def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ) # make sure @@ tokens are concatenated lowercase_ = ''''''.join(string.split(SCREAMING_SNAKE_CASE_ ) ) return string def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) lowercase_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowercase_ = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
97
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = PNDMScheduler() _UpperCamelCase = PNDMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pndm.to(lowerCAmelCase__ ) pndm.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=lowerCAmelCase__ , num_inference_steps=20 , output_type='''numpy''' ).images _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=lowerCAmelCase__ , num_inference_steps=20 , output_type='''numpy''' , return_dict=lowerCAmelCase__ )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = '''google/ddpm-cifar10-32''' _UpperCamelCase = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = PNDMScheduler() _UpperCamelCase = PNDMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pndm.to(lowerCAmelCase__ ) pndm.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=lowerCAmelCase__ , output_type='''numpy''' ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
98
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
0
def __snake_case ( lowerCAmelCase_ ) -> bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCAmelCase_ ) if number < 0: return False SCREAMING_SNAKE_CASE__ = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
100
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase__ : Tuple ={ 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """wavlm""" def __init__( self , lowerCAmelCase__=3_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3_2_0 , lowerCAmelCase__=8_0_0 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=1_0 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1_0 , lowerCAmelCase__=3_2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=8_0 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_norm SCREAMING_SNAKE_CASE_ : List[Any] = feat_extract_activation SCREAMING_SNAKE_CASE_ : Optional[int] = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = conv_bias SCREAMING_SNAKE_CASE_ : Any = num_buckets SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_bucket_distance SCREAMING_SNAKE_CASE_ : Any = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ : Dict = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : int = hidden_dropout SCREAMING_SNAKE_CASE_ : Dict = attention_dropout SCREAMING_SNAKE_CASE_ : int = activation_dropout SCREAMING_SNAKE_CASE_ : List[str] = feat_proj_dropout SCREAMING_SNAKE_CASE_ : int = final_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = layerdrop SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = num_ctc_classes SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = do_stable_layer_norm SCREAMING_SNAKE_CASE_ : int = use_weighted_layer_sum SCREAMING_SNAKE_CASE_ : Optional[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : Any = apply_spec_augment SCREAMING_SNAKE_CASE_ : Tuple = mask_time_prob SCREAMING_SNAKE_CASE_ : List[Any] = mask_time_length SCREAMING_SNAKE_CASE_ : Tuple = mask_time_min_masks SCREAMING_SNAKE_CASE_ : Union[str, Any] = mask_feature_prob SCREAMING_SNAKE_CASE_ : Dict = mask_feature_length # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ : str = num_codevectors_per_group SCREAMING_SNAKE_CASE_ : Dict = num_codevector_groups SCREAMING_SNAKE_CASE_ : str = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ : Tuple = num_negatives SCREAMING_SNAKE_CASE_ : Optional[int] = codevector_dim SCREAMING_SNAKE_CASE_ : Optional[int] = proj_codevector_dim SCREAMING_SNAKE_CASE_ : str = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ : Any = ctc_loss_reduction SCREAMING_SNAKE_CASE_ : Union[str, Any] = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE_ : Dict = add_adapter SCREAMING_SNAKE_CASE_ : Dict = adapter_kernel_size SCREAMING_SNAKE_CASE_ : Tuple = adapter_stride SCREAMING_SNAKE_CASE_ : List[Any] = num_adapter_layers SCREAMING_SNAKE_CASE_ : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : Optional[Any] = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = xvector_output_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
101
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __magic_name__ : int = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase__ : """simple docstring""" def __init__( self , _A , _A=1_6 , _A=1_3 , _A=7 , _A=1_4 , _A=1_0 , _A=1_9 , _A=5 , _A=4 , _A=True , _A=1_6 , _A=2 , _A=4 , _A=4 , _A="gelu" , _A=0.1 , _A=0.1 , _A=[1, 2, 3, 4, 5] , _A=2_5 , _A=5 , ): '''simple docstring''' UpperCamelCase : Dict = d_model UpperCamelCase : Tuple = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Union[str, Any] = prediction_length UpperCamelCase : List[Any] = context_length UpperCamelCase : int = cardinality UpperCamelCase : Tuple = num_time_features UpperCamelCase : List[Any] = lags_sequence UpperCamelCase : Optional[Any] = embedding_dimension UpperCamelCase : Any = is_training UpperCamelCase : Any = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Any = intermediate_size UpperCamelCase : Tuple = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = context_length UpperCamelCase : str = prediction_length + label_length UpperCamelCase : Dict = label_length UpperCamelCase : Any = moving_average UpperCamelCase : int = autocorrelation_factor def _a ( self ): '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : List[str] = config.context_length + max(config.lags_sequence ) UpperCamelCase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCamelCase : Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) UpperCamelCase : str = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCamelCase : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] ) UpperCamelCase : Dict = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.get_config() UpperCamelCase : int = self.prepare_autoformer_inputs_dict(_A ) return config, inputs_dict def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : str = AutoformerModel(config=_A ).to(_A ).eval() UpperCamelCase : List[str] = model(**_A ) UpperCamelCase : Any = outputs.encoder_last_hidden_state UpperCamelCase : List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : Optional[Any] = model.get_encoder() encoder.save_pretrained(_A ) UpperCamelCase : Union[str, Any] = AutoformerEncoder.from_pretrained(_A ).to(_A ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = model.create_network_inputs(**_A ) UpperCamelCase , UpperCamelCase : Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCamelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCamelCase : str = encoder(inputs_embeds=_A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) UpperCamelCase : Tuple = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCamelCase : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCamelCase : List[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCamelCase : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : Any = model.get_decoder() decoder.save_pretrained(_A ) UpperCamelCase : Optional[Any] = AutoformerDecoder.from_pretrained(_A ).to(_A ) UpperCamelCase : str = decoder( trend=_A , inputs_embeds=_A , encoder_hidden_states=_A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCAmelCase : str = (AutoformerForPrediction,) if is_torch_available() else () __lowerCAmelCase : Dict = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Any = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Optional[int] = False def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = AutoformerModelTester(self ) UpperCamelCase : int = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = model_class(_A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) UpperCamelCase , UpperCamelCase : Optional[Any] = model_class.from_pretrained(_A , output_loading_info=_A ) self.assertEqual(info["""missing_keys"""] , [] ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_A ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase : Any = inspect.signature(getattr(_A , """forward""" ) ) # The main input is the name of the argument after `self` UpperCamelCase : Optional[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(_A ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[Any] = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(_A )] , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Dict = True UpperCamelCase : Tuple = getattr(self.model_tester , """seq_length""" , _A ) UpperCamelCase : Dict = getattr(self.model_tester , """decoder_seq_length""" , _A ) UpperCamelCase : Optional[Any] = getattr(self.model_tester , """encoder_seq_length""" , _A ) UpperCamelCase : Optional[int] = getattr(self.model_tester , """d_model""" , _A ) UpperCamelCase : Optional[Any] = getattr(self.model_tester , """num_attention_heads""" , _A ) UpperCamelCase : Tuple = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCamelCase : List[Any] = True UpperCamelCase : Any = False UpperCamelCase : List[str] = True UpperCamelCase : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCamelCase : Tuple = model(**self._prepare_for_class(_A , _A ) ) UpperCamelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCamelCase : List[str] = outputs.encoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCamelCase : List[str] = len(_A ) UpperCamelCase : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_A , _A ) # decoder attentions UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertIsInstance(_A , (list, tuple) ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCamelCase : int = outputs.cross_attentions self.assertIsInstance(_A , (list, tuple) ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCamelCase : Any = True UpperCamelCase : Dict = True UpperCamelCase : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCamelCase : int = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 2 , len(_A ) ) UpperCamelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _a ( self ): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def UpperCamelCase (SCREAMING_SNAKE_CASE="train-batch.pt" ): UpperCamelCase : List[str] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) UpperCamelCase : Optional[int] = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_A ) UpperCamelCase : List[str] = prepare_batch() with torch.no_grad(): UpperCamelCase : Dict = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] UpperCamelCase : Optional[int] = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _A ) UpperCamelCase : Optional[int] = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] , _A , atol=_A ) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_A ) UpperCamelCase : Dict = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): UpperCamelCase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state UpperCamelCase : Dict = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _A ) UpperCamelCase : Any = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] , _A , atol=_A ) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_A ) UpperCamelCase : List[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): UpperCamelCase : Optional[Any] = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) UpperCamelCase : Tuple = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _A ) UpperCamelCase : Dict = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=_A ) UpperCamelCase : Optional[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _A , rtol=1e-1 ) )
102
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
0
"""simple docstring""" snake_case = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
103
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCamelCase = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] UpperCamelCase = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """ Hello world! cécé herlolip""" UpperCamelCase = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_, UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Tuple, UpperCAmelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A__ = dct.pop(UpperCAmelCase_ ) A__ = val def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" A__ = torch.load(UpperCAmelCase_, map_location="cpu" ) A__ = torch.hub.load("pytorch/fairseq", "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> Dict: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(UpperCAmelCase_, UpperCAmelCase_, bias=UpperCAmelCase_ ) A__ = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase ( UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : int, UpperCAmelCase_ : Optional[int]=None ) -> Any: """simple docstring""" if not os.path.exists(UpperCAmelCase_ ): A__ = torch.hub.load("pytorch/fairseq", UpperCAmelCase_ ).eval() else: A__ = load_xsum_checkpoint(UpperCAmelCase_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: A__ = checkpoint_path.replace(".", "-" ) A__ = BartConfig.from_pretrained(UpperCAmelCase_ ) A__ = bart.encode(UpperCAmelCase_ ).unsqueeze(0 ) A__ = BartTokenizer.from_pretrained(UpperCAmelCase_ ).encode(UpperCAmelCase_, return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(UpperCAmelCase_, UpperCAmelCase_ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": A__ = bart.state_dict() remove_ignore_keys_(UpperCAmelCase_ ) A__ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) A__ = BartForSequenceClassification(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) A__ = bart.predict("mnli", UpperCAmelCase_, return_logits=UpperCAmelCase_ ) A__ = model(UpperCAmelCase_ )[0] # logits else: # no classification heads to worry about A__ = bart.model.state_dict() remove_ignore_keys_(UpperCAmelCase_ ) A__ = state_dict["decoder.embed_tokens.weight"] A__ = bart.extract_features(UpperCAmelCase_ ) if hf_checkpoint_name == "facebook/bart-large": A__ = BartModel(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) A__ = model(UpperCAmelCase_ ).model[0] else: A__ = BartForConditionalGeneration(UpperCAmelCase_ ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_, "lm_head" ): A__ = make_linear_from_emb(model.model.shared ) A__ = model.model(UpperCAmelCase_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) UpperCamelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
