code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> str: __lowerCAmelCase = len(lowercase ) for i in range(length - 1 ): __lowerCAmelCase = i for k in range(i + 1 , lowercase ): if collection[k] < collection[least]: __lowerCAmelCase = k if least != i: __lowerCAmelCase , __lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": _a : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() _a : List[Any] = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Union[str, Any] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : List[str] = 1_6 _a : int = 3_2 def _lowerCAmelCase ( lowercase , lowercase = 16 ) -> List[Any]: __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowercase , padding="""longest""" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : Any = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase ) == "1": __lowerCAmelCase = 2 # Initialize accelerator __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=lowercase ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowercase , lowercase ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _lowerCAmelCase ( ) -> int: __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase , default=lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' from __future__ import annotations import math class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = size # approximate the overall size of segment tree with given value __lowerCAmelCase = [0 for i in range(0,4 * size )] # create array to store lazy update __lowerCAmelCase = [0 for i in range(0,4 * size )] __lowerCAmelCase = [0 for i in range(0,4 * size )] # flag for lazy update def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return idx * 2 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return idx * 2 + 1 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if left_element == right_element: __lowerCAmelCase = a[left_element - 1] else: __lowerCAmelCase = (left_element + right_element) // 2 self.build(self.left(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.build(self.right(__SCREAMING_SNAKE_CASE ),mid + 1,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = max( self.segment_tree[self.left(__SCREAMING_SNAKE_CASE )],self.segment_tree[self.right(__SCREAMING_SNAKE_CASE )] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.flag[idx] is True: __lowerCAmelCase = self.lazy[idx] __lowerCAmelCase = False if left_element != right_element: __lowerCAmelCase = self.lazy[idx] __lowerCAmelCase = self.lazy[idx] __lowerCAmelCase = True __lowerCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __lowerCAmelCase = val if left_element != right_element: __lowerCAmelCase = val __lowerCAmelCase = val __lowerCAmelCase = True __lowerCAmelCase = True return True __lowerCAmelCase = (left_element + right_element) // 2 self.update(self.left(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.update(self.right(__SCREAMING_SNAKE_CASE ),mid + 1,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = max( self.segment_tree[self.left(__SCREAMING_SNAKE_CASE )],self.segment_tree[self.right(__SCREAMING_SNAKE_CASE )] ) return True def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.flag[idx] is True: __lowerCAmelCase = self.lazy[idx] __lowerCAmelCase = False if left_element != right_element: __lowerCAmelCase = self.lazy[idx] __lowerCAmelCase = self.lazy[idx] __lowerCAmelCase = True __lowerCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __lowerCAmelCase = (left_element + right_element) // 2 __lowerCAmelCase = self.query(self.left(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.query(self.right(__SCREAMING_SNAKE_CASE ),mid + 1,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return max(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def __str__( self ): '''simple docstring''' return str([self.query(1,1,self.size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for i in range(1,self.size + 1 )] ) if __name__ == "__main__": _a : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] _a : Dict = 1_5 _a : Optional[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __lowerCAmelCase = ksize + 1 __lowerCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowercase ): for x in range(lowercase ): # distance from center __lowerCAmelCase = x - ksize // 2 __lowerCAmelCase = y - ksize // 2 # degree to radiant __lowerCAmelCase = theta / 180 * np.pi __lowerCAmelCase = np.cos(_theta ) __lowerCAmelCase = np.sin(_theta ) # get kernel x __lowerCAmelCase = cos_theta * px + sin_theta * py # get kernel y __lowerCAmelCase = -sin_theta * px + cos_theta * py # fill kernel __lowerCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a : List[str] = imread("""../image_data/lena.jpg""") # turn image in gray scale value _a : Any = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a : str = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: _a : Optional[Any] = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a : Union[str, Any] = out / out.max() * 2_5_5 _a : int = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu _a : Any = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase=None ) -> List[str]: __lowerCAmelCase = True while ask_again: __lowerCAmelCase = input(lowercase ) try: if default is not None and len(lowercase ) == 0: return default return convert_value(lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase ) def _lowerCAmelCase ( lowercase , lowercase=[] , lowercase=None , lowercase=0 ) -> str: __lowerCAmelCase = BulletMenu(lowercase , lowercase ) __lowerCAmelCase = menu.run(default_choice=lowercase ) return convert_value(lowercase ) if convert_value is not None else result def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = int(lowercase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = int(lowercase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = int(lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = int(lowercase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _lowerCAmelCase ( lowercase ) -> Any: __lowerCAmelCase = int(lowercase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _lowerCAmelCase ( lowercase ) -> Optional[int]: return {"yes": True, "no": False}[value.lower()] class _UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = super()._format_usage(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = usage.replace("""<command> [<args>] ""","""""" ) return usage
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' import datasets from .evaluate import evaluate _a : str = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ _a : Dict = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ _a : int = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ),codebase_urls=["""https://www.atticusprojectai.org/cuad"""],reference_urls=["""https://www.atticusprojectai.org/cuad"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} __lowerCAmelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] __lowerCAmelCase = evaluate(dataset=__SCREAMING_SNAKE_CASE,predictions=__SCREAMING_SNAKE_CASE ) return score
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase : a : int a : TreeNode | None =None a : TreeNode | None =None _a : List[str] = namedtuple("""CoinsDistribResult""", """moves excess""") def _lowerCAmelCase ( lowercase ) -> int: if root is None: return 0 # Validation def count_nodes(lowercase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCAmelCase , __lowerCAmelCase = get_distrib(node.left ) __lowerCAmelCase , __lowerCAmelCase = get_distrib(node.right ) __lowerCAmelCase = 1 - left_distrib_excess __lowerCAmelCase = 1 - right_distrib_excess __lowerCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) __lowerCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(f'{price_plus_tax(1_0_0, 0.25) = }') print(f'{price_plus_tax(125.50, 0.05) = }')
