code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = super().add_tokens(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if num_added_tokens == 0: raise ValueError( f'The tokenizer already contains the token {placeholder_token}. Please pass a different' """ `placeholder_token` that is not already in the tokenizer.""" ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=1,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) output.append(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = [] for i in range(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = placeholder_token + f'_{i}' self.try_adding_tokens(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) output.append(__SCREAMING_SNAKE_CASE ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'The tokenizer already has placeholder token {token} that can get confused with' f' {placeholder_token}keep placeholder tokens independent' ) __lowerCAmelCase = output def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=1.0 ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=__SCREAMING_SNAKE_CASE ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowerCAmelCase = self.token_map[placeholder_token] __lowerCAmelCase = tokens[: 1 + int(len(__SCREAMING_SNAKE_CASE ) * prop_tokens_to_load )] if vector_shuffle: __lowerCAmelCase = copy.copy(__SCREAMING_SNAKE_CASE ) random.shuffle(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = text.replace(__SCREAMING_SNAKE_CASE,""" """.join(__SCREAMING_SNAKE_CASE ) ) return text def __call__( self,__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=1.0,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( __SCREAMING_SNAKE_CASE,vector_shuffle=__SCREAMING_SNAKE_CASE,prop_tokens_to_load=__SCREAMING_SNAKE_CASE ),*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=1.0,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( __SCREAMING_SNAKE_CASE,vector_shuffle=__SCREAMING_SNAKE_CASE,prop_tokens_to_load=__SCREAMING_SNAKE_CASE ),*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""char""" a : str ="""bpe""" a : Union[str, Any] ="""wp""" _a : Tuple = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[int] =["""image_processor""", """char_tokenizer"""] a : Union[str, Any] ="""ViTImageProcessor""" a : Optional[int] ="""MgpstrTokenizer""" def __init__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""",__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = kwargs.pop("""feature_extractor""" ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) __lowerCAmelCase = tokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained("""gpt2""" ) __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if text is not None: __lowerCAmelCase = self.char_tokenizer(__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: __lowerCAmelCase = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = sequences __lowerCAmelCase = char_preds.size(0 ) __lowerCAmelCase , __lowerCAmelCase = self._decode_helper(__SCREAMING_SNAKE_CASE,"""char""" ) __lowerCAmelCase , __lowerCAmelCase = self._decode_helper(__SCREAMING_SNAKE_CASE,"""bpe""" ) __lowerCAmelCase , __lowerCAmelCase = self._decode_helper(__SCREAMING_SNAKE_CASE,"""wp""" ) __lowerCAmelCase = [] __lowerCAmelCase = [] for i in range(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCAmelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCAmelCase = scores.index(max(__SCREAMING_SNAKE_CASE ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCAmelCase = {} __lowerCAmelCase = final_strs __lowerCAmelCase = final_scores __lowerCAmelCase = char_strs __lowerCAmelCase = bpe_strs __lowerCAmelCase = wp_strs return out def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if format == DecodeType.CHARACTER: __lowerCAmelCase = self.char_decode __lowerCAmelCase = 1 __lowerCAmelCase = """[s]""" elif format == DecodeType.BPE: __lowerCAmelCase = self.bpe_decode __lowerCAmelCase = 2 __lowerCAmelCase = """#""" elif format == DecodeType.WORDPIECE: __lowerCAmelCase = self.wp_decode __lowerCAmelCase = 1_02 __lowerCAmelCase = """[SEP]""" else: raise ValueError(f'Format {format} is not supported.' ) __lowerCAmelCase , __lowerCAmelCase = [], [] __lowerCAmelCase = pred_logits.size(0 ) __lowerCAmelCase = pred_logits.size(1 ) __lowerCAmelCase , __lowerCAmelCase = pred_logits.topk(1,dim=-1,largest=__SCREAMING_SNAKE_CASE,sorted=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = preds_index.view(-1,__SCREAMING_SNAKE_CASE )[:, 1:] __lowerCAmelCase = decoder(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase = torch.nn.functional.softmax(__SCREAMING_SNAKE_CASE,dim=2 ).max(dim=2 ) __lowerCAmelCase = preds_max_prob[:, 1:] for index in range(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = preds_str[index].find(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = preds_str[index][:pred_eos] __lowerCAmelCase = preds_index[index].cpu().tolist() __lowerCAmelCase = pred_index.index(__SCREAMING_SNAKE_CASE ) if eos_token in pred_index else -1 __lowerCAmelCase = preds_max_prob[index][: pred_eos_index + 1] __lowerCAmelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__SCREAMING_SNAKE_CASE ) conf_scores.append(__SCREAMING_SNAKE_CASE ) return dec_strs, conf_scores def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [seq.replace(""" ""","""""" ) for seq in self.char_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )] return decode_strs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [seq.replace(""" ""","""""" ) for seq in self.wp_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )] return decode_strs
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests _a : Tuple = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _a : Optional[Any] = BASE_URL + """/user""" # https://github.com/settings/tokens _a : str = os.environ.get("""USER_TOKEN""", """""") def _lowerCAmelCase ( lowercase ) -> dict[Any, Any]: __lowerCAmelCase = { """Authorization""": f'token {auth_token}', """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase , headers=lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _UpperCAmelCase ( lowerCAmelCase_ ): def __lt__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self[-1] == other[-1] def _lowerCAmelCase ( lowercase ) -> list: __lowerCAmelCase = [] # sort into stacks for element in collection: __lowerCAmelCase = Stack([element] ) __lowerCAmelCase = bisect_left(lowercase , lowercase ) if i != len(lowercase ): stacks[i].append(lowercase ) else: stacks.append(lowercase ) # use a heap-based merge to merge stack efficiently __lowerCAmelCase = merge(*(reversed(lowercase ) for stack in stacks) ) return collection if __name__ == "__main__": _a : Any = input("""Enter numbers separated by a comma:\n""").strip() _a : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' from __future__ import annotations _a : Union[str, Any] = """#""" class _UpperCAmelCase : def __init__( self ): '''simple docstring''' __lowerCAmelCase = {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self._trie for char in text: if char not in trie: __lowerCAmelCase = {} __lowerCAmelCase = trie[char] __lowerCAmelCase = True def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self._trie for char in prefix: if char in trie: __lowerCAmelCase = trie[char] else: return [] return self._elements(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] for c, v in d.items(): __lowerCAmelCase = [""" """] if c == END else [(c + s) for s in self._elements(__SCREAMING_SNAKE_CASE )] result.extend(__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) _a : List[str] = Trie() _a : Dict = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def _lowerCAmelCase ( lowercase ) -> tuple: __lowerCAmelCase = trie.find_word(lowercase ) return tuple(string + word for word in suffixes ) def _lowerCAmelCase ( ) -> None: print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[int]: __lowerCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Any: __lowerCAmelCase = 0 while b > 0: if b & 1: __lowerCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Tuple = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _a : int = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""",__SCREAMING_SNAKE_CASE,) super().__init__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' import os import sys import unittest _a : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""") _a : Optional[int] = """ {0} = None """ _a : Dict = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ _a : Tuple = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""tokenizers""" ) __lowerCAmelCase = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""tensorflow_text""" ) __lowerCAmelCase = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""sentencepiece_and_tokenizers""" ) __lowerCAmelCase = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""sentencepiece_and_tensorflow_text""" ) __lowerCAmelCase = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""sentencepiece_and_tokenizers_and_vision""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""tensorflow_text""",__SCREAMING_SNAKE_CASE ) self.assertIn("""sentencepiece_and_tokenizers""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""",objects["""torch"""] ) self.assertIn("""TFBertModel""",objects["""tf"""] ) self.assertIn("""FlaxBertModel""",objects["""flax"""] ) self.assertIn("""BertModel""",objects["""torch"""] ) self.assertIn("""TFBertTokenizer""",objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""",objects["""sentencepiece_and_tokenizers"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' import sys _a : Any = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = 1 for digit in s: product *= int(lowercase ) return product def _lowerCAmelCase ( lowercase = N ) -> int: __lowerCAmelCase = -sys.maxsize - 1 __lowerCAmelCase = n[:13] __lowerCAmelCase = 13 while cur_index < len(lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowerCAmelCase = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCAmelCase = max(lowercase , str_eval(lowercase ) ) __lowerCAmelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' import re from filelock import FileLock try: import nltk _a : Optional[Any] = True except (ImportError, ModuleNotFoundError): _a : Optional[int] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def _lowerCAmelCase ( lowercase ) -> str: re.sub("""<n>""" , """""" , lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase ) )
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : List[Any] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Union[str, Any] =DebertaVaTokenizer a : Optional[Any] =DebertaVaTokenizerFast a : Optional[int] =True a : Optional[int] =True def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],"""<pad>""" ) self.assertEqual(vocab_keys[1],"""<unk>""" ) self.assertEqual(vocab_keys[-1],"""[PAD]""" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),3_00_01 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,3_00_00 ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,split_by_punct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 43_98, 25, 21, 12_89] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE,keep_accents=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE,keep_accents=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id],__SCREAMING_SNAKE_CASE ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id],__SCREAMING_SNAKE_CASE,) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE,model_name="""microsoft/deberta-v2-xlarge""",revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""",)
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' import numpy as np def _lowerCAmelCase ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> float: if edge <= 0 or not isinstance(lowercase , lowercase ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( lowercase ) -> float: if edge <= 0 or not isinstance(lowercase , lowercase ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 1000 ) -> int: __lowerCAmelCase , __lowerCAmelCase = 1, 1 __lowerCAmelCase = [] for i in range(1 , n + 1 ): __lowerCAmelCase = prev_numerator + 2 * prev_denominator __lowerCAmelCase = prev_numerator + prev_denominator if len(str(lowercase ) ) > len(str(lowercase ) ): result.append(lowercase ) __lowerCAmelCase = numerator __lowerCAmelCase = denominator return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _a : List[Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _a : Dict = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() _a : Dict = """|""".join(sys.argv[1:]) _a : Any = re.compile(rf'^({joined_dirs}).*?\.py$') _a : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> list[int]: __lowerCAmelCase = int(lowercase ) # Initialize Result __lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(lowercase ): # Find denominations while int(lowercase ) >= int(lowercase ): total_value -= int(lowercase ) answer.append(lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _a : str = [] _a : Optional[int] = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _a : Union[str, Any] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f'Denomination {i}: ').strip())) _a : Optional[Any] = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _a : Optional[int] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] _a : Any = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f'Following is minimal change for {value}: ') _a : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" __lowerCAmelCase = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a : Union[str, Any] = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _a : Optional[Any] = logging.getLogger(__name__) _a : str = tf.data.AUTOTUNE def _lowerCAmelCase ( ) -> Tuple: __lowerCAmelCase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowercase , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowercase , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowercase , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowercase , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowercase , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowercase , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowercase , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowercase , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowercase , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowercase , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowercase , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowercase , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowercase , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowercase , required=lowercase , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowercase , help="""Model ID to upload to on the Hugging Face Hub.""" ) __lowerCAmelCase = parser.parse_args() return args def _lowerCAmelCase ( lowercase ) -> int: try: if args.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowercase ) tf.tpu.experimental.initialize_tpu_system(lowercase ) return tpu def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = 0 for file in file_list: __lowerCAmelCase = file.split("""/""" )[-1] __lowerCAmelCase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowercase ).group(1 ) __lowerCAmelCase = int(lowercase ) num_samples += sample_count return num_samples def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Any: __lowerCAmelCase = count_samples(lowercase ) __lowerCAmelCase = tf.data.Dataset.from_tensor_slices(lowercase ) if shuffle: __lowerCAmelCase = dataset.shuffle(len(lowercase ) ) __lowerCAmelCase = tf.data.TFRecordDataset(lowercase , num_parallel_reads=lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowerCAmelCase = dataset.apply(tf.data.experimental.assert_cardinality(lowercase ) ) __lowerCAmelCase = dataset.map(lowercase , num_parallel_calls=lowercase ) if shuffle: assert shuffle_buffer_size is not None __lowerCAmelCase = dataset.shuffle(args.shuffle_buffer_size ) __lowerCAmelCase = dataset.batch(lowercase , drop_remainder=lowercase ) __lowerCAmelCase = dataset.map(lowercase , num_parallel_calls=lowercase ) __lowerCAmelCase = dataset.prefetch(lowercase ) return dataset def _lowerCAmelCase ( lowercase ) -> int: if not args.no_tpu: __lowerCAmelCase = initialize_tpu(lowercase ) __lowerCAmelCase = tf.distribute.TPUStrategy(lowercase ) else: __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer ) __lowerCAmelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) __lowerCAmelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) __lowerCAmelCase = count_samples(lowercase ) __lowerCAmelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowerCAmelCase = steps_per_epoch * args.num_epochs with strategy.scope(): __lowerCAmelCase = TFAutoModelForMaskedLM.from_config(lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowerCAmelCase , __lowerCAmelCase = create_optimizer( num_train_steps=lowercase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase , metrics=["""accuracy"""] ) def decode_fn(lowercase ): __lowerCAmelCase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase , lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowerCAmelCase = DataCollatorForLanguageModeling( tokenizer=lowercase , mlm_probability=args.mlm_probability , mlm=lowercase , return_tensors="""tf""" ) def mask_with_collator(lowercase ): # TF really needs an isin() function __lowerCAmelCase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) __lowerCAmelCase , __lowerCAmelCase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowercase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase , ) return batch __lowerCAmelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync __lowerCAmelCase = prepare_dataset( lowercase , decode_fn=lowercase , mask_fn=lowercase , batch_size=lowercase , shuffle=lowercase , shuffle_buffer_size=args.shuffle_buffer_size , ) __lowerCAmelCase = prepare_dataset( lowercase , decode_fn=lowercase , mask_fn=lowercase , batch_size=lowercase , shuffle=lowercase , ) __lowerCAmelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase ) ) model.fit( lowercase , validation_data=lowercase , epochs=args.num_epochs , callbacks=lowercase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _a : Any = parse_args() main(args)