104
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,snake_case__=[0.5, 0.5, 0.5] ,snake_case__=[0.5, 0.5, 0.5] ,snake_case__=True ,snake_case__=1 / 255 ,snake_case__=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Tuple = min_resolution SCREAMING_SNAKE_CASE_ : Any = max_resolution SCREAMING_SNAKE_CASE_ : str = do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size SCREAMING_SNAKE_CASE_ : Tuple = do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean SCREAMING_SNAKE_CASE_ : Optional[Any] = image_std SCREAMING_SNAKE_CASE_ : Tuple = do_rescale SCREAMING_SNAKE_CASE_ : Any = rescale_factor SCREAMING_SNAKE_CASE_ : Any = do_pad def snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self ,snake_case__ ,snake_case__=False ): if not batched: SCREAMING_SNAKE_CASE_ : List[str] = image_inputs[0] if isinstance(snake_case__ ,Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Dict = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE_ : str = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE_ : int = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : List[Any] = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = max(snake_case__ ,key=lambda snake_case__ : item[0] )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = max(snake_case__ ,key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = DetaImageProcessor if is_vision_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'image_mean' ) ) self.assertTrue(hasattr(snake_case__ ,'image_std' ) ) self.assertTrue(hasattr(snake_case__ ,'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_rescale' ) ) self.assertTrue(hasattr(snake_case__ ,'do_pad' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,snake_case__ ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def snake_case ( self ): # prepare image and target SCREAMING_SNAKE_CASE_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Any = {'image_id': 39769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE_ : int = DetaImageProcessor() SCREAMING_SNAKE_CASE_ : int = image_processing(images=snake_case__ ,annotations=snake_case__ ,return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,snake_case__ ,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,snake_case__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,snake_case__ ,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,snake_case__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,snake_case__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,snake_case__ ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,snake_case__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,snake_case__ ) ) @slow def snake_case ( self ): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} SCREAMING_SNAKE_CASE_ : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE_ : Any = DetaImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(images=snake_case__ ,annotations=snake_case__ ,masks_path=snake_case__ ,return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,snake_case__ ,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,snake_case__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,snake_case__ ,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,snake_case__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,snake_case__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,snake_case__ ) ) # verify masks SCREAMING_SNAKE_CASE_ : Any = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,snake_case__ ) # verify orig_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,snake_case__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,snake_case__ ) )
105
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str=13 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Any=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : int=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : int=512 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : int=4 , ) -> Union[str, Any]: A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def __UpperCamelCase ( self : List[str] ) -> Optional[int]: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCamelCase ( self : Any ) -> Tuple: A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Tuple = True A_ : Union[str, Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : List[str] ) -> List[str]: A = FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCamelCase ( self : Any ) -> Optional[Any]: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCamelCase ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: A = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCamelCase ) A = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) A = model(__UpperCamelCase )[0] A = [1, 11, 50_265] self.assertEqual(list(output.shape ) , __UpperCamelCase ) # compare the actual values for a slice. A = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self : Dict ) -> List[str]: A = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCamelCase ) A = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) A = model(__UpperCamelCase )[0] # compare the actual values for a slice. A = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
106
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : int=7, UpperCamelCase__ : Optional[Any]=3, UpperCamelCase__ : Optional[int]=18, UpperCamelCase__ : List[str]=30, UpperCamelCase__ : List[str]=4_00, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : int=None, UpperCamelCase__ : List[Any]=True, ) -> Optional[int]: _A = size if size is not None else {'height': 18, 'width': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = apply_ocr def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self : List[Any] ) -> int: _A = LayoutLMvaImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Optional[int] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : str ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'size' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'apply_ocr' ) ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 18, 'width': 18} ) _A = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'height': 42, 'width': 42} ) def __UpperCAmelCase ( self : Any ) -> Tuple: pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) self.assertIsInstance(encoding.words, UpperCamelCase__ ) self.assertIsInstance(encoding.boxes, UpperCamelCase__ ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def __UpperCAmelCase ( self : Any ) -> List[Any]: # with apply_OCR = True _A = LayoutLMvaImageProcessor() from datasets import load_dataset _A = load_dataset('hf-internal-testing/fixtures_docvqa', split='test' ) _A = Image.open(ds[0]['file'] ).convert('RGB' ) _A = image_processing(UpperCamelCase__, return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _A = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _A = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, UpperCamelCase__ ) self.assertListEqual(encoding.boxes, UpperCamelCase__ ) # with apply_OCR = False _A = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) _A = image_processing(UpperCamelCase__, return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) )