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' from math import isclose, sqrt def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> tuple[float, float, float]: __lowerCAmelCase = point_y / 4 / point_x __lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCAmelCase = outgoing_gradient**2 + 4 __lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 __lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCAmelCase = x_minus if isclose(lowercase , lowercase ) else x_plus __lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _lowerCAmelCase ( lowercase = 1.4 , lowercase = -9.6 ) -> int: __lowerCAmelCase = 0 __lowerCAmelCase = first_x_coord __lowerCAmelCase = first_y_coord __lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = next_point(lowercase , lowercase , lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = 0 while number > 0: __lowerCAmelCase = number % 10 sum_of_digits += last_digit __lowerCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def _lowerCAmelCase ( lowercase = 100 ) -> int: __lowerCAmelCase = factorial(lowercase ) __lowerCAmelCase = split_and_add(lowercase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _a : Tuple = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _a : str = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _a : Optional[int] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""",inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""string""",id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""",id="""sequence""" ),id="""references""" ), } ),codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""],reference_urls=[ """https://github.com/m-popovic/chrF""", ],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = CHRF.CHAR_ORDER,__SCREAMING_SNAKE_CASE = CHRF.WORD_ORDER,__SCREAMING_SNAKE_CASE = CHRF.BETA,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' __lowerCAmelCase = len(references[0] ) if any(len(__SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__SCREAMING_SNAKE_CASE )] __lowerCAmelCase = CHRF(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sb_chrf.corpus_score(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' from math import isqrt, loga def _lowerCAmelCase ( lowercase ) -> list[int]: __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase , lowercase ): __lowerCAmelCase = False return [i for i in range(2 , lowercase ) if is_prime[i]] def _lowerCAmelCase ( lowercase = 80_0800 , lowercase = 80_0800 ) -> int: __lowerCAmelCase = degree * loga(lowercase ) __lowerCAmelCase = int(lowercase ) __lowerCAmelCase = calculate_prime_numbers(lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(lowercase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> list[int]: __lowerCAmelCase = len(lowercase ) for i in range(lowercase ): for j in range(i + 1 , lowercase ): if numbers[j] < numbers[i]: __lowerCAmelCase , __lowerCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _a : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() _a : Dict = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : List[str] = """▁""" _a : List[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[str] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } _a : Dict = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off _a : Optional[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : Dict =["""input_ids""", """attention_mask"""] a : List[int] =[] a : List[int] =[] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,tokenizer_file=__SCREAMING_SNAKE_CASE,src_lang=__SCREAMING_SNAKE_CASE,tgt_lang=__SCREAMING_SNAKE_CASE,additional_special_tokens=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) __lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } __lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowerCAmelCase = src_lang if src_lang is not None else """en_XX""" __lowerCAmelCase = self.lang_code_to_id[self._src_lang] __lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [1] * len(self.prefix_tokens ) __lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCAmelCase = src_lang __lowerCAmelCase = self(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tgt_lang_id return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "en_XX",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "ro_RO",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.lang_code_to_id[src_lang] __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.lang_code_to_id[lang] __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code]
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 10**12 ) -> int: __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowercase ) __lowerCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _a : List[Any] = logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[int] =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase = deprecated_arg[3:] __lowerCAmelCase = not kwargs.pop(__SCREAMING_SNAKE_CASE ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) __lowerCAmelCase = kwargs.pop("""tpu_name""",self.tpu_name ) __lowerCAmelCase = kwargs.pop("""device_idx""",self.device_idx ) __lowerCAmelCase = kwargs.pop("""eager_mode""",self.eager_mode ) __lowerCAmelCase = kwargs.pop("""use_xla""",self.use_xla ) super().__init__(**__SCREAMING_SNAKE_CASE ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Name of TPU"""} , ) a : int =field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) a : bool =field(default=lowerCAmelCase_ , metadata={"""help""": """Benchmark models in eager model."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' requires_backends(self,["""tf"""] ) __lowerCAmelCase = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase = None return tpu @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' requires_backends(self,["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx],"""GPU""" ) __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([],"""GPU""" ) # disable GPU __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f'/cpu:{self.device_idx}' ) return strategy @property def lowerCamelCase__ ( self ): '''simple docstring''' requires_backends(self,["""tf"""] ) return self._setup_tpu is not None @property def lowerCamelCase__ ( self ): '''simple docstring''' requires_backends(self,["""tf"""] ) return self._setup_strategy @property def lowerCamelCase__ ( self ): '''simple docstring''' requires_backends(self,["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def lowerCamelCase__ ( self ): '''simple docstring''' requires_backends(self,["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.n_gpu > 0
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _a : List[Any] = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _a : str = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : def __init__( self ): '''simple docstring''' __lowerCAmelCase = WATERMARK_BITS __lowerCAmelCase = WatermarkEncoder() self.encoder.set_watermark("""bits""",self.watermark ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if images.shape[-1] < 2_56: return images __lowerCAmelCase = (2_55 * (images / 2 + 0.5)).cpu().permute(0,2,3,1 ).float().numpy() __lowerCAmelCase = [self.encoder.encode(__SCREAMING_SNAKE_CASE,"""dwtDct""" ) for image in images] __lowerCAmelCase = torch.from_numpy(np.array(__SCREAMING_SNAKE_CASE ) ).permute(0,3,1,2 ) __lowerCAmelCase = torch.clamp(2 * (images / 2_55 - 0.5),min=-1.0,max=1.0 ) return images
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowercase ) * abs(lowercase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _UpperCAmelCase ( lowerCAmelCase_ ): def __get__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) __lowerCAmelCase = """__cached_""" + self.fget.__name__ __lowerCAmelCase = getattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if cached is None: __lowerCAmelCase = self.fget(__SCREAMING_SNAKE_CASE ) setattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return cached def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: return isinstance(lowercase , np.ndarray ) def _lowerCAmelCase ( lowercase ) -> Any: return _is_numpy(lowercase ) def _lowerCAmelCase ( lowercase ) -> Any: import torch return isinstance(lowercase , torch.Tensor ) def _lowerCAmelCase ( lowercase ) -> Optional[int]: return False if not is_torch_available() else _is_torch(lowercase ) def _lowerCAmelCase ( lowercase ) -> int: import torch return isinstance(lowercase , torch.device ) def _lowerCAmelCase ( lowercase ) -> Tuple: return False if not is_torch_available() else _is_torch_device(lowercase ) def _lowerCAmelCase ( lowercase ) -> int: import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): __lowerCAmelCase = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def _lowerCAmelCase ( lowercase ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowercase ) def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def _lowerCAmelCase ( lowercase ) -> Optional[int]: return False if not is_tf_available() else _is_tensorflow(lowercase ) def _lowerCAmelCase ( lowercase ) -> Optional[int]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def _lowerCAmelCase ( lowercase ) -> Tuple: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def _lowerCAmelCase ( lowercase ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def _lowerCAmelCase ( lowercase ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowercase ) def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowerCAmelCase ( lowercase ) -> str: if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = fields(self ) # Safety and consistency checks if not len(__SCREAMING_SNAKE_CASE ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) __lowerCAmelCase = getattr(self,class_fields[0].name ) __lowerCAmelCase = all(getattr(self,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = first_field.items() __lowerCAmelCase = True else: try: __lowerCAmelCase = iter(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = True except TypeError: __lowerCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__SCREAMING_SNAKE_CASE ): if ( not isinstance(__SCREAMING_SNAKE_CASE,(list, tuple) ) or not len(__SCREAMING_SNAKE_CASE ) == 2 or not isinstance(element[0],__SCREAMING_SNAKE_CASE ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __lowerCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self,element[0],element[1] ) if element[1] is not None: __lowerCAmelCase = element[1] elif first_field is not None: __lowerCAmelCase = first_field else: for field in class_fields: __lowerCAmelCase = getattr(self,field.name ) if v is not None: __lowerCAmelCase = v def __delitem__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) super().