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(features=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' import torch if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) and column: if all( isinstance(__SCREAMING_SNAKE_CASE,torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__SCREAMING_SNAKE_CASE ) return column def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' import torch if isinstance(__SCREAMING_SNAKE_CASE,(str, bytes, type(__SCREAMING_SNAKE_CASE )) ): return value elif isinstance(__SCREAMING_SNAKE_CASE,(np.character, np.ndarray) ) and np.issubdtype(value.dtype,np.character ): return value.tolist() __lowerCAmelCase = {} if isinstance(__SCREAMING_SNAKE_CASE,(np.number, np.ndarray) ) and np.issubdtype(value.dtype,np.integer ): __lowerCAmelCase = {"""dtype""": torch.intaa} elif isinstance(__SCREAMING_SNAKE_CASE,(np.number, np.ndarray) ) and np.issubdtype(value.dtype,np.floating ): __lowerCAmelCase = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__SCREAMING_SNAKE_CASE,PIL.Image.Image ): __lowerCAmelCase = np.asarray(__SCREAMING_SNAKE_CASE ) return torch.tensor(__SCREAMING_SNAKE_CASE,**{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(__SCREAMING_SNAKE_CASE,"""__array__""" ) and not isinstance(__SCREAMING_SNAKE_CASE,torch.Tensor ): __lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__SCREAMING_SNAKE_CASE,np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(__SCREAMING_SNAKE_CASE,(list, tuple) ): return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return map_nested(self._recursive_tensorize,__SCREAMING_SNAKE_CASE,map_list=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.numpy_arrow_extractor().extract_row(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.python_features_decoder.decode_row(__SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.numpy_arrow_extractor().extract_column(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.python_features_decoder.decode_column(__SCREAMING_SNAKE_CASE,pa_table.column_names[0] ) __lowerCAmelCase = self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self._consolidate(__SCREAMING_SNAKE_CASE ) return column def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.python_features_decoder.decode_batch(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for column_name in batch: __lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = len(matrix[0] ) __lowerCAmelCase = min(lowercase , lowercase ) for row in range(lowercase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowercase ): __lowerCAmelCase = matrix[col][row] / matrix[row][row] for i in range(lowercase , lowercase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __lowerCAmelCase = True for i in range(row + 1 , lowercase ): if matrix[i][row] != 0: __lowerCAmelCase , __lowerCAmelCase = matrix[i], matrix[row] __lowerCAmelCase = False break if reduce: rank -= 1 for i in range(lowercase ): __lowerCAmelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> int: def count_of_possible_combinations(lowercase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> int: def count_of_possible_combinations_with_dp_array( lowercase , lowercase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , lowercase ) for item in array ) __lowerCAmelCase = answer return answer __lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowercase , lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> int: __lowerCAmelCase = [0] * (target + 1) __lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(lowercase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _a : int = 3 _a : Dict = 5 _a : int = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 100_0000 ) -> int: __lowerCAmelCase = set(range(3 , lowercase , 2 ) ) primes.add(2 ) for p in range(3 , lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase , lowercase ) ) ) __lowerCAmelCase = [float(lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase , limit + 1 , lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowercase , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[int]: __lowerCAmelCase = _distribute_shards(**lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Dict: __lowerCAmelCase = _split_gen_kwargs(lowercase , lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( lowercase , lowercase ) -> int: if expected is RuntimeError: with pytest.raises(lowercase ): _number_of_shards_in_gen_kwargs(lowercase ) else: __lowerCAmelCase = _number_of_shards_in_gen_kwargs(lowercase ) assert out == expected
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _a : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=7_68 ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = proj_size __lowerCAmelCase = CLIPVisionModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = PaintByExampleMapper(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.LayerNorm(config.hidden_size ) __lowerCAmelCase = nn.Linear(config.hidden_size,self.proj_size ) # uncondition for scaling __lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = self.model(pixel_values=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = clip_output.pooler_output __lowerCAmelCase = self.mapper(latent_states[:, None] ) __lowerCAmelCase = self.final_layer_norm(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.proj_out(__SCREAMING_SNAKE_CASE ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = (config.num_hidden_layers + 1) // 5 __lowerCAmelCase = config.hidden_size __lowerCAmelCase = 1 __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,activation_fn="""gelu""",attention_bias=__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' for block in self.blocks: __lowerCAmelCase = block(__SCREAMING_SNAKE_CASE ) return hidden_states
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( lowercase , lowercase ) -> float: __lowerCAmelCase = u for i in range(1 , lowercase ): __lowerCAmelCase = temp * (u - i) return temp def _lowerCAmelCase ( ) -> None: __lowerCAmelCase = int(input("""enter the numbers of values: """ ) ) __lowerCAmelCase = [] for _ in range(lowercase ): y.append([] ) for i in range(lowercase ): for j in range(lowercase ): y[i].append(lowercase ) __lowerCAmelCase = 0 print("""enter the values of parameters in a list: """ ) __lowerCAmelCase = list(map(lowercase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(lowercase ): __lowerCAmelCase = float(input() ) __lowerCAmelCase = int(input("""enter the value to interpolate: """ ) ) __lowerCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowercase ): for j in range(n - i ): __lowerCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __lowerCAmelCase = y[0][0] for i in range(1 , lowercase ): summ += (ucal(lowercase , lowercase ) * y[0][i]) / math.factorial(lowercase ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _a : List[str] = """true""" def _lowerCAmelCase ( lowercase , lowercase=82 , lowercase=16 ) -> List[Any]: set_seed(42 ) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowercase ) __lowerCAmelCase = RegressionDataset(length=lowercase ) __lowerCAmelCase = DataLoader(lowercase , batch_size=lowercase ) model.to(accelerator.device ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowercase , lowercase ) return model, ddp_model, dataloader def _lowerCAmelCase ( lowercase , lowercase=False ) -> Optional[int]: __lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) __lowerCAmelCase = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(lowercase ): __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): if use_longest: return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(lowercase , shuffle=lowercase , collate_fn=lowercase , batch_size=16 ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[str]: __lowerCAmelCase = Accelerator(dispatch_batches=lowercase , split_batches=lowercase ) __lowerCAmelCase = get_dataloader(lowercase , not dispatch_batches ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=lowercase ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowercase , lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Tuple: __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowercase ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowercase ) targs.append(lowercase ) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowercase ), torch.cat(lowercase ) return logits, targs def _lowerCAmelCase ( lowercase , lowercase=82 , lowercase=False , lowercase=False , lowercase=16 ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowercase , lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowercase , lowercase , lowercase ) assert ( len(lowercase ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase )}' def _lowerCAmelCase ( lowercase = False , lowercase = False ) -> int: __lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowercase , lowercase ) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup["""no"""] model.to(lowercase ) model.eval() for batch in dataloader: batch.to(lowercase ) with torch.inference_mode(): __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase , references=batch["""labels"""] ) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase = batch["""labels"""] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase , references=lowercase ) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(lowercase , lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) __lowerCAmelCase = Accelerator() test_torch_metrics(lowercase , 512 ) accelerator.state._reset_state() def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=99,__SCREAMING_SNAKE_CASE=[1, 1, 2],__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=8,__SCREAMING_SNAKE_CASE=37,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=5_12,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=False,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = block_sizes __lowerCAmelCase = num_decoder_layers __lowerCAmelCase = d_model __lowerCAmelCase = n_head __lowerCAmelCase = d_head __lowerCAmelCase = d_inner __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = 2 __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = initializer_std # Used in the tests to check the size of the first attention layer __lowerCAmelCase = n_head # Used in the tests to check the size of the first hidden state __lowerCAmelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowerCAmelCase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowerCAmelCase = self.num_hidden_layers + 2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size],self.num_choices ) __lowerCAmelCase = FunnelConfig( vocab_size=self.vocab_size,block_sizes=self.block_sizes,num_decoder_layers=self.num_decoder_layers,d_model=self.d_model,n_head=self.n_head,d_head=self.d_head,d_inner=self.d_inner,hidden_act=self.hidden_act,hidden_dropout=self.hidden_dropout,attention_dropout=self.attention_dropout,activation_dropout=self.activation_dropout,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_std=self.initializer_std,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFunnelModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFunnelBaseModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, 2, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelBaseModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, 3, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelBaseModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFunnelForPreTraining(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFunnelForMaskedLM(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFunnelForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.num_choices __lowerCAmelCase = TFFunnelForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ),(1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ),(1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ),(1, self.num_choices, 1) ) __lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFunnelForTokenClassification(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFunnelForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : str =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a : Union[str, Any] =( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a : Optional[int] =False a : Dict =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFFunnelModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @require_tf class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : List[Any] =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a : List[Any] =False a : Tuple =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFFunnelModelTester(self,base=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( sample_size=(32, 64),in_channels=1,out_channels=1,layers_per_block=2,block_out_channels=(1_28, 1_28),down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""),up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""),) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( sample_size=(64, 32),in_channels=1,out_channels=1,layers_per_block=2,block_out_channels=(1_28, 1_28),down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D"""),up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D"""),cross_attention_dim=10,) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( sample_size=(1_28, 64),in_channels=1,out_channels=1,latent_channels=1,layers_per_block=2,block_out_channels=(1_28, 1_28),down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D"""),up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D"""),) __lowerCAmelCase = UNetaDModel( sample_size=(64, 32),in_channels=1,out_channels=1,layers_per_block=2,block_out_channels=(1_28, 1_28),down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""),up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""),) return vqvae, unet @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1],y_res=self.dummy_unet.config.sample_size[0],) __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE,unet=self.dummy_unet,mel=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) __lowerCAmelCase = pipe(generator=__SCREAMING_SNAKE_CASE,steps=4 ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) __lowerCAmelCase = pipe(generator=__SCREAMING_SNAKE_CASE,steps=4,return_dict=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes(),dtype="""uint8""" )[:10] __lowerCAmelCase = np.frombuffer(image_from_tuple.tobytes(),dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1],y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0],) __lowerCAmelCase = DDIMScheduler() __lowerCAmelCase = self.dummy_vqvae_and_unet __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0],unet=dummy_vqvae_and_unet[1],mel=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) __lowerCAmelCase = np.random.uniform(-1,1,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) __lowerCAmelCase = pipe(raw_audio=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,start_step=5,steps=10 ) __lowerCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes(),dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = self.dummy_unet_condition __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0],unet=__SCREAMING_SNAKE_CASE,mel=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) __lowerCAmelCase = torch.rand((1, 1, 10) ) __lowerCAmelCase = pipe(generator=__SCREAMING_SNAKE_CASE,encoding=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = np.frombuffer(image.tobytes(),dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = torch_device __lowerCAmelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) __lowerCAmelCase = pipe(generator=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __lowerCAmelCase = np.frombuffer(image.tobytes(),dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Tuple =RoCBertTokenizer a : Dict =None a : List[Any] =False a : Any =True a : Optional[int] =filter_non_english def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] __lowerCAmelCase = {} __lowerCAmelCase = {} for i, value in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = i __lowerCAmelCase = i __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""word_shape_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file,"""w""",encoding="""utf-8""" ) as word_shape_writer: json.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,ensure_ascii=__SCREAMING_SNAKE_CASE ) with open(self.word_pronunciation_file,"""w""",encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,ensure_ascii=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,self.word_shape_file,self.word_pronunciation_file ) __lowerCAmelCase = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__SCREAMING_SNAKE_CASE ),[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__SCREAMING_SNAKE_CASE ),[5, 6, 2, 5, 7, 8] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ),["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ),["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ),["""hello"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ),["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ),["""h\u00E9llo"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ),["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ),["""hello"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ),["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ),["""hello"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ),["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ),["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ),["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ),["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowerCAmelCase = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = i __lowerCAmelCase = RoCBertWordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ),[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ),["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ),["""[UNK]""", """runn""", """##ing"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self ): '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self ): '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ["""Test""", """\xad""", """test"""]],[["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: __lowerCAmelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ["""Test""", """\xad""", """test"""]],[["""[UNK]"""], [], ["""[UNK]"""]] ) def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __lowerCAmelCase = tokenizer_r.encode_plus( __SCREAMING_SNAKE_CASE,return_attention_mask=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE,return_offsets_mapping=__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(__SCREAMING_SNAKE_CASE,"""do_lower_case""" ) else False __lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results],tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results],tokens["""offset_mapping"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""的""", """人""", """有"""] __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_r.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = False __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_r.