107
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = (DPMSolverSinglestepScheduler,) _lowerCamelCase = (('''num_inference_steps''', 25),) def lowerCamelCase ( self : Optional[int] , **lowerCamelCase : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**lowerCamelCase ) return config def lowerCamelCase ( self : Optional[int] , lowerCamelCase : List[str]=0 , **lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**lowerCamelCase ) _UpperCAmelCase = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase ( self : List[Any] , lowerCamelCase : Optional[int]=0 , **lowerCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Any , lowerCamelCase : Dict=None , **lowerCamelCase : Optional[Any] ) -> str: """simple docstring""" if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**lowerCamelCase ) _UpperCAmelCase = scheduler_class(**lowerCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**lowerCamelCase ) _UpperCAmelCase = scheduler_class(**lowerCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = 50 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _UpperCAmelCase = model(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowerCamelCase ( self : Any ) -> str: """simple docstring""" # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=lowerCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=lowerCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowerCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , algorithm_type="""dpmsolver++""" , solver_order=lowerCamelCase , solver_type=lowerCamelCase , ) def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , algorithm_type=lowerCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , algorithm_type=lowerCamelCase , ) assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers" def lowerCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase ) self.check_over_configs(lower_order_final=lowerCamelCase ) def lowerCamelCase ( self : int ) -> int: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase ) self.check_over_configs(variance_type="""learned_range""" ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=0 ) def lowerCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.full_loop(use_karras_sigmas=lowerCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowerCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=lowerCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**lowerCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
108
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
0
'''simple docstring''' import unittest from transformers import DonutProcessor a = "naver-clova-ix/donut-base" class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DonutProcessor.from_pretrained(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } __SCREAMING_SNAKE_CASE = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) __SCREAMING_SNAKE_CASE = self.processor.tokenajson(lowerCamelCase ) self.assertDictEqual(lowerCamelCase ,lowerCamelCase )
109
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase_ : int = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : __magic_name__ : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __magic_name__ : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) __magic_name__ : int = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __magic_name__ : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __magic_name__ : bool = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) __magic_name__ : Optional[int] = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __magic_name__ : Optional[int] = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __magic_name__ : Optional[int] = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) __magic_name__ : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowercase_ ( self : List[str] ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: a_ : Union[str, Any] = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." a_ : Optional[Any] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : __magic_name__ : str = field( default=lowerCAmelCase_ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __magic_name__ : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __magic_name__ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __magic_name__ : bool = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" a_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : List[str] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) a_ : str = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. a_ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a_ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. a_ : int = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: a_ : List[Any] = data_args.train_file.split(""".""" )[-1] a_ : int = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." a_ : List[str] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files a_ : Any = load_dataset("""csv""" , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files a_ : List[Any] = load_dataset("""json""" , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels a_ : int = raw_datasets["""train"""].features["""label"""].names a_ : int = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer a_ : Optional[int] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=UpperCamelCase__ , ) a_ : Dict = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: a_ : Any = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a_ : Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. a_ : Optional[int] = {"""Refused""": 0, """Entailed""": 1} a_ : Union[str, Any] = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) a_ : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(UpperCamelCase__ : List[str] ): # Tokenize the texts def _convert_table_text_to_pandas(UpperCamelCase__ : List[Any] ): a_ : Optional[Any] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] a_ : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd a_ : Optional[Any] = examples["""statement"""] a_ : Union[str, Any] = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) a_ : Dict = tokenizer(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ) a_ : Dict = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): a_ : Dict = raw_datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) a_ : Dict = raw_datasets["""train"""] if data_args.max_train_samples is not None: a_ : Optional[int] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) a_ : List[Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: a_ : Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) a_ : Optional[int] = raw_datasets["""test"""] if data_args.max_predict_samples is not None: a_ : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(UpperCamelCase__ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase__ : Any ): a_ : List[Any] = p.predictions[0] if isinstance(p.predictions , UpperCamelCase__ ) else p.predictions a_ : Dict = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a_ : Optional[Any] = default_data_collator elif training_args.fpaa: a_ : Dict = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) else: a_ : Union[str, Any] = None # Initialize our Trainer a_ : str = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase__ , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: a_ : List[str] = None if training_args.resume_from_checkpoint is not None: a_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ : Optional[int] = last_checkpoint a_ : Tuple = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) a_ : Union[str, Any] = train_result.metrics a_ : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) a_ : Dict = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , UpperCamelCase__ ) trainer.save_metrics("""train""" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) a_ : Dict = trainer.evaluate(eval_dataset=UpperCamelCase__ ) a_ : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) a_ : int = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("""eval""" , UpperCamelCase__ ) trainer.save_metrics("""eval""" , UpperCamelCase__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. a_ : str = predict_dataset.remove_columns("""label""" ) a_ : Tuple = trainer.predict(UpperCamelCase__ , metric_key_prefix="""predict""" ).predictions a_ : Any = np.argmax(UpperCamelCase__ , axis=1 ) a_ : Optional[int] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(UpperCamelCase__ ): a_ : Optional[Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) a_ : List[Any] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : int ): """simple docstring""" main() if __name__ == "__main__": main()
442
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
0
from datetime import datetime as dt import os from github import Github __lowerCamelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def UpperCamelCase ( ): snake_case : Optional[Any] = Github(os.environ["GITHUB_TOKEN"] ) snake_case : List[str] = g.get_repo("huggingface/transformers" ) snake_case : Any = repo.get_issues(state="open" ) for issue in open_issues: snake_case : Tuple = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) snake_case : Optional[int] = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
204
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase : str = KandinskyInpaintPipeline UpperCamelCase : List[str] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase : List[str] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase : Optional[int] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase : Union[str, Any] = False @property def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Optional[int]: return 32 @property def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->int: return 32 @property def SCREAMING_SNAKE_CASE( self :Tuple ) ->Optional[Any]: return self.time_input_dim @property def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Any: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE( self :int ) ->Optional[int]: return 100 @property def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Optional[Any]: lowercase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def SCREAMING_SNAKE_CASE( self :List[str] ) ->Dict: torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__SCREAMING_SNAKE_CASE ) lowercase = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE( self :Tuple ) ->Union[str, Any]: torch.manual_seed(0 ) lowercase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowercase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->List[str]: torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->str: lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type="epsilon" , thresholding=__SCREAMING_SNAKE_CASE , ) lowercase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any]=0 ) ->Optional[Any]: lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__SCREAMING_SNAKE_CASE ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("RGB" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("mps" ): lowercase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowercase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowercase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Optional[int]: lowercase = "cpu" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowercase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def SCREAMING_SNAKE_CASE( self :str ) ->Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE( self :Any ) ->List[Any]: lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = "a hat" lowercase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) lowercase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowercase = pipeline( __SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
441
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Any , ): """simple docstring""" a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowercase_ ) ) ] # the reference grid a_ = 1 a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowercase_ ) ) ] # the action grid a_ = init[0] a_ = init[1] a_ = 0 a_ = g + heuristic[x][y] # cost from starting cell to destination cell a_ = [[f, g, x, y]] a_ = False # flag that is set when search is complete a_ = False # flag set if we can't find expand while not found and not resign: if len(lowercase_ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() a_ = cell.pop() a_ = next_cell[2] a_ = next_cell[3] a_ = next_cell[1] if x == goal[0] and y == goal[1]: a_ = True else: for i in range(len(lowercase_ ) ): # to try out different valid actions a_ = x + DIRECTIONS[i][0] a_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowercase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: a_ = g + cost a_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) a_ = 1 a_ = i a_ = [] a_ = goal[0] a_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: a_ = x - DIRECTIONS[action[x][y]][0] a_ = y - DIRECTIONS[action[x][y]][1] a_ = xa a_ = ya invpath.append([x, y] ) a_ = [] for i in range(len(lowercase_ ) ): path.append(invpath[len(lowercase_ ) - 1 - i] ) return path, action if __name__ == "__main__": __lowerCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __lowerCAmelCase = [0, 0] # all coordinates are given in format [y,x] __lowerCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __lowerCAmelCase = 1 # the cost map which pushes the path closer to the goal __lowerCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __lowerCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __lowerCAmelCase = 99 __lowerCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