__setattr__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def __setitem__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__setitem__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Tuple ="""longest""" a : Union[str, Any] ="""max_length""" a : Any ="""do_not_pad""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : Tuple ="""pt""" a : Tuple ="""tf""" a : Union[str, Any] ="""np""" a : Any ="""jax""" class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = context_managers __lowerCAmelCase = ExitStack() def __enter__( self ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__SCREAMING_SNAKE_CASE ) def __exit__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' self.stack.__exit__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = infer_framework(lowercase ) if framework == "tf": __lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: __lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = model_class.__name__ __lowerCAmelCase = infer_framework(lowercase ) if framework == "tf": __lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: __lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowerCAmelCase ( lowercase , lowercase = "" , lowercase = "." ) -> str: def _flatten_dict(lowercase , lowercase="" , lowercase="." ): for k, v in d.items(): __lowerCAmelCase = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def _lowerCAmelCase ( lowercase , lowercase = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowerCAmelCase ( lowercase , lowercase=None ) -> List[str]: if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(f'Type not supported for transpose: {type(lowercase )}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> Union[str, Any]: if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(f'Type not supported for reshape: {type(lowercase )}.' ) def _lowerCAmelCase ( lowercase , lowercase=None ) -> str: if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(f'Type not supported for squeeze: {type(lowercase )}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(f'Type not supported for expand_dims: {type(lowercase )}.' ) def _lowerCAmelCase ( lowercase ) -> Optional[int]: if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(lowercase )}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> str: for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): __lowerCAmelCase = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: __lowerCAmelCase = f'{repo_id}--{value}' return auto_map def _lowerCAmelCase ( lowercase ) -> List[str]: for base_class in inspect.getmro(lowercase ): __lowerCAmelCase = base_class.__module__ __lowerCAmelCase = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : List[str] = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowerCAmelCase ( ) -> int: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowerCAmelCase = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowerCAmelCase ( ) -> int: assert _test_patching.open is open __lowerCAmelCase = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowerCAmelCase ( ) -> str: # pandas.read_csv is not present in _test_patching __lowerCAmelCase = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , lowercase ): pass def _lowerCAmelCase ( ) -> Any: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __lowerCAmelCase = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , lowercase ) is None with patch_submodule(_test_patching , """len""" , lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def _lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase = """__test_patch_submodule_start_and_stop_mock__""" __lowerCAmelCase = patch_submodule(_test_patching , """open""" , lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowerCAmelCase ( ) -> Dict: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowerCAmelCase = """__test_patch_submodule_successive_join__""" __lowerCAmelCase = """__test_patch_submodule_successive_dirname__""" __lowerCAmelCase = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , lowercase ): with patch_submodule(_test_patching , """os.rename""" , lowercase ): with patch_submodule(_test_patching , """os.path.dirname""" , lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , lowercase ): with patch_submodule(_test_patching , """os.path.join""" , lowercase ): with patch_submodule(_test_patching , """os.path.dirname""" , lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowerCAmelCase ( ) -> Any: __lowerCAmelCase = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , lowercase ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , lowercase ): pass
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _a : Any = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): a : int =CLIPConfig a : Optional[int] =["""CLIPEncoderLayer"""] def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPVisionModelWithProjection(config.vision_config ) __lowerCAmelCase = nn.Linear(config.vision_config.projection_dim,1 ) __lowerCAmelCase = nn.Linear(config.vision_config.projection_dim,1 ) @torch.no_grad() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0.5,__SCREAMING_SNAKE_CASE=0.5 ): '''simple docstring''' __lowerCAmelCase = self.vision_model(__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = self.p_head(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nsfw_detected.flatten() __lowerCAmelCase = nsfw_detected > p_threshold __lowerCAmelCase = nsfw_detected.tolist() if any(__SCREAMING_SNAKE_CASE ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(__SCREAMING_SNAKE_CASE ): if nsfw_detected_: __lowerCAmelCase = np.zeros(images[idx].shape ) __lowerCAmelCase = self.w_head(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = watermark_detected.flatten() __lowerCAmelCase = watermark_detected > w_threshold __lowerCAmelCase = watermark_detected.tolist() if any(__SCREAMING_SNAKE_CASE ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(__SCREAMING_SNAKE_CASE ): if watermark_detected_: __lowerCAmelCase = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' from importlib import import_module from .logging import get_logger _a : int = get_logger(__name__) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self,__SCREAMING_SNAKE_CASE,getattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = module._original_module if isinstance(__SCREAMING_SNAKE_CASE,_PatchedModuleObj ) else module class _UpperCAmelCase : a : Optional[Any] =[] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = obj __lowerCAmelCase = target __lowerCAmelCase = new __lowerCAmelCase = target.split(""".""" )[0] __lowerCAmelCase = {} __lowerCAmelCase = attrs or [] def __enter__( self ): '''simple docstring''' *__lowerCAmelCase , __lowerCAmelCase = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__SCREAMING_SNAKE_CASE ) ): try: __lowerCAmelCase = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowerCAmelCase = getattr(self.obj,__SCREAMING_SNAKE_CASE ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__SCREAMING_SNAKE_CASE,_PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowerCAmelCase = obj_attr # patch at top level setattr(self.obj,__SCREAMING_SNAKE_CASE,_PatchedModuleObj(__SCREAMING_SNAKE_CASE,attrs=self.attrs ) ) __lowerCAmelCase = getattr(self.obj,__SCREAMING_SNAKE_CASE ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,_PatchedModuleObj(getattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),attrs=self.attrs ) ) __lowerCAmelCase = getattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # finally set the target attribute setattr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowerCAmelCase = getattr(import_module(""".""".join(__SCREAMING_SNAKE_CASE ) ),__SCREAMING_SNAKE_CASE ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj,__SCREAMING_SNAKE_CASE ) is attr_value: __lowerCAmelCase = getattr(self.obj,__SCREAMING_SNAKE_CASE ) setattr(self.obj,__SCREAMING_SNAKE_CASE,self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowerCAmelCase = globals()["""__builtins__"""][target_attr] setattr(self.obj,__SCREAMING_SNAKE_CASE,self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self,*__SCREAMING_SNAKE_CASE ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj,__SCREAMING_SNAKE_CASE,self.original.pop(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def lowerCamelCase__ ( self ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) __lowerCAmelCase = img __lowerCAmelCase = img.shape[1] __lowerCAmelCase = img.shape[0] __lowerCAmelCase = dst_width __lowerCAmelCase = dst_height __lowerCAmelCase = self.src_w / self.dst_w __lowerCAmelCase = self.src_h / self.dst_h __lowerCAmelCase = __lowerCAmelCase = ( np.ones((self.dst_h, self.dst_w, 3),np.uinta ) * 2_55 ) def lowerCamelCase__ ( self ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCAmelCase = self.img[self.get_y(__SCREAMING_SNAKE_CASE )][self.get_x(__SCREAMING_SNAKE_CASE )] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return int(self.ratio_x * x ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": _a ,_a : Any = 8_0_0, 6_0_0 _a : int = imread("""image_data/lena.jpg""", 1) _a : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> int: return 1 if input_a == input_a else 0 def _lowerCAmelCase ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _a : str = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 2048-bit 1_4: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 3072-bit 1_5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 4096-bit 1_6: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 6144-bit 1_7: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 8192-bit 1_8: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, } class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE = 14 ): '''simple docstring''' if group not in primes: raise ValueError("""Unsupported Group""" ) __lowerCAmelCase = primes[group]["""prime"""] __lowerCAmelCase = primes[group]["""generator"""] __lowerCAmelCase = int(hexlify(urandom(32 ) ),base=16 ) def lowerCamelCase__ ( self ): '''simple docstring''' return hex(self.