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". __lowerCAmelCase = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(__SCREAMING_SNAKE_CASE ) ] self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,self.word_shape_file,self.word_pronunciation_file ) __lowerCAmelCase = tokenizer.encode("""你好""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode("""你是谁""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __lowerCAmelCase = """你好,你是谁""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_tokens_to_shape_ids(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.prepare_for_model( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _a : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = os.path.abspath(lowercase ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model __lowerCAmelCase = tf.train.list_variables(lowercase ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __lowerCAmelCase = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' __lowerCAmelCase = name[1:] # figure out how many levels deep the name is __lowerCAmelCase = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(lowercase ) # read data __lowerCAmelCase = tf.train.load_variable(lowercase , lowercase ) names.append("""/""".join(lowercase ) ) arrays.append(lowercase ) logger.info(f'Read a total of {len(lowercase ):,} layers' ) # Sanity check if len(set(lowercase ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(lowercase ) )})' ) __lowerCAmelCase = list(set(lowercase ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(lowercase , lowercase ): __lowerCAmelCase = full_name.split("""/""" ) __lowerCAmelCase = model __lowerCAmelCase = [] for i, m_name in enumerate(lowercase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __lowerCAmelCase = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __lowerCAmelCase = getattr(lowercase , """embeddings""" ) __lowerCAmelCase = getattr(lowercase , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __lowerCAmelCase = getattr(lowercase , """encoder""" ) __lowerCAmelCase = getattr(lowercase , """layer""" ) __lowerCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __lowerCAmelCase = getattr(lowercase , """pooler""" ) __lowerCAmelCase = getattr(lowercase , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __lowerCAmelCase = getattr(lowercase , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __lowerCAmelCase = getattr(lowercase , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __lowerCAmelCase = getattr(lowercase , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __lowerCAmelCase = getattr(lowercase , """token_type_embeddings""" ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append("""weight""" ) __lowerCAmelCase = getattr(lowercase , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __lowerCAmelCase = getattr(lowercase , """attention""" ) __lowerCAmelCase = getattr(lowercase , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __lowerCAmelCase = getattr(lowercase , """attention""" ) __lowerCAmelCase = getattr(lowercase , """output""" ) __lowerCAmelCase = getattr(lowercase , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __lowerCAmelCase = getattr(lowercase , """attention""" ) __lowerCAmelCase = getattr(lowercase , """output""" ) __lowerCAmelCase = getattr(lowercase , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __lowerCAmelCase = getattr(lowercase , """output""" ) __lowerCAmelCase = getattr(lowercase , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __lowerCAmelCase = getattr(lowercase , """output""" ) __lowerCAmelCase = getattr(lowercase , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __lowerCAmelCase = getattr(lowercase , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __lowerCAmelCase = getattr(lowercase , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __lowerCAmelCase = getattr(lowercase , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __lowerCAmelCase = getattr(lowercase , """intermediate""" ) __lowerCAmelCase = getattr(lowercase , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __lowerCAmelCase = getattr(lowercase , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __lowerCAmelCase = getattr(lowercase , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __lowerCAmelCase = getattr(lowercase , """weight""" ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary __lowerCAmelCase = """.""".join(lowercase ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , lowercase ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , lowercase ): __lowerCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __lowerCAmelCase = array.transpose() if pointer.shape == array.shape: __lowerCAmelCase = torch.from_numpy(lowercase ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Any: # Instantiate model logger.info(f'Loading model based on config from {config_path}...' ) __lowerCAmelCase = BertConfig.from_json_file(lowercase ) __lowerCAmelCase = BertModel(lowercase ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowercase , lowercase , lowercase ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) _a : Optional[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _a : List[str] = logging.get_logger(__name__) enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : List[str] =UNetaDModel a : Optional[int] ="""sample""" @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 4 __lowerCAmelCase = 3 __lowerCAmelCase = (32, 32) __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([10] ).to(__SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self ): '''simple docstring''' return (3, 32, 32) @property def lowerCamelCase__ ( self ): '''simple docstring''' return (3, 32, 32) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Union[str, Any] =UNetaDModel a : int ="""sample""" @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 4 __lowerCAmelCase = 4 __lowerCAmelCase = (32, 32) __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([10] ).to(__SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self ): '''simple docstring''' return (4, 32, 32) @property def lowerCamelCase__ ( self ): '''simple docstring''' return (4, 32, 32) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""",output_loading_info=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info["""missing_keys"""] ),0 ) model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""","""This test is supposed to run on GPU""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""",output_loading_info=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""","""This test is supposed to run on GPU""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""",output_loading_info=__SCREAMING_SNAKE_CASE ) model_accelerate.to(__SCREAMING_SNAKE_CASE ) model_accelerate.eval() __lowerCAmelCase = torch.randn( 1,model_accelerate.config.in_channels,model_accelerate.config.sample_size,model_accelerate.config.sample_size,generator=torch.manual_seed(0 ),) __lowerCAmelCase = noise.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model_accelerate(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __lowerCAmelCase , __lowerCAmelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""",output_loading_info=__SCREAMING_SNAKE_CASE,low_cpu_mem_usage=__SCREAMING_SNAKE_CASE ) model_normal_load.to(__SCREAMING_SNAKE_CASE ) model_normal_load.eval() __lowerCAmelCase = model_normal_load(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )["""sample"""] assert torch_all_close(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,rtol=1e-3 ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.randn( 1,model.config.in_channels,model.config.sample_size,model.config.sample_size,generator=torch.manual_seed(0 ),) __lowerCAmelCase = noise.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).sample __lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCAmelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,rtol=1e-3 ) ) class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : List[Any] =UNetaDModel a : Optional[int] ="""sample""" @property def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=(32, 32) ): '''simple docstring''' __lowerCAmelCase = 4 __lowerCAmelCase = 3 __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa,device=__SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self ): '''simple docstring''' return (3, 32, 32) @property def lowerCamelCase__ ( self ): '''simple docstring''' return (3, 32, 32) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""",output_loading_info=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info["""missing_keys"""] ),0 ) model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.dummy_input __lowerCAmelCase = floats_tensor((4, 3) + (2_56, 2_56) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = noise __lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = 4 __lowerCAmelCase = 3 __lowerCAmelCase = (2_56, 2_56) __lowerCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).sample __lowerCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __lowerCAmelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,rtol=1e-2 ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = 4 __lowerCAmelCase = 3 __lowerCAmelCase = (32, 32) __lowerCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).sample __lowerCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __lowerCAmelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,rtol=1e-2 ) ) def lowerCamelCase__ ( self ): '''simple docstring''' pass
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.values[key] def lowerCamelCase__ ( self ): '''simple docstring''' return ( sum(self.charge_factor - len(__SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a : List[Any] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = "arrow",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__( split=__SCREAMING_SNAKE_CASE,features=__SCREAMING_SNAKE_CASE,cache_dir=__SCREAMING_SNAKE_CASE,keep_in_memory=__SCREAMING_SNAKE_CASE,streaming=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = load_from_cache_file __lowerCAmelCase = file_format __lowerCAmelCase = Spark( df=__SCREAMING_SNAKE_CASE,features=__SCREAMING_SNAKE_CASE,cache_dir=__SCREAMING_SNAKE_CASE,working_dir=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowerCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__SCREAMING_SNAKE_CASE,file_format=self._file_format,) return self.builder.as_dataset(split=self.split )
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Optional[Any] = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Optional[int] = {"""vocab_file""": """spm_char.model"""} _a : Optional[int] = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } _a : Optional[int] = { """microsoft/speecht5_asr""": 1_0_2_4, """microsoft/speecht5_tts""": 1_0_2_4, """microsoft/speecht5_vc""": 1_0_2_4, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) return token def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [1] if token_ids_a is None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=99,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=37,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=5_12,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size],self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__SCREAMING_SNAKE_CASE,initializer_range=self.initializer_range,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = LlamaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = LlamaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = LlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = LlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,use_cache=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3),config.vocab_size ) __lowerCAmelCase = ids_tensor((self.batch_size, 3),vocab_size=2 ) # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens],dim=-1 ) __lowerCAmelCase = torch.cat([input_mask, next_mask],dim=-1 ) __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,output_hidden_states=__SCREAMING_SNAKE_CASE,)["""hidden_states"""][0] __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,past_key_values=__SCREAMING_SNAKE_CASE,output_hidden_states=__SCREAMING_SNAKE_CASE,)["""hidden_states"""][0] # select random slice __lowerCAmelCase = ids_tensor((1,),output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-3 ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : int =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a : List[Any] =(LlamaForCausalLM,) if is_torch_available() else () a : List[Any] =( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) a : List[Any] =False a : Dict =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = LlamaModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,hidden_size=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = input_dict["""input_ids"""] __lowerCAmelCase = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __lowerCAmelCase = LlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = """single_label_classification""" __lowerCAmelCase = input_dict["""input_ids"""] __lowerCAmelCase = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __lowerCAmelCase = LlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = """multi_label_classification""" __lowerCAmelCase = input_dict["""input_ids"""] __lowerCAmelCase = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels],self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCAmelCase = LlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ids_tensor([1, 10],config.vocab_size ) __lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase = LlamaModel(__SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) original_model.eval() __lowerCAmelCase = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state __lowerCAmelCase = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase = {"""type""": scaling_type, """factor""": 10.0} __lowerCAmelCase = LlamaModel(__SCREAMING_SNAKE_CASE ) scaled_model.to(__SCREAMING_SNAKE_CASE ) scaled_model.eval() __lowerCAmelCase = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state __lowerCAmelCase = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-5 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __lowerCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""",device_map="""auto""" ) __lowerCAmelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __lowerCAmelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ),__SCREAMING_SNAKE_CASE,atol=1e-2,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowerCAmelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30],__SCREAMING_SNAKE_CASE,atol=1e-5,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __lowerCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""",device_map="""auto""" ) __lowerCAmelCase = model(torch.tensor(__SCREAMING_SNAKE_CASE ) ) # Expected mean on dim = -1 __lowerCAmelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ),__SCREAMING_SNAKE_CASE,atol=1e-2,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowerCAmelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30],__SCREAMING_SNAKE_CASE,atol=1e-5,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __lowerCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""",device_map="""auto""" ) __lowerCAmelCase = model(torch.tensor(__SCREAMING_SNAKE_CASE ) ) # Expected mean on dim = -1 __lowerCAmelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ),__SCREAMING_SNAKE_CASE,atol=1e-2,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowerCAmelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ),__SCREAMING_SNAKE_CASE,atol=1e-2,rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __lowerCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""",device_map="""auto""" ) __lowerCAmelCase = model(torch.tensor(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]],dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ),__SCREAMING_SNAKE_CASE,atol=1e-2,rtol=1e-2 ) # fmt: off __lowerCAmelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30],__SCREAMING_SNAKE_CASE,atol=1e-5,rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __lowerCAmelCase = """Simply put, the theory of relativity states that """ __lowerCAmelCase = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""",device_map="""sequential""",use_safetensors=__SCREAMING_SNAKE_CASE ) # greedy generation outputs __lowerCAmelCase = model.generate(__SCREAMING_SNAKE_CASE,max_new_tokens=64,top_p=__SCREAMING_SNAKE_CASE,temperature=1,do_sample=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.decode(generated_ids[0],skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _a : Tuple = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _a : Any = ( subprocess.check_output(f'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() ) _a : Any = """|""".join(sys.argv[1:]) _a : Any = re.compile(rf'^({joined_dirs}).*?\.py$') _a : Optional[int] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self ): '''simple docstring''' self.test() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False while not completed: if counter == 1: self.reset() __lowerCAmelCase = self.advance() if not self.does_advance(__SCREAMING_SNAKE_CASE ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.update(__SCREAMING_SNAKE_CASE ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCamelCase__ ( self ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super(__SCREAMING_SNAKE_CASE,self ).__init__() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) __lowerCAmelCase = token_ids __lowerCAmelCase = len(self.token_ids ) __lowerCAmelCase = -1 # the index of the currently fulfilled step __lowerCAmelCase = False def lowerCamelCase__ ( self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(__SCREAMING_SNAKE_CASE )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(__SCREAMING_SNAKE_CASE )}' ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(__SCREAMING_SNAKE_CASE ): self.fulfilled_idx += 1 __lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): __lowerCAmelCase = True __lowerCAmelCase = completed else: # failed to make progress. __lowerCAmelCase = True self.reset() return stepped, completed, reset def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = False __lowerCAmelCase = 0 def lowerCamelCase__ ( self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.fulfilled_idx __lowerCAmelCase = self.completed return new_constraint class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for one in nested_token_ids] ) __lowerCAmelCase = {} for token_ids in nested_token_ids: __lowerCAmelCase = root for tidx, token_id in enumerate(__SCREAMING_SNAKE_CASE ): if token_id not in level: __lowerCAmelCase = {} __lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f' {nested_token_ids}.' ) __lowerCAmelCase = root def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.trie for current_token in current_seq: __lowerCAmelCase = start[current_token] __lowerCAmelCase = list(start.keys() ) return next_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.next_tokens(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) == 0 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = list(root.values() ) if len(__SCREAMING_SNAKE_CASE ) == 0: return 1 else: return sum([self.count_leaves(__SCREAMING_SNAKE_CASE ) for nn in next_nodes] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.count_leaves(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) != leaf_count class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super(__SCREAMING_SNAKE_CASE,self ).__init__() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) __lowerCAmelCase = DisjunctiveTrie(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nested_token_ids __lowerCAmelCase = self.trie.max_height __lowerCAmelCase = [] __lowerCAmelCase = False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(__SCREAMING_SNAKE_CASE ) == 0: return None else: return token_list def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__SCREAMING_SNAKE_CASE )}' ) __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__SCREAMING_SNAKE_CASE )}' ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(__SCREAMING_SNAKE_CASE ): self.current_seq.