536
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCamelCase ( lowerCAmelCase_ ): '''simple docstring''' __UpperCAmelCase : Optional[torch.FloatTensor] =None __UpperCAmelCase : torch.FloatTensor =None __UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] =None __UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] =None class _UpperCamelCase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __a=1 , __a=0 , __a=2 , __a=5_12 , __a="cls" , __a=False , __a=True , **__a , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = project_dim __lowerCAmelCase = pooler_fn __lowerCAmelCase = learn_encoder __lowerCAmelCase = use_attention_mask class _UpperCamelCase ( lowerCAmelCase_ ): '''simple docstring''' __UpperCAmelCase : Any =[R"""pooler""", R"""logit_scale"""] __UpperCAmelCase : Union[str, Any] =[R"""position_ids""", R"""predictions.decoder.bias"""] __UpperCAmelCase : Optional[int] ="""roberta""" __UpperCAmelCase : List[str] =RobertaSeriesConfig def __init__( self , __a ): super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = XLMRobertaModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) __lowerCAmelCase = getattr(__SCREAMING_SNAKE_CASE , "has_pre_transformation" , __SCREAMING_SNAKE_CASE ) if self.has_pre_transformation: __lowerCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) __lowerCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def snake_case ( self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ): __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.base_model( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__SCREAMING_SNAKE_CASE , ) if self.has_pre_transformation: __lowerCAmelCase = outputs["hidden_states"][-2] __lowerCAmelCase = self.pre_LN(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.transformation_pre(__SCREAMING_SNAKE_CASE ) return TransformationModelOutput( projection_state=__SCREAMING_SNAKE_CASE , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowerCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__SCREAMING_SNAKE_CASE , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
636
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0" ) snake_case : int = img snake_case : str = img.shape[1] snake_case : int = img.shape[0] snake_case : Any = dst_width snake_case : Optional[Any] = dst_height snake_case : List[Any] = self.src_w / self.dst_w snake_case : Tuple = self.src_h / self.dst_h snake_case : int = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): snake_case : Tuple = self.img[self.get_y(__SCREAMING_SNAKE_CASE )][self.get_x(__SCREAMING_SNAKE_CASE )] def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return int(self.ratio_x * x ) def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": __snake_case = 800, 600 __snake_case = imread("""image_data/lena.jpg""", 1) __snake_case = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
178
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
from ...processing_utils import ProcessorMixin class a ( lowerCAmelCase_ ): __lowerCAmelCase : Tuple = """SpeechT5FeatureExtractor""" __lowerCAmelCase : str = """SpeechT5Tokenizer""" def __init__( self :List[Any] ,__lowercase :List[str] ,__lowercase :Dict ): super().__init__(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __call__( self :Optional[int] ,*__lowercase :Dict ,**__lowercase :Optional[Any] ): snake_case__ : str = kwargs.pop('''audio''' ,__SCREAMING_SNAKE_CASE ) snake_case__ : int = kwargs.pop('''text''' ,__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = kwargs.pop('''text_target''' ,__SCREAMING_SNAKE_CASE ) snake_case__ : str = kwargs.pop('''audio_target''' ,__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = kwargs.pop('''sampling_rate''' ,__SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: snake_case__ : List[Any] = self.feature_extractor(__SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE ,sampling_rate=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) elif text is not None: snake_case__ : Dict = self.tokenizer(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) else: snake_case__ : int = None if audio_target is not None: snake_case__ : Dict = self.feature_extractor(audio_target=__SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE ,sampling_rate=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = targets['''input_values'''] elif text_target is not None: snake_case__ : Optional[Any] = self.tokenizer(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = targets['''input_ids'''] else: snake_case__ : Optional[Any] = None if inputs is None: return targets if targets is not None: snake_case__ : Union[str, Any] = labels snake_case__ : Union[str, Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: snake_case__ : int = decoder_attention_mask return inputs def __lowerCamelCase ( self :Any ,*__lowercase :Optional[Any] ,**__lowercase :List[Any] ): snake_case__ : int = kwargs.pop('''input_values''' ,__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = kwargs.pop('''input_ids''' ,__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = kwargs.pop('''labels''' ,__SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: snake_case__ : List[Any] = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) elif input_ids is not None: snake_case__ : Optional[Any] = self.tokenizer.pad(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): snake_case__ : Tuple = self.tokenizer.pad(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) snake_case__ : str = targets['''input_ids'''] else: snake_case__ : List[str] = self.feature_extractor.feature_size snake_case__ : List[str] = self.feature_extractor.num_mel_bins snake_case__ : Optional[int] = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = feature_size_hack snake_case__ : Any = targets['''input_values'''] else: snake_case__ : Optional[int] = None if inputs is None: return targets if targets is not None: snake_case__ : str = labels snake_case__ : List[str] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: snake_case__ : Optional[int] = decoder_attention_mask return inputs def __lowerCamelCase ( self :str ,*__lowercase :Any ,**__lowercase :Tuple ): return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self :str ,*__lowercase :Optional[Any] ,**__lowercase :List[Any] ): return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
252