__private_key )[2:] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pow(self.generator,self.__private_key,self.prime ) return hex(__SCREAMING_SNAKE_CASE )[2:] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(__SCREAMING_SNAKE_CASE,(self.prime - 1) // 2,self.prime ) == 1 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = int(__SCREAMING_SNAKE_CASE,base=16 ) if not self.is_valid_public_key(__SCREAMING_SNAKE_CASE ): raise ValueError("""Invalid public key""" ) __lowerCAmelCase = pow(__SCREAMING_SNAKE_CASE,self.__private_key,self.prime ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(__SCREAMING_SNAKE_CASE,(prime - 1) // 2,__SCREAMING_SNAKE_CASE ) == 1 ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 14 ): '''simple docstring''' __lowerCAmelCase = int(__SCREAMING_SNAKE_CASE,base=16 ) __lowerCAmelCase = int(__SCREAMING_SNAKE_CASE,base=16 ) __lowerCAmelCase = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError("""Invalid public key""" ) __lowerCAmelCase = pow(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Tuple = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowerCAmelCase ( lowercase ) -> Tuple: if isinstance(lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class _UpperCAmelCase : def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE,pixel_values=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape,(pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE,pixel_values=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE,pixel_values=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE,pixel_values=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = after_output[0] __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE,1e-3 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE,pixel_values=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,output_attentions=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:],(vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:],(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' pt_model.to(__SCREAMING_SNAKE_CASE ) pt_model.eval() # prepare inputs __lowerCAmelCase = inputs_dict __lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowerCAmelCase = pt_model(**__SCREAMING_SNAKE_CASE ).to_tuple() __lowerCAmelCase = fx_model(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ),len(__SCREAMING_SNAKE_CASE ),"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4],pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE,pt_output.numpy(),4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE,from_pt=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = fx_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ),len(__SCREAMING_SNAKE_CASE ),"""Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4],pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE,pt_output.numpy(),4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE,from_flax=__SCREAMING_SNAKE_CASE ) pt_model_loaded.to(__SCREAMING_SNAKE_CASE ) pt_model_loaded.eval() with torch.no_grad(): __lowerCAmelCase = pt_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ),len(__SCREAMING_SNAKE_CASE ),"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4],pt_outputs_loaded[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE,pt_output_loaded.numpy(),4e-2 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict(),__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = fx_state self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE,fx_model.params ) self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_inputs_dict.pop("""vision_config""" ) __lowerCAmelCase = config_inputs_dict.pop("""text_config""" ) __lowerCAmelCase = config_inputs_dict self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_pretrained_model_and_inputs() __lowerCAmelCase = model_a(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model_a(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = after_outputs[0] __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE,1e-5 ) @require_flax class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""","""hf-internal-testing/tiny-bert""",vision_from_pt=__SCREAMING_SNAKE_CASE,text_from_pt=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = 13 __lowerCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4],model.config.text_config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = FlaxViTModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = FlaxViTModelTester(self ) __lowerCAmelCase = FlaxBertModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""","""hf-internal-testing/tiny-bert""",vision_from_pt=__SCREAMING_SNAKE_CASE,text_from_pt=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = 13 __lowerCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4],model.config.text_config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = FlaxCLIPVisionModelTester(self ) __lowerCAmelCase = FlaxBertModelTester(self ) __lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""",logit_scale_init_value=1.0 ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""],images=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,return_tensors="""np""" ) __lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),) __lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image,__SCREAMING_SNAKE_CASE,atol=1e-3 ) )
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[torch.FloatTensor] =None a : torch.FloatTensor =None a : Optional[Tuple[torch.FloatTensor]] =None a : Optional[Tuple[torch.FloatTensor]] =None class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=5_12,__SCREAMING_SNAKE_CASE="cls",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE,bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = project_dim __lowerCAmelCase = pooler_fn __lowerCAmelCase = learn_encoder __lowerCAmelCase = use_attention_mask class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any =[R"""pooler""", R"""logit_scale"""] a : Union[str, Any] =[R"""position_ids""", R"""predictions.decoder.bias"""] a : Optional[int] ="""roberta""" a : List[str] =RobertaSeriesConfig def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = XLMRobertaModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.Linear(config.hidden_size,config.project_dim ) __lowerCAmelCase = getattr(__SCREAMING_SNAKE_CASE,"""has_pre_transformation""",__SCREAMING_SNAKE_CASE ) if self.has_pre_transformation: __lowerCAmelCase = nn.Linear(config.hidden_size,config.project_dim ) __lowerCAmelCase = nn.LayerNorm(config.hidden_size,eps=config.layer_norm_eps ) self.post_init() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.base_model( input_ids=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,position_ids=__SCREAMING_SNAKE_CASE,head_mask=__SCREAMING_SNAKE_CASE,inputs_embeds=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,output_attentions=__SCREAMING_SNAKE_CASE,output_hidden_states=True if self.has_pre_transformation else output_hidden_states,return_dict=__SCREAMING_SNAKE_CASE,) if self.has_pre_transformation: __lowerCAmelCase = outputs["""hidden_states"""][-2] __lowerCAmelCase = self.pre_LN(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.transformation_pre(__SCREAMING_SNAKE_CASE ) return TransformationModelOutput( projection_state=__SCREAMING_SNAKE_CASE,last_hidden_state=outputs.last_hidden_state,hidden_states=outputs.hidden_states,attentions=outputs.attentions,) else: __lowerCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__SCREAMING_SNAKE_CASE,last_hidden_state=outputs.last_hidden_state,hidden_states=outputs.hidden_states,attentions=outputs.attentions,)