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = True else: __lowerCAmelCase = True self.reset() __lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) __lowerCAmelCase = completed return stepped, completed, reset def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = False __lowerCAmelCase = [] def lowerCamelCase__ ( self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.current_seq __lowerCAmelCase = self.completed return new_constraint class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint __lowerCAmelCase = max([c.seqlen for c in constraints] ) __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = False self.init_state() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = None __lowerCAmelCase = [constraint.copy(stateful=__SCREAMING_SNAKE_CASE ) for constraint in self.constraints] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __lowerCAmelCase = constraint.advance() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): token_list.append(__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): token_list.extend(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): token_list.append(__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): token_list.extend(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) == 0: return None else: return token_list def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __lowerCAmelCase , __lowerCAmelCase = self.add(__SCREAMING_SNAKE_CASE ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) __lowerCAmelCase , __lowerCAmelCase = False, False if self.completed: __lowerCAmelCase = True __lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.inprogress_constraint.update(__SCREAMING_SNAKE_CASE ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! __lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = pending_constraint.update(__SCREAMING_SNAKE_CASE ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = None if not complete and stepped: __lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __lowerCAmelCase = [ constraint.copy(stateful=__SCREAMING_SNAKE_CASE ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __lowerCAmelCase = self.inprogress_constraint.copy(stateful=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a : Dict = """src/diffusers""" # Matches is_xxx_available() _a : List[Any] = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla _a : List[Any] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") _a : List[str] = """ {0} = None """ _a : str = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ _a : Tuple = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: __lowerCAmelCase = _re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def _lowerCAmelCase ( ) -> List[Any]: with open(os.path.join(lowercase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking __lowerCAmelCase = 0 __lowerCAmelCase = {} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __lowerCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: __lowerCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase ( lowercase , lowercase ) -> str: if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase , lowercase ) else: return DUMMY_CLASS.format(lowercase , lowercase ) def _lowerCAmelCase ( lowercase=None ) -> str: if backend_specific_objects is None: __lowerCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __lowerCAmelCase = {} for backend, objects in backend_specific_objects.items(): __lowerCAmelCase = """[""" + """, """.join(f'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase , lowercase ) for o in objects] ) __lowerCAmelCase = dummy_file return dummy_files def _lowerCAmelCase ( lowercase=False ) -> Optional[int]: __lowerCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __lowerCAmelCase = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. __lowerCAmelCase = os.path.join(lowercase , """utils""" ) __lowerCAmelCase = { backend: os.path.join(lowercase , f'dummy_{short_names.get(lowercase , lowercase )}_objects.py' ) for backend in dummy_files.keys() } __lowerCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase = f.read() else: __lowerCAmelCase = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _a : Optional[int] = parser.parse_args() check_dummies(args.fix_and_overwrite)
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 100 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = 0 __lowerCAmelCase = n + 1 # maximum limit for a in range(2 , lowercase ): for b in range(2 , lowercase ): __lowerCAmelCase = a**b # calculates the current power collect_powers.add(lowercase ) # adds the result to the set return len(lowercase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _a : Tuple = TypeVar("""T""") _a : Tuple = Union[List[T], Tuple[T, ...]] _a : List[Any] = Union[T, List[T], Dict[str, T]] _a : Tuple = Union[str, bytes, os.PathLike]
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> list: __lowerCAmelCase = len(lowercase ) for _ in range(lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCAmelCase , __lowerCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": _a : int = list(range(1_0, 0, -1)) print(f'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _a : int = logging.get_logger(__name__) # General docstring _a : Any = """RegNetConfig""" # Base docstring _a : List[str] = """facebook/regnet-y-040""" _a : Optional[int] = [1, 1_0_8_8, 7, 7] # Image classification docstring _a : Dict = """facebook/regnet-y-040""" _a : str = """tabby, tabby cat""" _a : List[str] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 3,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = "relu",): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=__SCREAMING_SNAKE_CASE,stride=__SCREAMING_SNAKE_CASE,padding=kernel_size // 2,groups=__SCREAMING_SNAKE_CASE,bias=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.convolution(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.normalization(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = RegNetConvLayer( config.num_channels,config.embedding_size,kernel_size=3,stride=2,activation=config.hidden_act ) __lowerCAmelCase = config.num_channels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __lowerCAmelCase = self.embedder(__SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 2 ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Convad(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1,stride=__SCREAMING_SNAKE_CASE,bias=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.convolution(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.normalization(__SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) __lowerCAmelCase = nn.Sequential( nn.Convad(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1 ),nn.ReLU(),nn.Convad(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1 ),nn.Sigmoid(),) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.pooler(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.attention(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = hidden_state * attention return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 1 ): '''simple docstring''' super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = max(1,out_channels // config.groups_width ) __lowerCAmelCase = ( RegNetShortCut(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( RegNetConvLayer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1,activation=config.hidden_act ),RegNetConvLayer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,stride=__SCREAMING_SNAKE_CASE,groups=__SCREAMING_SNAKE_CASE,activation=config.hidden_act ),RegNetConvLayer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1,activation=__SCREAMING_SNAKE_CASE ),) __lowerCAmelCase = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual __lowerCAmelCase = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 1 ): '''simple docstring''' super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = max(1,out_channels // config.groups_width ) __lowerCAmelCase = ( RegNetShortCut(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( RegNetConvLayer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1,activation=config.hidden_act ),RegNetConvLayer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,stride=__SCREAMING_SNAKE_CASE,groups=__SCREAMING_SNAKE_CASE,activation=config.hidden_act ),RegNetSELayer(__SCREAMING_SNAKE_CASE,reduced_channels=int(round(in_channels / 4 ) ) ),RegNetConvLayer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,kernel_size=1,activation=__SCREAMING_SNAKE_CASE ),) __lowerCAmelCase = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual __lowerCAmelCase = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 2,__SCREAMING_SNAKE_CASE = 2,): '''simple docstring''' super().__init__() __lowerCAmelCase = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer __lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,stride=__SCREAMING_SNAKE_CASE,),*[layer(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.layers(__SCREAMING_SNAKE_CASE ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __SCREAMING_SNAKE_CASE,config.embedding_size,config.hidden_sizes[0],stride=2 if config.downsample_in_first_stage else 1,depth=config.depths[0],) ) __lowerCAmelCase = zip(config.hidden_sizes,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__SCREAMING_SNAKE_CASE,config.depths[1:] ): self.stages.append(RegNetStage(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,depth=__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = True ): '''simple docstring''' __lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) __lowerCAmelCase = stage_module(__SCREAMING_SNAKE_CASE ) if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__SCREAMING_SNAKE_CASE,hidden_states=__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Tuple =RegNetConfig a : Union[str, Any] ="""regnet""" a : Optional[int] ="""pixel_values""" a : Union[str, Any] =True def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE,nn.Convad ): nn.init.kaiming_normal_(module.weight,mode="""fan_out""",nonlinearity="""relu""" ) elif isinstance(__SCREAMING_SNAKE_CASE,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight,1 ) nn.init.constant_(module.bias,0 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = value _a : str = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _a : Tuple = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = config __lowerCAmelCase = RegNetEmbeddings(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = RegNetEncoder(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC,output_type=__SCREAMING_SNAKE_CASE,config_class=_CONFIG_FOR_DOC,modality="""vision""",expected_output=_EXPECTED_OUTPUT_SHAPE,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.embedder(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.encoder( __SCREAMING_SNAKE_CASE,output_hidden_states=__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(__SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE,pooler_output=__SCREAMING_SNAKE_CASE,hidden_states=encoder_outputs.hidden_states,) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = RegNetModel(__SCREAMING_SNAKE_CASE ) # classification head __lowerCAmelCase = nn.Sequential( nn.Flatten(),nn.Linear(config.hidden_sizes[-1],config.num_labels ) if config.num_labels > 0 else nn.Identity(),) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT,output_type=__SCREAMING_SNAKE_CASE,config_class=_CONFIG_FOR_DOC,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.regnet(__SCREAMING_SNAKE_CASE,output_hidden_states=__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase = self.classifier(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase = """single_label_classification""" else: __lowerCAmelCase = """multi_label_classification""" if self.config.problem_type == "regression": __lowerCAmelCase = MSELoss() if self.num_labels == 1: __lowerCAmelCase = loss_fct(logits.squeeze(),labels.squeeze() ) else: __lowerCAmelCase = loss_fct(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase = BCEWithLogitsLoss() __lowerCAmelCase = loss_fct(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__SCREAMING_SNAKE_CASE,logits=__SCREAMING_SNAKE_CASE,hidden_states=outputs.hidden_states )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _a : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( lowercase ) -> Any: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , lowercase , ) if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowercase , axis=0 ) __lowerCAmelCase = np.array(lowercase ).astype(np.floataa ) / 2_55.0 __lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowercase ) elif isinstance(image[0] , torch.Tensor ): __lowerCAmelCase = torch.cat(lowercase , dim=0 ) return image def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: if isinstance(lowercase , torch.Tensor ): return mask elif isinstance(lowercase , PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowercase , axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 2_55.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowercase ) elif isinstance(mask[0] , torch.Tensor ): __lowerCAmelCase = torch.cat(lowercase , dim=0 ) return mask class _UpperCAmelCase ( lowerCAmelCase_ ): a : UNetaDModel a : RePaintScheduler def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 2_50,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = 10,__SCREAMING_SNAKE_CASE = 10,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pil",__SCREAMING_SNAKE_CASE = True,): '''simple docstring''' __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = original_image.to(device=self.device,dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = mask_image.to(device=self.device,dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,device=self.device,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0,1 ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _a : List[str] = getLogger(__name__) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase = 8 , lowercase = 1024 , lowercase="val" , lowercase=None , lowercase=False , lowercase="summarization" , lowercase=None , lowercase=1 , lowercase = None , lowercase="" , **lowercase , ) -> Dict: __lowerCAmelCase = str(lowercase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=lowercase ) __lowerCAmelCase = Path(lowercase ) __lowerCAmelCase = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(lowercase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowercase ).cuda() if fpaa: __lowerCAmelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(lowercase , lowercase ) # update config with task specific params __lowerCAmelCase = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __lowerCAmelCase = num_return_sequences __lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __lowerCAmelCase = tokenizer.model_max_length if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" __lowerCAmelCase = SeqaSeqDataset( lowercase , lowercase , lowercase , max_target_length=1024 , type_path=lowercase , n_obs=lowercase , prefix=lowercase , **lowercase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __lowerCAmelCase = ds.make_sortish_sampler(lowercase , distributed=lowercase , add_extra_examples=lowercase , shuffle=lowercase ) __lowerCAmelCase = DataLoader(lowercase , sampler=lowercase , batch_size=lowercase , collate_fn=ds.collate_fn ) __lowerCAmelCase = [] for batch in tqdm(lowercase ): __lowerCAmelCase = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=lowercase , num_beams=lowercase , **lowercase , ) __lowerCAmelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) __lowerCAmelCase = batch["""ids"""] if num_return_sequences > 1: __lowerCAmelCase = chunks(lowercase , lowercase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowercase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(lowercase , lowercase ) return results, sampler.num_replicas def _lowerCAmelCase ( ) -> List[Any]: __lowerCAmelCase = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=lowercase , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=lowercase , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=lowercase , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=lowercase , default=lowercase ) parser.add_argument( """--type_path""" , type=lowercase , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=lowercase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=lowercase , default=8 , required=lowercase , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=lowercase , default=-1 , required=lowercase , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=lowercase , default=lowercase , required=lowercase , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=lowercase , default=1 , required=lowercase , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=lowercase , default=600 , required=lowercase , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument("""--tgt_lang""" , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument( """--prefix""" , type=lowercase , required=lowercase , default=lowercase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) __lowerCAmelCase = time.time() __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(lowercase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __lowerCAmelCase = Path(args.save_dir + """_tmp""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) # this handles locking. __lowerCAmelCase = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __lowerCAmelCase = {} if args.src_lang is not None: __lowerCAmelCase = args.src_lang if args.tgt_lang is not None: __lowerCAmelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowercase ) __lowerCAmelCase , __lowerCAmelCase = eval_data_dir( args.data_dir , lowercase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowercase , **lowercase , ) if args.local_rank <= 0: __lowerCAmelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowercase ) __lowerCAmelCase = gather_results_from_each_node(lowercase , lowercase , args.sync_timeout ) __lowerCAmelCase = combine_partial_results(lowercase ) if args.num_return_sequences > 1: __lowerCAmelCase = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(lowercase , lowercase ) return __lowerCAmelCase = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(lowercase ) as f: __lowerCAmelCase = [x.rstrip() for x in f.readlines()][: len(lowercase )] # Calculate metrics, save metrics, and save _generations.txt __lowerCAmelCase = """translation""" in args.task __lowerCAmelCase = calculate_bleu if calc_bleu else calculate_rouge __lowerCAmelCase = """bleu""" if calc_bleu else """rouge""" __lowerCAmelCase = score_fn(lowercase , lowercase ) __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = time.time() - start_time __lowerCAmelCase = round(runtime / metrics["""n_obs"""] , 4 ) __lowerCAmelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics __lowerCAmelCase = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(lowercase , lowercase , indent=lowercase ) print(lowercase ) write_txt_file(lowercase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(lowercase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(lowercase ) def _lowerCAmelCase ( lowercase ) -> List: __lowerCAmelCase = [] for partial_result in partial_results: records.extend(lowercase ) __lowerCAmelCase = sorted(lowercase , key=lambda lowercase : x["id"] ) __lowerCAmelCase = [x["""pred"""] for x in records] return preds def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files __lowerCAmelCase = time.time() logger.info("""waiting for all nodes to finish""" ) __lowerCAmelCase = None while (time.time() - start_wait) < timeout: __lowerCAmelCase = list(save_dir.glob("""rank_*.json""" ) ) if len(lowercase ) < num_replicas: continue try: # make sure all json files are fully saved __lowerCAmelCase = lmap(lowercase , lowercase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Optional[Any] = 1_6 _a : Any = 3_2 def _lowerCAmelCase ( lowercase , lowercase = 16 ) -> str: __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowercase , padding="""longest""" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : int = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase ) == "1": __lowerCAmelCase = 2 # Initialize accelerator __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCAmelCase = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase , references=lowercase , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase ) def _lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase , default=lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): a : Tuple =1 @register_to_config def __init__( self,__SCREAMING_SNAKE_CASE = 10_00,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' self.set_timesteps(__SCREAMING_SNAKE_CASE ) # standard deviation of the initial noise distribution __lowerCAmelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __lowerCAmelCase = 4 # running values __lowerCAmelCase = [] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = num_inference_steps __lowerCAmelCase = torch.linspace(1,0,num_inference_steps + 1 )[:-1] __lowerCAmelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __lowerCAmelCase = torch.tensor(self.config.trained_betas,dtype=torch.floataa ) else: __lowerCAmelCase = torch.sin(steps * math.pi / 2 ) ** 2 __lowerCAmelCase = (1.0 - self.betas**2) ** 0.5 __lowerCAmelCase = (torch.atana(self.betas,self.alphas ) / math.pi * 2)[:-1] __lowerCAmelCase = timesteps.