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _a: int = logging.get_logger(__name__) # General docstring _a: Any = """RegNetConfig""" # Base docstring _a: List[str] = """facebook/regnet-y-040""" _a: Optional[int] = [1, 1088, 7, 7] # Image classification docstring _a: Dict = """facebook/regnet-y-040""" _a: str = """tabby, tabby cat""" _a: List[str] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCamelCase ( nn.Module ): def __init__( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] = 3 , lowerCAmelCase : List[Any] = 1 , lowerCAmelCase : str = 1 , lowerCAmelCase : Dict = "relu" , ): '''simple docstring''' super().__init__() UpperCAmelCase_ = nn.Convad( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , groups=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def __A ( self : int , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = self.convolution(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.normalization(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : Tuple , lowerCAmelCase : Tuple ): '''simple docstring''' super().__init__() UpperCAmelCase_ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase_ = config.num_channels def __A ( self : Optional[int] , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCAmelCase_ = self.embedder(__SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] = 2 ): '''simple docstring''' super().__init__() UpperCAmelCase_ = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , stride=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) def __A ( self : Tuple , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = self.convolution(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.normalization(__SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase_ = nn.Sequential( nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.ReLU() , nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.Sigmoid() , ) def __A ( self : Tuple , lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.pooler(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.attention(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = hidden_state * attention return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict = 1 ): '''simple docstring''' super().__init__() UpperCAmelCase_ = in_channels != out_channels or stride != 1 UpperCAmelCase_ = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ = ( RegNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ = nn.Sequential( RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , groups=__SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE ) , ) UpperCAmelCase_ = ACTaFN[config.hidden_act] def __A ( self : Dict , lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = hidden_state UpperCAmelCase_ = self.layer(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCAmelCase_ = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : str , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] = 1 ): '''simple docstring''' super().__init__() UpperCAmelCase_ = in_channels != out_channels or stride != 1 UpperCAmelCase_ = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ = ( RegNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ = nn.Sequential( RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , groups=__SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetSELayer(__SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE ) , ) UpperCAmelCase_ = ACTaFN[config.hidden_act] def __A ( self : Any , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = hidden_state UpperCAmelCase_ = self.layer(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCAmelCase_ = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] = 2 , lowerCAmelCase : int = 2 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ = RegNetXLayer if config.layer_type == "x" else RegNetYLayer UpperCAmelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , ) , *[layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )] , ) def __A ( self : Union[str, Any] , lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = self.layers(__SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self : str , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' super().__init__() UpperCAmelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(RegNetStage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , depth=__SCREAMING_SNAKE_CASE ) ) def __A ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : List[Any] = False , lowerCAmelCase : str = True ): '''simple docstring''' UpperCAmelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ = hidden_states + (hidden_state,) UpperCAmelCase_ = stage_module(__SCREAMING_SNAKE_CASE ) if output_hidden_states: UpperCAmelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__SCREAMING_SNAKE_CASE , hidden_states=__SCREAMING_SNAKE_CASE ) class __UpperCamelCase ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = RegNetConfig SCREAMING_SNAKE_CASE__ = """regnet""" SCREAMING_SNAKE_CASE__ = """pixel_values""" SCREAMING_SNAKE_CASE__ = True def __A ( self : List[str] , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __A ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=False ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = value _a: str = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _a: Tuple = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self : int , lowerCAmelCase : List[str] ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = config UpperCAmelCase_ = RegNetEmbeddings(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = RegNetEncoder(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : str = None , lowerCAmelCase : str = None ): '''simple docstring''' UpperCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = self.embedder(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.encoder( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = encoder_outputs[0] UpperCAmelCase_ = self.pooler(__SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , pooler_output=__SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , lowerCAmelCase : Tuple ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = config.num_labels UpperCAmelCase_ = RegNetModel(__SCREAMING_SNAKE_CASE ) # classification head UpperCAmelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self : List[str] , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str] = None , lowerCAmelCase : Tuple = None , ): '''simple docstring''' UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = self.regnet(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ = self.classifier(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ = "single_label_classification" else: UpperCAmelCase_ = "multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase_ = MSELoss() if self.num_labels == 1: UpperCAmelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ = CrossEntropyLoss() UpperCAmelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ = BCEWithLogitsLoss() UpperCAmelCase_ = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not return_dict: UpperCAmelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