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _a : List[str] = logging.get_logger(__name__) class _UpperCAmelCase : a : str a : str =None @staticmethod def lowerCamelCase__ ( ): '''simple docstring''' raise NotImplementedError def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise NotImplementedError def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise NotImplementedError def lowerCamelCase__ ( self ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' return f'`pip install {cls.pip_package or cls.name}`' class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""optuna""" @staticmethod def lowerCamelCase__ ( ): '''simple docstring''' return is_optuna_available() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return run_hp_search_optuna(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return default_hp_space_optuna(__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""ray""" a : List[str] ="""'ray[tune]'""" @staticmethod def lowerCamelCase__ ( ): '''simple docstring''' return is_ray_available() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return run_hp_search_ray(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return default_hp_space_ray(__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[int] ="""sigopt""" @staticmethod def lowerCamelCase__ ( ): '''simple docstring''' return is_sigopt_available() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return run_hp_search_sigopt(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return default_hp_space_sigopt(__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Dict ="""wandb""" @staticmethod def lowerCamelCase__ ( ): '''simple docstring''' return is_wandb_available() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return run_hp_search_wandb(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return default_hp_space_wandb(__SCREAMING_SNAKE_CASE ) _a : str = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __lowerCAmelCase = available_backends[0].name if len(lowercase ) > 1: logger.info( f'{len(lowercase )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github _a : Optional[int] = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) __lowerCAmelCase = g.get_repo("""huggingface/transformers""" ) __lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: __lowerCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase : i.created_at , reverse=lowercase ) __lowerCAmelCase = comments[0] if len(lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self,__SCREAMING_SNAKE_CASE = 7_68,): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Parameter(torch.zeros(1,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = nn.Parameter(torch.ones(1,__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = nn.Parameter(self.mean.to(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = nn.Parameter(self.std.to(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) ) return self def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = (embeds * self.std) + self.mean return embeds
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' from typing import Any import numpy as np def _lowerCAmelCase ( lowercase ) -> bool: return np.array_equal(lowercase , matrix.conjugate().T ) def _lowerCAmelCase ( lowercase , lowercase ) -> Any: __lowerCAmelCase = v.conjugate().T __lowerCAmelCase = v_star.dot(lowercase ) assert isinstance(lowercase , np.ndarray ) return (v_star_dot.dot(lowercase )) / (v_star.dot(lowercase )) def _lowerCAmelCase ( ) -> None: __lowerCAmelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowerCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase ), f'{a} is not hermitian.' print(rayleigh_quotient(lowercase , lowercase ) ) __lowerCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase ), f'{a} is not hermitian.' assert rayleigh_quotient(lowercase , lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _UpperCAmelCase : a : Optional[int] =BlenderbotSmallConfig a : Optional[int] ={} a : Optional[int] ="""gelu""" def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=99,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=37,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=20,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=0,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ),1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor],axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) __lowerCAmelCase = prepare_blenderbot_small_inputs_dict(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return config, inputs_dict def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = TFBlenderbotSmallModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __lowerCAmelCase = inputs_dict["""input_ids"""] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase = inputs_dict["""head_mask"""] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,head_mask=__SCREAMING_SNAKE_CASE,use_cache=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3),config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3),2 ),tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens],axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask],axis=-1 ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,past_key_values=__SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1],output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,),output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,rtol=1e-3 ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ) -> int: if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a : Optional[Any] =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a : Optional[int] =( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : List[str] =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFBlenderbotSmallModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): a : Any =[ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] a : Dict ="""facebook/blenderbot_small-90M""" @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer(self.src_text,return_tensors="""tf""" ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids,attention_mask=model_inputs.attention_mask,num_beams=2,use_cache=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy(),skip_special_tokens=__SCREAMING_SNAKE_CASE )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path _a : Any = """src/transformers""" # Matches is_xxx_available() _a : Any = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} _a : List[Any] = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _a : List[str] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available _a : Dict = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") _a : Dict = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _a : Any = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", _a : int = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], _a : Tuple = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo _a : int = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: _a : Any = re.compile(r"""^\s*try:""") # Catches a line with else: _a : Tuple = re.compile(r"""^\s*else:""") def _lowerCAmelCase ( lowercase ) -> Any: if _re_test_backend.search(lowercase ) is None: return None __lowerCAmelCase = [b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def _lowerCAmelCase ( lowercase ) -> Optional[Any]: with open(lowercase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = 0 while line_index < len(lowercase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure __lowerCAmelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __lowerCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): __lowerCAmelCase = _re_one_line_import_struct.search(lowercase ).groups()[0] __lowerCAmelCase = re.findall("""\[([^\]]+)\]""" , lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __lowerCAmelCase = _re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: __lowerCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __lowerCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __lowerCAmelCase = lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: __lowerCAmelCase = _re_import_struct_add_many.search(lowercase ).groups()[0].split(""", """ ) __lowerCAmelCase = [obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: __lowerCAmelCase = _re_between_brackets.search(lowercase ).groups()[0].split(""", """ ) __lowerCAmelCase = [obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __lowerCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCAmelCase = [] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowerCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCAmelCase ( lowercase , lowercase ) -> List[str]: def find_duplicates(lowercase ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCAmelCase = [] for key in import_dict_objects.keys(): __lowerCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) __lowerCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCAmelCase = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _lowerCAmelCase ( ) -> Optional[int]: __lowerCAmelCase = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: __lowerCAmelCase = os.path.join(lowercase , """__init__.py""" ) __lowerCAmelCase = parse_init(lowercase ) if objects is not None: __lowerCAmelCase = analyze_results(*lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(lowercase ) ) if len(lowercase ) > 0: raise ValueError("""\n\n""".join(lowercase ) ) def _lowerCAmelCase ( ) -> int: __lowerCAmelCase = [] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob("""*.py""" ) ) ) == 0: continue __lowerCAmelCase = str((Path(lowercase ) / folder).relative_to(lowercase ) ) __lowerCAmelCase = short_path.replace(os.path.sep , """.""" ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue __lowerCAmelCase = str((Path(lowercase ) / fname).relative_to(lowercase ) ) __lowerCAmelCase = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase ) return submodules _a : Optional[Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def _lowerCAmelCase ( ) -> Any: # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase = importlib.util.spec_from_file_location( """transformers""" , os.path.join(lowercase , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowerCAmelCase = spec.loader.load_module() __lowerCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: __lowerCAmelCase = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: __lowerCAmelCase = _modexpt(lowercase , exponent // 2 , lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase , exponent - 1 , lowercase )) % modulo_value def _lowerCAmelCase ( lowercase = 1777 , lowercase = 1855 , lowercase = 8 ) -> int: __lowerCAmelCase = base for _ in range(1 , lowercase ): __lowerCAmelCase = _modexpt(lowercase , lowercase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = 88,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = 32,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "geglu",__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,in_channels=__SCREAMING_SNAKE_CASE,num_layers=__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,norm_num_groups=__SCREAMING_SNAKE_CASE,cross_attention_dim=__SCREAMING_SNAKE_CASE,attention_bias=__SCREAMING_SNAKE_CASE,sample_size=__SCREAMING_SNAKE_CASE,num_vector_embeds=__SCREAMING_SNAKE_CASE,activation_fn=__SCREAMING_SNAKE_CASE,num_embeds_ada_norm=__SCREAMING_SNAKE_CASE,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __lowerCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __lowerCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __lowerCAmelCase = [1, 0] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = True,): '''simple docstring''' __lowerCAmelCase = hidden_states __lowerCAmelCase = [] __lowerCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __lowerCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __lowerCAmelCase = self.transformer_index_for_condition[i] __lowerCAmelCase = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,timestep=__SCREAMING_SNAKE_CASE,cross_attention_kwargs=__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __lowerCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __lowerCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _lowerCAmelCase ( lowercase ) -> np.ndarray: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _lowerCAmelCase ( lowercase ) -> np.ndarray: return (gray > 127) & (gray <= 255) def _lowerCAmelCase ( lowercase , lowercase ) -> np.ndarray: __lowerCAmelCase = np.zeros_like(lowercase ) __lowerCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowerCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowerCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowerCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image _a : Any = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" _a : Optional[int] = np.array(Image.open(lena_path)) # kernel to be applied _a : Dict = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _a : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _a : List[Any] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> int | float: if len(lowercase ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowercase ) or left < -len(lowercase ) or right >= len(lowercase ) or right < -len(lowercase ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCAmelCase = (left + right) >> 1 # the middle __lowerCAmelCase = find_max(lowercase , lowercase , lowercase ) # find max in range[left, mid] __lowerCAmelCase = find_max(lowercase , mid + 1 , lowercase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = 9 __lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCAmelCase = kruskal(lowercase , lowercase ) __lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowercase ) == sorted(lowercase )
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def _lowerCAmelCase ( lowercase ) -> bool: __lowerCAmelCase = credit_card_number __lowerCAmelCase = 0 __lowerCAmelCase = len(lowercase ) - 2 for i in range(lowercase , -1 , -2 ): # double the value of every second digit __lowerCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCAmelCase = cc_number[:i] + str(lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _lowerCAmelCase ( lowercase ) -> bool: __lowerCAmelCase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(lowercase ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowercase ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowercase ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import re import string import numpy as np import datasets _a : str = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _a : List[Any] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _a : List[Any] = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""string""",id="""sequence""" ), """references""": datasets.Value("""string""",id="""sequence""" ), } ),reference_urls=[],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: __lowerCAmelCase = np.array([re.sub(__SCREAMING_SNAKE_CASE,"""""",__SCREAMING_SNAKE_CASE ) for x in predictions] ) __lowerCAmelCase = np.array([re.sub(__SCREAMING_SNAKE_CASE,"""""",__SCREAMING_SNAKE_CASE ) for x in references] ) else: __lowerCAmelCase = np.asarray(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: __lowerCAmelCase = np.char.lower(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: __lowerCAmelCase = string.punctuation.maketrans("""""","""""",string.punctuation ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: __lowerCAmelCase = string.digits.maketrans("""""","""""",string.digits ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 1_00}
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyInpaintPipeline a : List[str] =["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : List[str] =[ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Union[str, Any] =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=10_05,) __lowerCAmelCase = MultilingualCLIP(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = text_encoder.eval() return text_encoder @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(__SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( __SCREAMING_SNAKE_CASE,image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> list[list[float]]: __lowerCAmelCase = [] for data in source_data: for i, el in enumerate(lowercase ): if len(lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase ) ) return data_lists def _lowerCAmelCase ( lowercase , lowercase ) -> list[list[float]]: __lowerCAmelCase = [] for dlist, weight in zip(lowercase , lowercase ): __lowerCAmelCase = min(lowercase ) __lowerCAmelCase = max(lowercase ) __lowerCAmelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowerCAmelCase = f'Invalid weight of {weight:f} provided' raise ValueError(lowercase ) score_lists.append(lowercase ) return score_lists def _lowerCAmelCase ( lowercase ) -> list[float]: __lowerCAmelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase ): __lowerCAmelCase = final_scores[j] + ele return final_scores def _lowerCAmelCase ( lowercase , lowercase ) -> list[list[float]]: __lowerCAmelCase = get_data(lowercase ) __lowerCAmelCase = calculate_each_score(lowercase , lowercase ) __lowerCAmelCase = generate_final_scores(lowercase ) # append scores to source data for i, ele in enumerate(lowercase ): source_data[i].append(lowercase ) return source_data
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Dict = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class _UpperCAmelCase ( lowerCAmelCase_ ): a : Dict ="""xlm-prophetnet""" a : Optional[Any] =["""past_key_values"""] a : Union[str, Any] ={ """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self,__SCREAMING_SNAKE_CASE = 0.1,__SCREAMING_SNAKE_CASE = "gelu",__SCREAMING_SNAKE_CASE = 3_05_22,__SCREAMING_SNAKE_CASE = 10_24,__SCREAMING_SNAKE_CASE = 40_96,__SCREAMING_SNAKE_CASE = 12,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = 40_96,__SCREAMING_SNAKE_CASE = 12,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = 0.1,__SCREAMING_SNAKE_CASE = 0.1,__SCREAMING_SNAKE_CASE = 5_12,__SCREAMING_SNAKE_CASE = 0.02,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = 0,__SCREAMING_SNAKE_CASE = 2,__SCREAMING_SNAKE_CASE = 32,__SCREAMING_SNAKE_CASE = 1_28,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = 0,__SCREAMING_SNAKE_CASE = 1,__SCREAMING_SNAKE_CASE = 2,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = num_encoder_layers __lowerCAmelCase = num_encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = num_decoder_layers __lowerCAmelCase = num_decoder_attention_heads __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = init_std # Normal(0, this parameter) __lowerCAmelCase = activation_function # parameters for xlmprophetnet __lowerCAmelCase = ngram __lowerCAmelCase = num_buckets __lowerCAmelCase = relative_max_distance __lowerCAmelCase = disable_ngram_loss __lowerCAmelCase = eps # 3 Types of Dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = dropout __lowerCAmelCase = use_cache