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = True,): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __lowerCAmelCase = (self.timesteps == timestep).nonzero().item() __lowerCAmelCase = timestep_index + 1 __lowerCAmelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__SCREAMING_SNAKE_CASE ) if len(self.ets ) == 1: __lowerCAmelCase = self.ets[-1] elif len(self.ets ) == 2: __lowerCAmelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __lowerCAmelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __lowerCAmelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __lowerCAmelCase = self._get_prev_sample(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return sample def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.alphas[timestep_index] __lowerCAmelCase = self.betas[timestep_index] __lowerCAmelCase = self.alphas[prev_timestep_index] __lowerCAmelCase = self.betas[prev_timestep_index] __lowerCAmelCase = (sample - sigma * ets) / max(__SCREAMING_SNAKE_CASE,1e-8 ) __lowerCAmelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : Union[str, Any] = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def _lowerCAmelCase ( lowercase , lowercase , lowercase=8 ) -> Optional[int]: __lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__() self.register_modules( unet=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE,movq=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if latents is None: __lowerCAmelCase = randn_tensor(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,device=__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCAmelCase = latents.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCAmelCase = torch.device(f'cuda:{gpu_id}' ) __lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""","""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCAmelCase = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""",silence_dtype_warnings=__SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCAmelCase , __lowerCAmelCase = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,prev_module_hook=__SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. __lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ): '''simple docstring''' if not hasattr(self.unet,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE,"""_hf_hook""" ) and hasattr(module._hf_hook,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__SCREAMING_SNAKE_CASE ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 5_12,__SCREAMING_SNAKE_CASE = 5_12,__SCREAMING_SNAKE_CASE = 1_00,__SCREAMING_SNAKE_CASE = 4.0,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pil",__SCREAMING_SNAKE_CASE = True,): '''simple docstring''' __lowerCAmelCase = self._execution_device __lowerCAmelCase = guidance_scale > 1.0 if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = torch.cat(__SCREAMING_SNAKE_CASE,dim=0 ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = torch.cat(__SCREAMING_SNAKE_CASE,dim=0 ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = torch.cat(__SCREAMING_SNAKE_CASE,dim=0 ) __lowerCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCAmelCase = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE,dim=0 ) __lowerCAmelCase = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE,dim=0 ) __lowerCAmelCase = hint.repeat_interleave(__SCREAMING_SNAKE_CASE,dim=0 ) __lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds],dim=0 ).to(dtype=self.unet.dtype,device=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([hint, hint],dim=0 ).to(dtype=self.unet.dtype,device=__SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE,device=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.scheduler.timesteps __lowerCAmelCase = self.movq.config.latent_channels __lowerCAmelCase , __lowerCAmelCase = downscale_height_and_width(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.movq_scale_factor ) # create initial latent __lowerCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width),image_embeds.dtype,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.scheduler,) for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCAmelCase = self.unet( sample=__SCREAMING_SNAKE_CASE,timestep=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,added_cond_kwargs=__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE,)[0] if do_classifier_free_guidance: __lowerCAmelCase , __lowerCAmelCase = noise_pred.split(latents.shape[1],dim=1 ) __lowerCAmelCase , __lowerCAmelCase = noise_pred.chunk(2 ) __lowerCAmelCase , __lowerCAmelCase = variance_pred.chunk(2 ) __lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCAmelCase = torch.cat([noise_pred, variance_pred_text],dim=1 ) if not ( hasattr(self.scheduler.config,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCAmelCase , __lowerCAmelCase = noise_pred.split(latents.shape[1],dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,)[0] # post-processing __lowerCAmelCase = self.movq.decode(__SCREAMING_SNAKE_CASE,force_not_quantize=__SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCAmelCase = image * 0.5 + 0.5 __lowerCAmelCase = image.clamp(0,1 ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 ).float().numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' from math import factorial def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> float: if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowercase , lowercase ) or not isinstance(lowercase , lowercase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __lowerCAmelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __lowerCAmelCase = float(factorial(lowercase ) ) coefficient /= factorial(lowercase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> list: __lowerCAmelCase = int(lowercase ) if n_element < 1: __lowerCAmelCase = ValueError("""a should be a positive number""" ) raise my_error __lowerCAmelCase = [1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = (0, 0, 0) __lowerCAmelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _a : Optional[Any] = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") _a : int = hamming(int(n)) print("""-----------------------------------------------------""") print(f'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' _a : Optional[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} __lowerCAmelCase = Stack() __lowerCAmelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 __lowerCAmelCase = operator_stack.peek() operator_stack.pop() __lowerCAmelCase = operand_stack.peek() operand_stack.pop() __lowerCAmelCase = operand_stack.peek() operand_stack.pop() __lowerCAmelCase = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _a : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : Tuple = logging.get_logger(__name__) _a : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): a : Dict ="""nat""" a : int ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=[3, 4, 6, 5],__SCREAMING_SNAKE_CASE=[2, 4, 8, 16],__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=3.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = num_heads __lowerCAmelCase = kernel_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCAmelCase = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = ["""stem"""] + [f'stage{idx}' for idx in range(1,len(__SCREAMING_SNAKE_CASE ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE,out_indices=__SCREAMING_SNAKE_CASE,stage_names=self.stage_names )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = 0 __lowerCAmelCase = len(lowercase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None __lowerCAmelCase = sorted_collection[point] if current_item == item: return point else: if point < left: __lowerCAmelCase = left __lowerCAmelCase = point elif point > right: __lowerCAmelCase = right __lowerCAmelCase = point else: if item < current_item: __lowerCAmelCase = point - 1 else: __lowerCAmelCase = point + 1 return None def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> str: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase , lowercase , lowercase , lowercase ) elif point > right: return interpolation_search_by_recursion(lowercase , lowercase , lowercase , lowercase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase , lowercase , lowercase , point - 1 ) else: return interpolation_search_by_recursion( lowercase , lowercase , point + 1 , lowercase ) def _lowerCAmelCase ( lowercase ) -> List[str]: if collection != sorted(lowercase ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys _a : Dict = 0 if debug == 1: _a : Optional[Any] = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") _a : str = 6_7 _a : Optional[int] = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print("""Not found""")
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = [[0 for _ in range(lowercase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , lowercase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _a : Tuple = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: _a : List[Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _a : str = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = False , ) -> str: __lowerCAmelCase = bnb_quantization_config.load_in_abit __lowerCAmelCase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) __lowerCAmelCase = [] # custom device map if isinstance(lowercase , lowercase ) and len(device_map.keys() ) > 1: __lowerCAmelCase = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __lowerCAmelCase = get_keys_to_not_convert(lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase ) __lowerCAmelCase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __lowerCAmelCase = [] __lowerCAmelCase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase ) # compatibility with peft __lowerCAmelCase = load_in_abit __lowerCAmelCase = load_in_abit __lowerCAmelCase = get_parameter_device(lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) __lowerCAmelCase = replace_with_bnb_layers(lowercase , lowercase , modules_to_not_convert=lowercase ) # convert param to the right dtype __lowerCAmelCase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __lowerCAmelCase = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) __lowerCAmelCase = getattr(lowercase , lowercase , lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase ): param.to(lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): __lowerCAmelCase = replace_with_bnb_layers( lowercase , lowercase , modules_to_not_convert=lowercase ) __lowerCAmelCase = get_quantized_model_device_map( lowercase , lowercase , lowercase , max_memory=lowercase , no_split_module_classes=lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __lowerCAmelCase = True __lowerCAmelCase = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowercase , lowercase , lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase , offload_state_dict=lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase , device_map=lowercase , offload_dir=lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None ) -> Dict: if device_map is None: if torch.cuda.is_available(): __lowerCAmelCase = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowercase , lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) __lowerCAmelCase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __lowerCAmelCase = {} __lowerCAmelCase = special_dtypes __lowerCAmelCase = no_split_module_classes __lowerCAmelCase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __lowerCAmelCase = get_balanced_memory( lowercase , low_zero=(device_map == """balanced_low_0""") , max_memory=lowercase , **lowercase , ) __lowerCAmelCase = max_memory __lowerCAmelCase = infer_auto_device_map(lowercase , **lowercase ) if isinstance(lowercase , lowercase ): # check if don't have any quantized module on the cpu __lowerCAmelCase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __lowerCAmelCase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None ) -> Union[str, Any]: if modules_to_not_convert is None: __lowerCAmelCase = [] __lowerCAmelCase , __lowerCAmelCase = _replace_with_bnb_layers( lowercase , lowercase , lowercase , lowercase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , ) -> Tuple: __lowerCAmelCase = False for name, module in model.named_children(): if current_key_name is None: __lowerCAmelCase = [] current_key_name.append(lowercase ) if isinstance(lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __lowerCAmelCase = """.""".join(lowercase ) __lowerCAmelCase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __lowerCAmelCase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __lowerCAmelCase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __lowerCAmelCase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) __lowerCAmelCase = module.weight.data if module.bias is not None: __lowerCAmelCase = module.bias.data bnb_module.requires_grad_(lowercase ) setattr(lowercase , lowercase , lowercase ) __lowerCAmelCase = True if len(list(module.children() ) ) > 0: __lowerCAmelCase , __lowerCAmelCase = _replace_with_bnb_layers( lowercase , lowercase , lowercase , lowercase ) __lowerCAmelCase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowerCAmelCase ( lowercase ) -> str: # Create a copy of the model with init_empty_weights(): __lowerCAmelCase = deepcopy(lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __lowerCAmelCase = find_tied_parameters(lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase , lowercase ): __lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowerCAmelCase = sum(lowercase , [] ) __lowerCAmelCase = len(lowercase ) > 0 # Check if it is a base model __lowerCAmelCase = False if hasattr(lowercase , """base_model_prefix""" ): __lowerCAmelCase = not hasattr(lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowerCAmelCase = list(model.named_children() ) __lowerCAmelCase = [list_modules[-1][0]] # add last module together with tied weights __lowerCAmelCase = set(lowercase ) - set(lowercase ) __lowerCAmelCase = list(set(lowercase ) ) + list(lowercase ) # remove ".weight" from the keys __lowerCAmelCase = [""".weight""", """.bias"""] __lowerCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowerCAmelCase = name.replace(lowercase , """""" ) filtered_module_names.append(lowercase ) return filtered_module_names def _lowerCAmelCase ( lowercase ) -> List[Any]: for m in model.modules(): if isinstance(lowercase , bnb.nn.Linearabit ): return True return False def _lowerCAmelCase ( lowercase ) -> int: return next(parameter.parameters() ).device def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowercase , lowercase , 0 , dtype=lowercase , value=lowercase ) __lowerCAmelCase = param_name __lowerCAmelCase = model if "." in tensor_name: __lowerCAmelCase = tensor_name.split(""".""" ) for split in splits[:-1]: __lowerCAmelCase = getattr(lowercase , lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) __lowerCAmelCase = new_module __lowerCAmelCase = splits[-1] # offload weights __lowerCAmelCase = False offload_weight(module._parameters[tensor_name] , lowercase , lowercase , index=lowercase ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowercase , index=lowercase , ) else: offload_weight(lowercase , lowercase , lowercase , index=lowercase ) offload_weight(lowercase , param_name.replace("""weight""" , """SCB""" ) , lowercase , index=lowercase ) set_module_tensor_to_device(lowercase , lowercase , """meta""" , dtype=lowercase , value=torch.empty(*param.size() ) )
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' _a : List[Any] = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase ( lowerCAmelCase_ ): a : int ="""naver-clova-ix/donut-base-finetuned-docvqa""" a : Any =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) a : Tuple ="""document_qa""" a : List[Any] =AutoProcessor a : int =VisionEncoderDecoderModel a : Optional[Any] =["""image""", """text"""] a : int =["""text"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowerCAmelCase = task_prompt.replace("""{user_input}""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).input_ids __lowerCAmelCase = self.pre_processor(__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ),decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ),max_length=self.model.decoder.config.max_position_embeddings,early_stopping=__SCREAMING_SNAKE_CASE,pad_token_id=self.pre_processor.tokenizer.pad_token_id,eos_token_id=self.pre_processor.tokenizer.eos_token_id,use_cache=__SCREAMING_SNAKE_CASE,num_beams=1,bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]],return_dict_in_generate=__SCREAMING_SNAKE_CASE,).sequences def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token,"""""" ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token,"""""" ) __lowerCAmelCase = re.sub(R"""<.*?>""","""""",__SCREAMING_SNAKE_CASE,count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = 13 __lowerCAmelCase = 7 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = 2 __lowerCAmelCase = 99 __lowerCAmelCase = 0 __lowerCAmelCase = 32 __lowerCAmelCase = 2 __lowerCAmelCase = 4 __lowerCAmelCase = 0.1 __lowerCAmelCase = 0.1 __lowerCAmelCase = 5_12 __lowerCAmelCase = 16 __lowerCAmelCase = 2 __lowerCAmelCase = 0.02 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = """last""" __lowerCAmelCase = True __lowerCAmelCase = None __lowerCAmelCase = 0 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length],dtype=tf.floataa ) __lowerCAmelCase = None if self.use_input_lengths: __lowerCAmelCase = ( ids_tensor([self.batch_size],vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.n_langs ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size],2,dtype=tf.floataa ) __lowerCAmelCase = ids_tensor([self.batch_size],self.num_choices ) __lowerCAmelCase = FlaubertConfig( vocab_size=self.vocab_size,n_special=self.n_special,emb_dim=self.hidden_size,n_layers=self.num_hidden_layers,n_heads=self.num_attention_heads,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,gelu_activation=self.gelu_activation,sinusoidal_embeddings=self.sinusoidal_embeddings,asm=self.asm,causal=self.causal,n_langs=self.n_langs,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,summary_type=self.summary_type,use_proj=self.use_proj,bos_token_id=self.bos_token_id,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFlaubertModel(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFlaubertWithLMHeadModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFlaubertForQuestionAnsweringSimple(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = TFFlaubertForSequenceClassification(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFlaubertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.num_choices __lowerCAmelCase = TFFlaubertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ),(1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ),(1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ),(1, self.num_choices, 1) ) __lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : List[Any] =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a : Union[str, Any] =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a : Optional[int] =( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a : Dict =False a : str =False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFFlaubertModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,emb_dim=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFFlaubertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) __lowerCAmelCase = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]],dtype=tf.intaa,) # "J'aime flaubert !" __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape,__SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. __lowerCAmelCase = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ],dtype=tf.floataa,) self.assertTrue(np.allclose(output[:, :3, :3].numpy(),expected_slice.numpy(),atol=1e-4 ) )