162
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _UpperCamelCase = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : int = test_results.split(" " ) __A : Any = 0 __A : Dict = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __A : Any = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(SCREAMING_SNAKE_CASE ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : int = {} __A : Dict = None __A : Optional[Any] = False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]" , SCREAMING_SNAKE_CASE ): __A : int = True __A : Dict = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): __A : Optional[Any] = line __A : Any = False return failures class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = title __A : Any = doc_test_results["time_spent"].split("," )[0] __A : Any = doc_test_results["success"] __A : Tuple = doc_test_results["failures"] __A : Dict = self.n_success + self.n_failures # Failures and success of the modeling tests __A : List[str] = doc_test_results @property def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = [self._time_spent] __A : Union[str, Any] = 0 for time in time_spent: __A : List[Any] = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__SCREAMING_SNAKE_CASE ) == 1: __A : List[str] = [0, 0, time_parts[0]] __A ,__A ,__A : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __A ,__A ,__A : int = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(__SCREAMING_SNAKE_CASE )}h{int(__SCREAMING_SNAKE_CASE )}m{int(__SCREAMING_SNAKE_CASE )}s" @property def lowerCAmelCase__ ( self ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowerCAmelCase__ ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = 40 __A : Optional[int] = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} __A : str = "" for category, failures in category_failures.items(): if len(__SCREAMING_SNAKE_CASE ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__SCREAMING_SNAKE_CASE ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' __A : List[str] = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(__SCREAMING_SNAKE_CASE )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__SCREAMING_SNAKE_CASE , ) def lowerCAmelCase__ ( self ): '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) __A : int = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed." __A : str = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__SCREAMING_SNAKE_CASE , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : str = "" for key, value in failures.items(): __A : Optional[int] = value[:200] + " [Truncated]" if len(__SCREAMING_SNAKE_CASE ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __A : Any = job_name __A : Any = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: __A : List[str] = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self ): '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) __A : Optional[Any] = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) __A : int = sorted(self.doc_test_results.items() , key=lambda lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): __A : Union[str, Any] = f"*Num failures* :{len(job_result['failed'] )} \n" __A : int = job_result["failures"] __A : Any = self.get_reply_blocks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , text=__SCREAMING_SNAKE_CASE ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f"Results for {job}" , blocks=__SCREAMING_SNAKE_CASE , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def _lowercase (): '''simple docstring''' __A : Dict = os.environ["GITHUB_RUN_ID"] __A : Any = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __A : Optional[int] = requests.get(SCREAMING_SNAKE_CASE ).json() __A : Optional[Any] = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) __A : Tuple = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE ): __A : str = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , SCREAMING_SNAKE_CASE ) return {} def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : str = {} if os.path.exists(SCREAMING_SNAKE_CASE ): __A : Optional[Any] = os.listdir(SCREAMING_SNAKE_CASE ) for file in files: try: with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , encoding="utf-8" ) as f: __A : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}." ) from e return _artifact def _lowercase (): '''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase ): '''simple docstring''' __A : Dict = name __A : List[str] = [] def __str__( self ): '''simple docstring''' return self.name def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) __A : str = {} __A : Dict = filter(os.path.isdir , os.listdir() ) for directory in directories: __A : Any = directory if artifact_name not in _available_artifacts: __A : str = Artifact(SCREAMING_SNAKE_CASE ) _available_artifacts[artifact_name].add_path(SCREAMING_SNAKE_CASE ) return _available_artifacts if __name__ == "__main__": _UpperCamelCase = get_job_links() _UpperCamelCase = retrieve_available_artifacts() _UpperCamelCase = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _UpperCamelCase = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job _UpperCamelCase = github_actions_job_links.get("""run_doctests""") _UpperCamelCase = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] _UpperCamelCase = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: _UpperCamelCase = handle_test_results(artifact["""stats"""]) _UpperCamelCase = failed _UpperCamelCase = success _UpperCamelCase = time_spent[1:-1] + """, """ _UpperCamelCase = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): _UpperCamelCase = line.replace("""FAILED """, """""") _UpperCamelCase = line.split()[0].replace("""\n""", """""") if "::" in line: _UpperCamelCase = line.split("""::""") else: _UpperCamelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _UpperCamelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) _UpperCamelCase = all_failures[test] if test in all_failures else """N/A""" _UpperCamelCase = failure break _UpperCamelCase = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
111
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
'''simple docstring''' import datasets from .evaluate import evaluate a_ = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _lowerCAmelCase ( self: Optional[int]) ->Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.features.Sequence(datasets.Value("string")), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), }, }) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowerCAmelCase ( self: Tuple , a: Optional[Any] , a: Union[str, Any]) ->int: '''simple docstring''' a_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} a_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] a_ = evaluate(dataset=__SCREAMING_SNAKE_CASE , predictions=__SCREAMING_SNAKE_CASE) return score
685
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0