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def _lowerCAmelCase ( lowercase ) -> int: if hor == 128: __lowerCAmelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __lowerCAmelCase = (32, 128, 256) __lowerCAmelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: __lowerCAmelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __lowerCAmelCase = (32, 64, 128, 256) __lowerCAmelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") __lowerCAmelCase = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) __lowerCAmelCase = model.state_dict() __lowerCAmelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } __lowerCAmelCase = UNetaDModel(**lowercase ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __lowerCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(lowercase ) hf_value_function.load_state_dict(lowercase ) torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , """w""" ) as f: json.dump(lowercase , lowercase ) def _lowerCAmelCase ( ) -> Tuple: __lowerCAmelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } __lowerCAmelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) __lowerCAmelCase = model __lowerCAmelCase = UNetaDModel(**lowercase ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __lowerCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(lowercase ) hf_value_function.load_state_dict(lowercase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(lowercase , lowercase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowerCAmelCase = str(lowercase ) __lowerCAmelCase = """""".join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _lowerCAmelCase ( lowercase = 99 ) -> int: if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowerCAmelCase = 0 __lowerCAmelCase = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(9_9)}')
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _a : Dict = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _a : Dict = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def _lowerCAmelCase ( lowercase ) -> str: __lowerCAmelCase = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowercase )[0] @deprecated(lowercase , """Please use tf.data to implement this functionality.""" ) def _lowerCAmelCase ( lowercase ) -> Any: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=lowercase ) as bytestream: __lowerCAmelCase = _readaa(lowercase ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) __lowerCAmelCase = _readaa(lowercase ) __lowerCAmelCase = _readaa(lowercase ) __lowerCAmelCase = _readaa(lowercase ) __lowerCAmelCase = bytestream.read(rows * cols * num_images ) __lowerCAmelCase = numpy.frombuffer(lowercase , dtype=numpy.uinta ) __lowerCAmelCase = data.reshape(lowercase , lowercase , lowercase , 1 ) return data @deprecated(lowercase , """Please use tf.one_hot on tensors.""" ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[str]: __lowerCAmelCase = labels_dense.shape[0] __lowerCAmelCase = numpy.arange(lowercase ) * num_classes __lowerCAmelCase = numpy.zeros((num_labels, num_classes) ) __lowerCAmelCase = 1 return labels_one_hot @deprecated(lowercase , """Please use tf.data to implement this functionality.""" ) def _lowerCAmelCase ( lowercase , lowercase=False , lowercase=10 ) -> int: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=lowercase ) as bytestream: __lowerCAmelCase = _readaa(lowercase ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) __lowerCAmelCase = _readaa(lowercase ) __lowerCAmelCase = bytestream.read(lowercase ) __lowerCAmelCase = numpy.frombuffer(lowercase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowercase , lowercase ) return labels class _UpperCAmelCase : @deprecated( __SCREAMING_SNAKE_CASE,"""Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""",) def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=dtypes.floataa,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = random_seed.get_seed(__SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCAmelCase = dtypes.as_dtype(__SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: __lowerCAmelCase = 1_00_00 __lowerCAmelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __lowerCAmelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCAmelCase = images.reshape( images.shape[0],images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCAmelCase = images.astype(numpy.floataa ) __lowerCAmelCase = numpy.multiply(__SCREAMING_SNAKE_CASE,1.0 / 255.0 ) __lowerCAmelCase = images __lowerCAmelCase = labels __lowerCAmelCase = 0 __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._images @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._labels @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._num_examples @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._epochs_completed def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if fake_data: __lowerCAmelCase = [1] * 7_84 __lowerCAmelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__SCREAMING_SNAKE_CASE )], [fake_label for _ in range(__SCREAMING_SNAKE_CASE )], ) __lowerCAmelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.images[perma] __lowerCAmelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCAmelCase = self._num_examples - start __lowerCAmelCase = self._images[start : self._num_examples] __lowerCAmelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.images[perm] __lowerCAmelCase = self.labels[perm] # Start next epoch __lowerCAmelCase = 0 __lowerCAmelCase = batch_size - rest_num_examples __lowerCAmelCase = self._index_in_epoch __lowerCAmelCase = self._images[start:end] __lowerCAmelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part),axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part),axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCAmelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowercase , """Please write your own downloading logic.""" ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Optional[int]: if not gfile.Exists(lowercase ): gfile.MakeDirs(lowercase ) __lowerCAmelCase = os.path.join(lowercase , lowercase ) if not gfile.Exists(lowercase ): urllib.request.urlretrieve(lowercase , lowercase ) # noqa: S310 with gfile.GFile(lowercase ) as f: __lowerCAmelCase = f.size() print("""Successfully downloaded""" , lowercase , lowercase , """bytes.""" ) return filepath @deprecated( lowercase , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def _lowerCAmelCase ( lowercase , lowercase=False , lowercase=False , lowercase=dtypes.floataa , lowercase=True , lowercase=5000 , lowercase=None , lowercase=DEFAULT_SOURCE_URL , ) -> int: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowercase , one_hot=lowercase , dtype=lowercase , seed=lowercase ) __lowerCAmelCase = fake() __lowerCAmelCase = fake() __lowerCAmelCase = fake() return _Datasets(train=lowercase , validation=lowercase , test=lowercase ) if not source_url: # empty string check __lowerCAmelCase = DEFAULT_SOURCE_URL __lowerCAmelCase = """train-images-idx3-ubyte.gz""" __lowerCAmelCase = """train-labels-idx1-ubyte.gz""" __lowerCAmelCase = """t10k-images-idx3-ubyte.gz""" __lowerCAmelCase = """t10k-labels-idx1-ubyte.gz""" __lowerCAmelCase = _maybe_download( lowercase , lowercase , source_url + train_images_file ) with gfile.Open(lowercase , """rb""" ) as f: __lowerCAmelCase = _extract_images(lowercase ) __lowerCAmelCase = _maybe_download( lowercase , lowercase , source_url + train_labels_file ) with gfile.Open(lowercase , """rb""" ) as f: __lowerCAmelCase = _extract_labels(lowercase , one_hot=lowercase ) __lowerCAmelCase = _maybe_download( lowercase , lowercase , source_url + test_images_file ) with gfile.Open(lowercase , """rb""" ) as f: __lowerCAmelCase = _extract_images(lowercase ) __lowerCAmelCase = _maybe_download( lowercase , lowercase , source_url + test_labels_file ) with gfile.Open(lowercase , """rb""" ) as f: __lowerCAmelCase = _extract_labels(lowercase , one_hot=lowercase ) if not 0 <= validation_size <= len(lowercase ): __lowerCAmelCase = ( """Validation size should be between 0 and """ f'{len(lowercase )}. Received: {validation_size}.' ) raise ValueError(lowercase ) __lowerCAmelCase = train_images[:validation_size] __lowerCAmelCase = train_labels[:validation_size] __lowerCAmelCase = train_images[validation_size:] __lowerCAmelCase = train_labels[validation_size:] __lowerCAmelCase = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} __lowerCAmelCase = _DataSet(lowercase , lowercase , **lowercase ) __lowerCAmelCase = _DataSet(lowercase , lowercase , **lowercase ) __lowerCAmelCase = _DataSet(lowercase , lowercase , **lowercase ) return _Datasets(train=lowercase , validation=lowercase , test=lowercase )
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : List[Any] =CTRLTokenizer a : Tuple =False a : List[str] =False def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file,"""w""",encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """adapt react readapt apt""" __lowerCAmelCase = """adapt react readapt apt""" return input_text, output_text def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = CTRLTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) __lowerCAmelCase = """adapt react readapt apt""" __lowerCAmelCase = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _a : str = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _a : int = get_tests_dir("""fixtures/vocab.json""") _a : Optional[Any] = get_tests_dir("""fixtures""") class _UpperCAmelCase ( unittest.TestCase ): a : Optional[Any] =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 0 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = WavaVecaConfig() __lowerCAmelCase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__SCREAMING_SNAKE_CASE,os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) copyfile(__SCREAMING_SNAKE_CASE,os.path.join(__SCREAMING_SNAKE_CASE,"""vocab.json""" ) ) __lowerCAmelCase = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = WavaVecaFeatureExtractor() __lowerCAmelCase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __lowerCAmelCase = WavaVecaProcessor(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(__SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),"""r""" ) as f: __lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE ) config_dict.pop("""processor_class""" ) with open(os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),"""w""" ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = WavaVecaFeatureExtractor() __lowerCAmelCase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __lowerCAmelCase = WavaVecaProcessor(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(__SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),"""r""" ) as f: __lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE ) config_dict.pop("""processor_class""" ) with open(os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),"""w""" ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(__SCREAMING_SNAKE_CASE,os.path.join(__SCREAMING_SNAKE_CASE,"""vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),"""w""" ) as f: f.write("""{}""" ) __lowerCAmelCase = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaises(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""",trust_remote_code=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""",trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__,"""NewProcessor""" ) __lowerCAmelCase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__,"""NewFeatureExtractor""" ) __lowerCAmelCase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,"""NewTokenizerFast""" ) # Test we can also load the slow version __lowerCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""",trust_remote_code=__SCREAMING_SNAKE_CASE,use_fast=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__,"""NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__,"""NewTokenizer""" ) def lowerCamelCase__ ( self ): '''simple docstring''' try: AutoConfig.register("""custom""",__SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) AutoTokenizer.register(__SCREAMING_SNAKE_CASE,slow_tokenizer_class=__SCREAMING_SNAKE_CASE ) AutoProcessor.register(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoProcessor.register(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase = CustomFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE,"""vocab.txt""" ) with open(__SCREAMING_SNAKE_CASE,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __lowerCAmelCase = CustomTokenizer(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CustomProcessor(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self ): '''simple docstring''' class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any =False class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any =False class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""AutoFeatureExtractor""" a : Optional[int] ="""AutoTokenizer""" a : List[str] =False try: AutoConfig.register("""custom""",__SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) AutoTokenizer.register(__SCREAMING_SNAKE_CASE,slow_tokenizer_class=__SCREAMING_SNAKE_CASE ) AutoProcessor.register(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. __lowerCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__,"""NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __lowerCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""",trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__,"""NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __lowerCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""",trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__,"""NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__,"""BertTokenizerFast""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__,"""ConvNextImageProcessor""" ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): a : str =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' __lowerCAmelCase = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = WavaVecaProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__SCREAMING_SNAKE_CASE,"""test-processor""" ),push_to_hub=__SCREAMING_SNAKE_CASE,use_auth_token=self._token ) __lowerCAmelCase = WavaVecaProcessor.from_pretrained(f'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__SCREAMING_SNAKE_CASE,getattr(new_processor.feature_extractor,__SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(),processor.tokenizer.get_vocab() ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = WavaVecaProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__SCREAMING_SNAKE_CASE,"""test-processor-org""" ),push_to_hub=__SCREAMING_SNAKE_CASE,use_auth_token=self._token,organization="""valid_org""",) __lowerCAmelCase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__SCREAMING_SNAKE_CASE,getattr(new_processor.feature_extractor,__SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(),processor.tokenizer.get_vocab() ) def lowerCamelCase__ ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __lowerCAmelCase = CustomFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE,"""vocab.txt""" ) with open(__SCREAMING_SNAKE_CASE,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __lowerCAmelCase = CustomTokenizer(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CustomProcessor(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'{USER}/test-dynamic-processor',token=self._token ) __lowerCAmelCase = Repository(__SCREAMING_SNAKE_CASE,clone_from=f'{USER}/test-dynamic-processor',token=self._token ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map,{ """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", },) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__SCREAMING_SNAKE_CASE,"""tokenizer_config.json""" ) ) as f: __lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config["""auto_map"""],{ """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", },) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE,"""custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE,"""custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE,"""custom_processing.py""" ) ) ) repo.push_to_hub() __lowerCAmelCase = AutoProcessor.from_pretrained(f'{USER}/test-dynamic-processor',trust_remote_code=__SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__,"""CustomProcessor""" )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _a : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _a : List[Any] = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir,"""models/bert/""" ) ) __lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE,"""src/transformers/models/bert/modeling_bert.py""" ),os.path.join(self.transformer_dir,"""models/bert/modeling_bert.py""" ),) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowerCAmelCase = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa},line_length=1_19 ) __lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE,mode=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = os.path.join(self.transformer_dir,"""new_code.py""" ) with open(__SCREAMING_SNAKE_CASE,"""w""",newline="""\n""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name,overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""r""" ) as f: self.assertTrue(f.read(),__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""","""BertLMPredictionHead""",REFERENCE_CODE + """\n""",) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""","""BertLMPredictionHead""",__SCREAMING_SNAKE_CASE,) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""","""TestModelLMPredictionHead""",re.sub("""Bert""","""TestModel""",__SCREAMING_SNAKE_CASE ),) # Copy consistency with a really long name __lowerCAmelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}',f'{long_class_name}LMPredictionHead',re.sub("""Bert""",__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""","""TestModelLMPredictionHead""",__SCREAMING_SNAKE_CASE,overwrite_result=re.sub("""Bert""","""TestModel""",__SCREAMING_SNAKE_CASE ),) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,localized_readme["""format_model_list"""] ) self.assertFalse(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : List[Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""encodec""" def __init__( self,__SCREAMING_SNAKE_CASE=[1.5, 3.0, 6.0, 12.0, 24.0],__SCREAMING_SNAKE_CASE=2_40_00,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=[8, 5, 4, 2],__SCREAMING_SNAKE_CASE="weight_norm",__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="reflect",__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=1.0,__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = target_bandwidths __lowerCAmelCase = sampling_rate __lowerCAmelCase = audio_channels __lowerCAmelCase = normalize __lowerCAmelCase = chunk_length_s __lowerCAmelCase = overlap __lowerCAmelCase = hidden_size __lowerCAmelCase = num_filters __lowerCAmelCase = num_residual_layers __lowerCAmelCase = upsampling_ratios __lowerCAmelCase = norm_type __lowerCAmelCase = kernel_size __lowerCAmelCase = last_kernel_size __lowerCAmelCase = residual_kernel_size __lowerCAmelCase = dilation_growth_rate __lowerCAmelCase = use_causal_conv __lowerCAmelCase = pad_mode __lowerCAmelCase = compress __lowerCAmelCase = num_lstm_layers __lowerCAmelCase = trim_right_ratio __lowerCAmelCase = codebook_size __lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase__ ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1,int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def _lowerCAmelCase ( lowercase ) -> Tuple: # getting number of pixels in the image __lowerCAmelCase , __lowerCAmelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowercase ): for j in range(lowercase ): __lowerCAmelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _a : Optional[Any] = imread("""image_data/lena.jpg""", 1) # convert to its negative _a : Any = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def _lowerCAmelCase ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a : Any = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase ( lowerCAmelCase_ ): a : str =["""pixel_values"""] def __init__( self,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = 1 / 2_55,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = True,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = size if size is not None else {"""shortest_edge""": 2_24} __lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE,default_to_square=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE,default_to_square=__SCREAMING_SNAKE_CASE,param_name="""crop_size""" ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCAmelCase = do_convert_rgb def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE,default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowerCAmelCase = get_resize_output_image_size(__SCREAMING_SNAKE_CASE,size=size["""shortest_edge"""],default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE,size=__SCREAMING_SNAKE_CASE,resample=__SCREAMING_SNAKE_CASE,data_format=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__SCREAMING_SNAKE_CASE,size=(size["""height"""], size["""width"""]),data_format=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' return rescale(__SCREAMING_SNAKE_CASE,scale=__SCREAMING_SNAKE_CASE,data_format=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' return normalize(__SCREAMING_SNAKE_CASE,mean=__SCREAMING_SNAKE_CASE,std=__SCREAMING_SNAKE_CASE,data_format=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = ChannelDimension.FIRST,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE,param_name="""size""",default_to_square=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE,param_name="""crop_size""",default_to_square=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCAmelCase = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCAmelCase = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__SCREAMING_SNAKE_CASE,size=__SCREAMING_SNAKE_CASE,resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(image=__SCREAMING_SNAKE_CASE,size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__SCREAMING_SNAKE_CASE,scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=__SCREAMING_SNAKE_CASE,mean=__SCREAMING_SNAKE_CASE,std=__SCREAMING_SNAKE_CASE ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for image in images] __lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__SCREAMING_SNAKE_CASE,tensor_type=__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' import datasets _a : Tuple = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ _a : Any = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _a : List[Any] = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ),codebase_urls=[],reference_urls=[],format="""numpy""",) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )}
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Optional[Any] =CycleDiffusionPipeline a : Any =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } a : List[str] =PipelineTesterMixin.required_optional_params - {"""latents"""} a : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) a : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS a : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""),up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""),cross_attention_dim=32,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",num_train_timesteps=10_00,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, 3, 32, 32),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image / 2 + 0.5 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = CycleDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output.images __lowerCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""","""This test requires a GPU""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(__SCREAMING_SNAKE_CASE,"""half""" ): __lowerCAmelCase = module.half() __lowerCAmelCase = CycleDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output.images __lowerCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) __lowerCAmelCase = init_image.resize((5_12, 5_12) ) __lowerCAmelCase = """CompVis/stable-diffusion-v1-4""" __lowerCAmelCase = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE,subfolder="""scheduler""" ) __lowerCAmelCase = CycleDiffusionPipeline.from_pretrained( __SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE,safety_checker=__SCREAMING_SNAKE_CASE,torch_dtype=torch.floataa,revision="""fp16""" ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __lowerCAmelCase = """A black colored car""" __lowerCAmelCase = """A blue colored car""" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__SCREAMING_SNAKE_CASE,source_prompt=__SCREAMING_SNAKE_CASE,image=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,eta=0.1,strength=0.85,guidance_scale=3,source_guidance_scale=1,generator=__SCREAMING_SNAKE_CASE,output_type="""np""",) __lowerCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) __lowerCAmelCase = init_image.resize((5_12, 5_12) ) __lowerCAmelCase = """CompVis/stable-diffusion-v1-4""" __lowerCAmelCase = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE,subfolder="""scheduler""" ) __lowerCAmelCase = CycleDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE,safety_checker=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __lowerCAmelCase = """A black colored car""" __lowerCAmelCase = """A blue colored car""" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__SCREAMING_SNAKE_CASE,source_prompt=__SCREAMING_SNAKE_CASE,image=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,eta=0.1,strength=0.85,guidance_scale=3,source_guidance_scale=1,generator=__SCREAMING_SNAKE_CASE,output_type="""np""",) __lowerCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2e-2
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> str: if not isinstance(lowercase , lowercase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(lowercase , lowercase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) __lowerCAmelCase = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=10,__SCREAMING_SNAKE_CASE=[10, 20, 30, 40],__SCREAMING_SNAKE_CASE=[1, 1, 2, 1],__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = RegNetModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = RegNetForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Tuple =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () a : int =( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) a : Dict =False a : Union[str, Any] =False a : Tuple =False a : str =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,has_text_modality=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ): '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1],__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(__SCREAMING_SNAKE_CASE,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ),msg=f'Parameter {name} of model {model_class} seems not properly initialized',) self.assertTrue( torch.all(module.bias == 0 ),msg=f'Parameter {name} of model {model_class} seems not properly initialized',) def lowerCamelCase__ ( self ): '''simple docstring''' def check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ),expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 2, self.model_tester.image_size // 2],) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase = layer_type __lowerCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = RegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__SCREAMING_SNAKE_CASE,atol=1e-4 ) )
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=99,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=37,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=5_12,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size],self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__SCREAMING_SNAKE_CASE,initializer_range=self.initializer_range,use_stable_embedding=__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = OpenLlamaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,use_cache=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3),config.vocab_size ) __lowerCAmelCase = ids_tensor((self.batch_size, 3),vocab_size=2 ) # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens],dim=-1 ) __lowerCAmelCase = torch.cat([input_mask, next_mask],dim=-1 ) __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,output_hidden_states=__SCREAMING_SNAKE_CASE,)["""hidden_states"""][0] __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,past_key_values=__SCREAMING_SNAKE_CASE,output_hidden_states=__SCREAMING_SNAKE_CASE,)["""hidden_states"""][0] # select random slice __lowerCAmelCase = ids_tensor((1,),output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-3 ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : List[str] =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) a : int =(OpenLlamaForCausalLM,) if is_torch_available() else () a : List[str] =( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) a : List[str] =False a : Optional[Any] =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OpenLlamaModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,hidden_size=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = input_dict["""input_ids"""] __lowerCAmelCase = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __lowerCAmelCase = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = """single_label_classification""" __lowerCAmelCase = input_dict["""input_ids"""] __lowerCAmelCase = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) __lowerCAmelCase = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = """multi_label_classification""" __lowerCAmelCase = input_dict["""input_ids"""] __lowerCAmelCase = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels],self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCAmelCase = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ids_tensor([1, 10],config.vocab_size ) __lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) original_model.eval() __lowerCAmelCase = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state __lowerCAmelCase = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase = {"""type""": scaling_type, """factor""": 10.0} __lowerCAmelCase = OpenLlamaModel(__SCREAMING_SNAKE_CASE ) scaled_model.to(__SCREAMING_SNAKE_CASE ) scaled_model.eval() __lowerCAmelCase = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state __lowerCAmelCase = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,atol=1e-5 ) )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _a : Dict = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _a : Any = f'https://www.google.com/search?q={query}&num=100' _a : Any = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _a : List[str] = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _a : List[Any] = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Tuple =VideoToVideoSDPipeline a : Optional[int] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} a : List[Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} a : int =PipelineTesterMixin.required_optional_params - {"""latents"""} a : Dict =False # No `output_type`. a : List[Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = VideoToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __lowerCAmelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""",torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = torch.randn((1, 10, 3, 10_24, 5_76),generator=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = video.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,video=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=3,output_type="""pt""" ).frames __lowerCAmelCase = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> Optional[Any]: __lowerCAmelCase = [] __lowerCAmelCase = set({"""(""", """[""", """{"""} ) __lowerCAmelCase = set({""")""", """]""", """}"""} ) __lowerCAmelCase = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowercase ) == 0 or (len(lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowercase ) == 0 def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = input("""Enter sequence of brackets: """ ) if is_balanced(lowercase ): print(lowercase , """is balanced""" ) else: print(lowercase , """is not balanced""" ) if __name__ == "__main__": main()
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE=0.01,__SCREAMING_SNAKE_CASE=10_00 ): '''simple docstring''' __lowerCAmelCase = p_stop __lowerCAmelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCAmelCase = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = [ BatchSamplerShard(__SCREAMING_SNAKE_CASE,2,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) for i in range(2 ) ] __lowerCAmelCase = [list(__SCREAMING_SNAKE_CASE ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__SCREAMING_SNAKE_CASE ) for shard in batch_sampler_shards],[len(__SCREAMING_SNAKE_CASE ) for e in expected] ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BatchSampler(range(24 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(24 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCAmelCase = BatchSampler(range(21 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(21 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCAmelCase = BatchSampler(range(22 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(22 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCAmelCase = BatchSampler(range(20 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(20 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. __lowerCAmelCase = BatchSampler(range(2 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(2 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[], []] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BatchSampler(range(24 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(24 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCAmelCase = BatchSampler(range(22 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(22 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCAmelCase = BatchSampler(range(21 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(21 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. __lowerCAmelCase = BatchSampler(range(2 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(2 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[], []] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BatchSampler(range(24 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(24 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCAmelCase = BatchSampler(range(21 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(21 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCAmelCase = BatchSampler(range(22 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(22 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCAmelCase = BatchSampler(range(20 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(20 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. __lowerCAmelCase = BatchSampler(range(2 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(2 ),batch_size=3,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[], []] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BatchSampler(range(24 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(24 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCAmelCase = BatchSampler(range(22 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(22 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCAmelCase = BatchSampler(range(21 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(21 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. __lowerCAmelCase = BatchSampler(range(2 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = BatchSampler(range(2 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[], []] self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCAmelCase = [BatchSamplerShard(__SCREAMING_SNAKE_CASE,2,__SCREAMING_SNAKE_CASE,even_batches=__SCREAMING_SNAKE_CASE ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ),3 ) self.assertEqual(len(batch_sampler_shards[1] ),2 ) self.assertListEqual(list(batch_sampler_shards[0] ),[[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ),[[3, 4], [9, 10, 11]] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' random.seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = list(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [ IterableDatasetShard( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,drop_last=__SCREAMING_SNAKE_CASE,num_processes=__SCREAMING_SNAKE_CASE,process_index=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE,) for i in range(__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__SCREAMING_SNAKE_CASE ) iterable_dataset_lists.append(list(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCAmelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__SCREAMING_SNAKE_CASE ),len(__SCREAMING_SNAKE_CASE ) ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) % shard_batch_size == 0 ) __lowerCAmelCase = [] for idx in range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__SCREAMING_SNAKE_CASE ) < len(__SCREAMING_SNAKE_CASE ): reference += reference self.assertListEqual(__SCREAMING_SNAKE_CASE,reference[: len(__SCREAMING_SNAKE_CASE )] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) # Edge case with a very small dataset __lowerCAmelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,batch_size=4,drop_last=__SCREAMING_SNAKE_CASE,split_batches=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BatchSampler(range(16 ),batch_size=4,drop_last=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = SkipBatchSampler(__SCREAMING_SNAKE_CASE,2 ) self.assertListEqual(list(__SCREAMING_SNAKE_CASE ),[[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SkipDataLoader(list(range(16 ) ),batch_size=4,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader],[[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = DataLoader(list(range(16 ) ),batch_size=4 ) __lowerCAmelCase = skip_first_batches(__SCREAMING_SNAKE_CASE,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader],[[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = DataLoaderShard(list(range(16 ) ),batch_size=4 ) for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) def lowerCamelCase__ ( self ): '''simple docstring''' Accelerator() __lowerCAmelCase = DataLoaderDispatcher(range(16 ),batch_size=4 ) for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 )
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def _lowerCAmelCase ( lowercase ) -> str: if not sentence: return "" __lowerCAmelCase = dict(zip(lowercase , lowercase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] ="""Wav2Vec2FeatureExtractor""" a : int ="""AutoTokenizer""" def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.feature_extractor __lowerCAmelCase = False @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' try: return super().from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """,__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = WavaVecaCTCTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) return cls(feature_extractor=__SCREAMING_SNAKE_CASE,tokenizer=__SCREAMING_SNAKE_CASE ) def __call__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __lowerCAmelCase = kwargs.pop("""raw_speech""" ) else: __lowerCAmelCase = kwargs.pop("""audio""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""sampling_rate""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""text""",__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase = args[0] __lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __lowerCAmelCase = self.feature_extractor(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,sampling_rate=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if text is not None: __lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: __lowerCAmelCase = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""input_features""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""labels""",__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase = args[0] __lowerCAmelCase = args[1:] if input_features is not None: __lowerCAmelCase = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if labels is not None: __lowerCAmelCase = self.tokenizer.pad(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: __lowerCAmelCase = labels["""input_ids"""] return input_features def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @contextmanager def lowerCamelCase__ ( self ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer yield __lowerCAmelCase = self.feature_extractor __lowerCAmelCase = False
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } _a : int = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } _a : Dict = { """ctrl""": 2_5_6, } _a : Optional[Any] = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char __lowerCAmelCase = set(lowercase ) return pairs class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int =CONTROL_CODES def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<unk>",**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(unk_token=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,encoding="""utf-8""" ) as vocab_handle: __lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE,encoding="""utf-8""" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in merges] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = {} @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase__ ( self ): '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: __lowerCAmelCase = min(__SCREAMING_SNAKE_CASE,key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = word.index(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: __lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """@@ """.join(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = word[:-4] __lowerCAmelCase = word return word def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = re.findall(R"""\S+\n?""",__SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.encoder.get(__SCREAMING_SNAKE_CASE,self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.decoder.get(__SCREAMING_SNAKE_CASE,self.unk_token ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """ """.join(__SCREAMING_SNAKE_CASE ).replace("""@@ ""","""""" ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__SCREAMING_SNAKE_CASE,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=__SCREAMING_SNAKE_CASE,ensure_ascii=__SCREAMING_SNAKE_CASE ) + """\n""" ) __lowerCAmelCase = 0 with open(__SCREAMING_SNAKE_CASE,"""w""",encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowerCAmelCase = token_index writer.write(""" """.join(__SCREAMING_SNAKE_CASE ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split(),encoding="""utf-8""",check=__SCREAMING_SNAKE_CASE,) assert hasattr(self,"""env""" ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __lowerCAmelCase = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=__SCREAMING_SNAKE_CASE,instance_count=__SCREAMING_SNAKE_CASE,instance_type=self.instance_type,debugger_hook_config=__SCREAMING_SNAKE_CASE,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path},metric_definitions=self.env.metric_definitions,distribution=__SCREAMING_SNAKE_CASE,py_version="""py36""",) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' TrainingJobAnalytics(__SCREAMING_SNAKE_CASE ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.create_estimator(__SCREAMING_SNAKE_CASE ) # run training estimator.fit() # result dataframe __lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""",99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json',"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss},__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a : Optional[int] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): a : Optional[int] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a : Optional[int] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a : str ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a : Tuple ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline( task="""text-classification""",model="""hf-internal-testing/tiny-random-distilbert""",framework="""pt""" ) __lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """LABEL_0""", """score""": 0.504}] ) __lowerCAmelCase = text_classifier("""This is great !""",top_k=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __lowerCAmelCase = text_classifier(["""This is great !""", """This is bad"""],top_k=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ],) __lowerCAmelCase = text_classifier("""This is great !""",top_k=1 ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __lowerCAmelCase = text_classifier("""This is great !""",return_all_scores=__SCREAMING_SNAKE_CASE ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """LABEL_0""", """score""": 0.504}] ) __lowerCAmelCase = text_classifier("""This is great !""",return_all_scores=__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __lowerCAmelCase = text_classifier(["""This is great !""", """Something else"""],return_all_scores=__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ],) __lowerCAmelCase = text_classifier(["""This is great !""", """Something else"""],return_all_scores=__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ],) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' import torch __lowerCAmelCase = pipeline( task="""text-classification""",model="""hf-internal-testing/tiny-random-distilbert""",framework="""pt""",device=torch.device("""cpu""" ),) __lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline( task="""text-classification""",model="""hf-internal-testing/tiny-random-distilbert""",framework="""tf""" ) __lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline("""text-classification""" ) __lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """POSITIVE""", """score""": 1.0}] ) __lowerCAmelCase = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """NEGATIVE""", """score""": 1.0}] ) __lowerCAmelCase = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pipeline("""text-classification""",framework="""tf""" ) __lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """POSITIVE""", """score""": 1.0}] ) __lowerCAmelCase = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """NEGATIVE""", """score""": 1.0}] ) __lowerCAmelCase = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": """POSITIVE""", """score""": 0.988}] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = TextClassificationPipeline(model=__SCREAMING_SNAKE_CASE,tokenizer=__SCREAMING_SNAKE_CASE ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowerCAmelCase = """HuggingFace is in""" __lowerCAmelCase = text_classifier(__SCREAMING_SNAKE_CASE ) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __lowerCAmelCase = ["""HuggingFace is in """, """Paris is in France"""] __lowerCAmelCase = text_classifier(__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )}, {"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )}],) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowerCAmelCase = text_classifier(__SCREAMING_SNAKE_CASE,top_k=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[[{"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )}] * N, [{"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )}] * N],) __lowerCAmelCase = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __lowerCAmelCase = text_classifier(__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),{"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )},) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowerCAmelCase = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): text_classifier(__SCREAMING_SNAKE_CASE ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowerCAmelCase = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ),[{"""label""": ANY(__SCREAMING_SNAKE_CASE ), """score""": ANY(__SCREAMING_SNAKE_CASE )}],) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Union[str, Any] = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""segformer""" def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=[2, 2, 2, 2],__SCREAMING_SNAKE_CASE=[8, 4, 2, 1],__SCREAMING_SNAKE_CASE=[32, 64, 1_60, 2_56],__SCREAMING_SNAKE_CASE=[7, 3, 3, 3],__SCREAMING_SNAKE_CASE=[4, 2, 2, 2],__SCREAMING_SNAKE_CASE=[1, 2, 5, 8],__SCREAMING_SNAKE_CASE=[4, 4, 4, 4],__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1e-6,__SCREAMING_SNAKE_CASE=2_56,__SCREAMING_SNAKE_CASE=2_55,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""",__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = num_channels __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = depths __lowerCAmelCase = sr_ratios __lowerCAmelCase = hidden_sizes __lowerCAmelCase = patch_sizes __lowerCAmelCase = strides __lowerCAmelCase = mlp_ratios __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = drop_path_rate __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = decoder_hidden_size __lowerCAmelCase = kwargs.get("""reshape_last_stage""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = semantic_loss_ignore_index class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =version.parse("""1.11""" ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1e-4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 12
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' _a : List[str] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _lowerCAmelCase ( ) -> None: __lowerCAmelCase = input("""Enter message: """ ) __lowerCAmelCase = input("""Enter key [alphanumeric]: """ ) __lowerCAmelCase = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowerCAmelCase = """encrypt""" __lowerCAmelCase = encrypt_message(lowercase , lowercase ) elif mode.lower().startswith("""d""" ): __lowerCAmelCase = """decrypt""" __lowerCAmelCase = decrypt_message(lowercase , lowercase ) print(f'\n{mode.title()}ed message:' ) print(lowercase ) def _lowerCAmelCase ( lowercase , lowercase ) -> str: return translate_message(lowercase , lowercase , """encrypt""" ) def _lowerCAmelCase ( lowercase , lowercase ) -> str: return translate_message(lowercase , lowercase , """decrypt""" ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = key.upper() for symbol in message: __lowerCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase ): __lowerCAmelCase = 0 else: translated.append(lowercase ) return "".join(lowercase ) if __name__ == "__main__": main()
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : List[str] =DanceDiffusionPipeline a : Dict =UNCONDITIONAL_AUDIO_GENERATION_PARAMS a : List[str] =PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a : Any =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a : Any =False a : str =False def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64),extra_in_channels=16,sample_size=5_12,sample_rate=1_60_00,in_channels=2,out_channels=2,flip_sin_to_cos=__SCREAMING_SNAKE_CASE,use_timestep_embedding=__SCREAMING_SNAKE_CASE,time_embedding_type="""fourier""",mid_block_type="""UNetMidBlock1D""",down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D"""),up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip"""),) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,audio_length_in_s=4.096 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,audio_length_in_s=4.096 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : int = {"""vocab_file""": """vocab.txt"""} _a : List[str] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _a : Optional[int] = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = collections.OrderedDict() with open(lowercase , """r""" , encoding="""utf-8""" ) as reader: __lowerCAmelCase = reader.readlines() for index, token in enumerate(lowercase ): __lowerCAmelCase = token.rstrip("""\n""" ) __lowerCAmelCase = index return vocab class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE=2_00 ): '''simple docstring''' __lowerCAmelCase = vocab __lowerCAmelCase = unk_token __lowerCAmelCase = max_input_chars_per_word def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = list(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] __lowerCAmelCase = 0 __lowerCAmelCase = [] while start < len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = None while start < end: __lowerCAmelCase = """""".join(chars[start:end] ) if substr in self.vocab: __lowerCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = end return sub_tokens class _UpperCAmelCase ( lowerCAmelCase_ ): a : Dict =VOCAB_FILES_NAMES a : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["""input_ids""", """attention_mask"""] a : Union[str, Any] =False def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<d>",__SCREAMING_SNAKE_CASE="</d>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="</n>",__SCREAMING_SNAKE_CASE="</_>",__SCREAMING_SNAKE_CASE="left",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' requires_backends(self,["""jieba"""] ) super().__init__( bod_token=__SCREAMING_SNAKE_CASE,eod_token=__SCREAMING_SNAKE_CASE,bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,line_token=__SCREAMING_SNAKE_CASE,space_token=__SCREAMING_SNAKE_CASE,padding_side=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = bod_token __lowerCAmelCase = eod_token __lowerCAmelCase = load_vocab(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.encoder[space_token] __lowerCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items(),key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder,unk_token=self.unk_token ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder[self.bod_token] @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder[self.eod_token] @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder["\n"] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase__ ( self ): '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] for x in jieba.cut(__SCREAMING_SNAKE_CASE,cut_all=__SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) ) return output_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [i for i in token_ids if i >= 0] __lowerCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return token in self.encoder def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "".join(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.encoder.get(__SCREAMING_SNAKE_CASE,self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.decoder.get(__SCREAMING_SNAKE_CASE,self.unk_token ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if os.path.isdir(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __lowerCAmelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory __lowerCAmelCase = 0 if " " in self.encoder: __lowerCAmelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: __lowerCAmelCase = self.encoder["""\n"""] del self.encoder["\n"] __lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items(),key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) with open(__SCREAMING_SNAKE_CASE,"""w""",encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __lowerCAmelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE ))
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self,*, __SCREAMING_SNAKE_CASE = 4,__SCREAMING_SNAKE_CASE = 7_68,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Parameter(torch.zeros(__SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states __lowerCAmelCase = clip_extra_context_tokens __lowerCAmelCase = nn.Linear( __SCREAMING_SNAKE_CASE,self.clip_extra_context_tokens * cross_attention_dim ) __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,*, __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowerCAmelCase = image_embeddings.shape[0] __lowerCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowerCAmelCase = classifier_free_guidance_embeddings.expand( __SCREAMING_SNAKE_CASE,-1 ) __lowerCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings],dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowerCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowerCAmelCase = self.embedding_proj(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowerCAmelCase = self.clip_extra_context_tokens_proj(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = clip_extra_context_tokens.reshape(__SCREAMING_SNAKE_CASE,-1,self.clip_extra_context_tokens ) __lowerCAmelCase = clip_extra_context_tokens.permute(0,2,1 ) __lowerCAmelCase = self.encoder_hidden_states_proj(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.text_encoder_hidden_states_norm(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states],dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1