super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE,bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,is_encoder_decoder=__SCREAMING_SNAKE_CASE,add_cross_attention=__SCREAMING_SNAKE_CASE,decoder_start_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> list: if len(lowercase ) < 2: return collection def circle_sort_util(lowercase , lowercase , lowercase ) -> bool: __lowerCAmelCase = False if low == high: return swapped __lowerCAmelCase = low __lowerCAmelCase = high while left < right: if collection[left] > collection[right]: __lowerCAmelCase , __lowerCAmelCase = ( collection[right], collection[left], ) __lowerCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowerCAmelCase , __lowerCAmelCase = ( collection[right + 1], collection[left], ) __lowerCAmelCase = True __lowerCAmelCase = low + int((high - low) / 2 ) __lowerCAmelCase = circle_sort_util(lowercase , lowercase , lowercase ) __lowerCAmelCase = circle_sort_util(lowercase , mid + 1 , lowercase ) return swapped or left_swap or right_swap __lowerCAmelCase = True while is_not_sorted is True: __lowerCAmelCase = circle_sort_util(lowercase , 0 , len(lowercase ) - 1 ) return collection if __name__ == "__main__": _a : str = input("""Enter numbers separated by a comma:\n""").strip() _a : Optional[int] = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _lowerCAmelCase ( lowercase = 100_0000 , lowercase = 10 ) -> int: __lowerCAmelCase = defaultdict(lowercase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __lowerCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __lowerCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _a : Dict = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def _lowerCAmelCase ( lowercase ) -> str: __lowerCAmelCase = test_results.split(""" """ ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowerCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: __lowerCAmelCase = {} __lowerCAmelCase = None __lowerCAmelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , lowercase ): __lowerCAmelCase = True __lowerCAmelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): __lowerCAmelCase = line __lowerCAmelCase = False return failures class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = title __lowerCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0] __lowerCAmelCase = doc_test_results["""success"""] __lowerCAmelCase = doc_test_results["""failures"""] __lowerCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowerCAmelCase = doc_test_results @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [self._time_spent] __lowerCAmelCase = 0 for time in time_spent: __lowerCAmelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__SCREAMING_SNAKE_CASE ) == 1: __lowerCAmelCase = [0, 0, time_parts[0]] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(__SCREAMING_SNAKE_CASE )}h{int(__SCREAMING_SNAKE_CASE )}m{int(__SCREAMING_SNAKE_CASE )}s' @property def lowerCamelCase__ ( self ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 40 __lowerCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )} __lowerCAmelCase = """""" for category, failures in category_failures.items(): if len(__SCREAMING_SNAKE_CASE ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__SCREAMING_SNAKE_CASE ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCamelCase__ ( ): '''simple docstring''' __lowerCAmelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(__SCREAMING_SNAKE_CASE )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""],text="""There was an issue running the tests.""",blocks=__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self ): '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) __lowerCAmelCase = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else """All tests passed.""" __lowerCAmelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""],blocks=self.payload,text=__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""" for key, value in failures.items(): __lowerCAmelCase = value[:2_00] + """ [Truncated]""" if len(__SCREAMING_SNAKE_CASE ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' __lowerCAmelCase = job_name __lowerCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: __lowerCAmelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCamelCase__ ( self ): '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) __lowerCAmelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) __lowerCAmelCase = sorted(self.doc_test_results.items(),key=lambda __SCREAMING_SNAKE_CASE : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): __lowerCAmelCase = f'*Num failures* :{len(job_result["failed"] )} \n' __lowerCAmelCase = job_result["""failures"""] __lowerCAmelCase = self.get_reply_blocks(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,text=__SCREAMING_SNAKE_CASE ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""],text=f'Results for {job}',blocks=__SCREAMING_SNAKE_CASE,thread_ts=self.thread_ts["""ts"""],) time.sleep(1 ) def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = os.environ["""GITHUB_RUN_ID"""] __lowerCAmelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' __lowerCAmelCase = requests.get(lowercase ).json() __lowerCAmelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __lowerCAmelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase ): __lowerCAmelCase = requests.get(url + f'&page={i + 2}' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , lowercase ) return {} def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = {} if os.path.exists(lowercase ): __lowerCAmelCase = os.listdir(lowercase ) for file in files: try: with open(os.path.join(lowercase , lowercase ) , encoding="""utf-8""" ) as f: __lowerCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f'Could not open {os.path.join(lowercase , lowercase )}.' ) from e return _artifact def _lowerCAmelCase ( ) -> Any: class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = name __lowerCAmelCase = [] def __str__( self ): '''simple docstring''' return self.name def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) __lowerCAmelCase = {} __lowerCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowerCAmelCase = directory if artifact_name not in _available_artifacts: __lowerCAmelCase = Artifact(lowercase ) _available_artifacts[artifact_name].add_path(lowercase ) return _available_artifacts if __name__ == "__main__": _a : List[str] = get_job_links() _a : str = retrieve_available_artifacts() _a : Union[str, Any] = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _a : Dict = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job _a : Dict = github_actions_job_links.get("""run_doctests""") _a : List[str] = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] _a : Tuple = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: _a ,_a ,_a : Optional[Any] = handle_test_results(artifact["""stats"""]) _a : List[str] = failed _a : List[str] = success _a : Optional[Any] = time_spent[1:-1] + """, """ _a : List[Any] = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): _a : List[str] = line.replace("""FAILED """, """""") _a : List[Any] = line.split()[0].replace("""\n""", """""") if "::" in line: _a ,_a : int = line.split("""::""") else: _a ,_a : int = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _a : str = docs[file_regex] doc_test_results[category]["failed"].append(test) _a : Dict = all_failures[test] if test in all_failures else """N/A""" _a : List[Any] = failure break _a : Optional[Any] = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : List[Any] = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any ="""xlm-roberta-xl""" def __init__( self,__SCREAMING_SNAKE_CASE=25_08_80,__SCREAMING_SNAKE_CASE=25_60,__SCREAMING_SNAKE_CASE=36,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=1_02_40,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=5_14,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=1e-05,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE="absolute",__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE,bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class _UpperCAmelCase ( lowerCAmelCase_ ): @property def lowerCamelCase__ ( self ): '''simple docstring''' if self.task == "multiple-choice": __lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase , lowercase=False , lowercase=False ) -> List[str]: __lowerCAmelCase = """backbone.""" if is_semantic else """""" __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', """beit.embeddings.cls_token"""), (f'{prefix}patch_embed.proj.weight', """beit.embeddings.patch_embeddings.projection.weight"""), (f'{prefix}patch_embed.proj.bias', """beit.embeddings.patch_embeddings.projection.bias"""), (f'{prefix}pos_embed', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( lowercase , lowercase , lowercase=False , lowercase=False ) -> Tuple: for i in range(config.num_hidden_layers ): __lowerCAmelCase = """backbone.""" if is_semantic else """""" # queries, keys and values __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = q_bias __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) __lowerCAmelCase = gamma_a __lowerCAmelCase = gamma_a def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Dict: __lowerCAmelCase = dct.pop(lowercase ) __lowerCAmelCase = val def _lowerCAmelCase ( ) -> Tuple: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=False ) -> List[str]: __lowerCAmelCase = False if """rvlcdip""" in checkpoint_url else True __lowerCAmelCase = BeitConfig(use_absolute_position_embeddings=lowercase , use_mask_token=lowercase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 # labels if "rvlcdip" in checkpoint_url: __lowerCAmelCase = 16 __lowerCAmelCase = """huggingface/label-files""" __lowerCAmelCase = """rvlcdip-id2label.json""" __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = create_rename_keys(lowercase , has_lm_head=lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , has_lm_head=lowercase ) # load HuggingFace model __lowerCAmelCase = BeitForMaskedImageModeling(lowercase ) if has_lm_head else BeitForImageClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # Check outputs on an image __lowerCAmelCase = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowercase , return_tensors="""pt""" ) __lowerCAmelCase = encoding["""pixel_values"""] __lowerCAmelCase = model(lowercase ) __lowerCAmelCase = outputs.logits # verify logits __lowerCAmelCase = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowercase ), "Shape of logits not as expected" Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) if push_to_hub: if has_lm_head: __lowerCAmelCase = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowerCAmelCase = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowercase , ) model.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowercase , ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) _a : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' import torch from transformers import AutoModel class _UpperCAmelCase ( torch.nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__SCREAMING_SNAKE_CASE,self ).__init__() __lowerCAmelCase = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.nn.CosineSimilarity(3,1e-08 ) __lowerCAmelCase = torch.nn.Softmax(dim=1 ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return token_embeddings.sum(2,keepdim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=1 ): '''simple docstring''' return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = W_supports["""sizes"""].tolist() __lowerCAmelCase = W_supports["""start_token_id"""].item() __lowerCAmelCase = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __lowerCAmelCase = self.BERT(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.BERT(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = W_supports["""input_ids"""] == start_token_id __lowerCAmelCase = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: __lowerCAmelCase = 0 else: __lowerCAmelCase = support_sizes[i - 1] __lowerCAmelCase = S[s : s + size][start_token_masks[s : s + size]] __lowerCAmelCase = S[s : s + size][end_token_masks[s : s + size]] __lowerCAmelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __lowerCAmelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __lowerCAmelCase = torch.vstack((p_starts, p_start) ) __lowerCAmelCase = torch.vstack((p_ends, p_end) ) else: __lowerCAmelCase = p_start __lowerCAmelCase = p_end return p_starts, p_ends
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _a : List[str] = 1_0 def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> int: for i in range(lowercase , lowercase ): if array[i] == target: return i return -1 def _lowerCAmelCase ( lowercase , lowercase ) -> int: __lowerCAmelCase = 0 __lowerCAmelCase = len(lowercase ) while left <= right: if right - left < precision: return lin_search(lowercase , lowercase , lowercase , lowercase ) __lowerCAmelCase = (left + right) // 3 + 1 __lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCAmelCase = one_third - 1 elif array[two_third] < target: __lowerCAmelCase = two_third + 1 else: __lowerCAmelCase = one_third + 1 __lowerCAmelCase = two_third - 1 else: return -1 def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> int: if left < right: if right - left < precision: return lin_search(lowercase , lowercase , lowercase , lowercase ) __lowerCAmelCase = (left + right) // 3 + 1 __lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase , one_third - 1 , lowercase , lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase , lowercase , lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase , lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _a : Union[str, Any] = input("""Enter numbers separated by comma:\n""").strip() _a : Union[str, Any] = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _a : str = int(input("""Enter the number to be found in the list:\n""").strip()) _a : str = ite_ternary_search(collection, target) _a : int = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print("""Not found""")
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _a : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): a : Optional[datasets.Features] =None def _lowerCAmelCase ( lowercase , lowercase , ) -> List[Any]: import pyspark def generate_fn(): __lowerCAmelCase = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: __lowerCAmelCase = df_with_partition_id.select("""*""" ).where(f'part_id = {partition_id}' ).drop("""part_id""" ) __lowerCAmelCase = partition_df.collect() __lowerCAmelCase = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class _UpperCAmelCase ( _BaseExamplesIterable ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase = df __lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCAmelCase = _generate_iterable_examples(self.df,self.partition_order ) def __iter__( self ): '''simple docstring''' yield from self.generate_examples_fn() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__SCREAMING_SNAKE_CASE ) return SparkExamplesIterable(self.df,partition_order=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.split_shard_indices_by_worker(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return SparkExamplesIterable(self.df,partition_order=__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.partition_order ) class _UpperCAmelCase ( datasets.DatasetBuilder ): a : Optional[int] =SparkConfig def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' import pyspark __lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCAmelCase = df __lowerCAmelCase = working_dir super().__init__( cache_dir=__SCREAMING_SNAKE_CASE,config_name=str(self.df.semanticHash() ),**__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self ): '''simple docstring''' def create_cache_and_write_probe(__SCREAMING_SNAKE_CASE ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir,exist_ok=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = os.path.join(self._cache_dir,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__SCREAMING_SNAKE_CASE,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""","""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ),1 ).mapPartitions(__SCREAMING_SNAKE_CASE ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' import pyspark def get_arrow_batch_size(__SCREAMING_SNAKE_CASE ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) __lowerCAmelCase = self.df.count() __lowerCAmelCase = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCAmelCase = ( self.df.limit(__SCREAMING_SNAKE_CASE ) .repartition(1 ) .mapInArrow(__SCREAMING_SNAKE_CASE,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCAmelCase = min(__SCREAMING_SNAKE_CASE,int(approx_total_size / max_shard_size ) ) __lowerCAmelCase = self.df.repartition(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' import pyspark __lowerCAmelCase = ParquetWriter if file_format == """parquet""" else ArrowWriter __lowerCAmelCase = os.path.join(self._working_dir,os.path.basename(__SCREAMING_SNAKE_CASE ) ) if self._working_dir else fpath __lowerCAmelCase = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCAmelCase = self.config.features __lowerCAmelCase = self._writer_batch_size __lowerCAmelCase = self._fs.storage_options def write_arrow(__SCREAMING_SNAKE_CASE ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCAmelCase = pyspark.TaskContext().taskAttemptId() __lowerCAmelCase = next(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]],names=["""task_id""", """num_examples""", """num_bytes"""],) __lowerCAmelCase = 0 __lowerCAmelCase = writer_class( features=__SCREAMING_SNAKE_CASE,path=working_fpath.replace("""SSSSS""",f'{shard_id:05d}' ).replace("""TTTTT""",f'{task_id:05d}' ),writer_batch_size=__SCREAMING_SNAKE_CASE,storage_options=__SCREAMING_SNAKE_CASE,embed_local_files=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(__SCREAMING_SNAKE_CASE ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]],names=["""task_id""", """num_examples""", """num_bytes"""],) shard_id += 1 __lowerCAmelCase = writer_class( features=writer._features,path=working_fpath.replace("""SSSSS""",f'{shard_id:05d}' ).replace("""TTTTT""",f'{task_id:05d}' ),writer_batch_size=__SCREAMING_SNAKE_CASE,storage_options=__SCREAMING_SNAKE_CASE,embed_local_files=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(__SCREAMING_SNAKE_CASE ) if writer._num_bytes > 0: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]],names=["""task_id""", """num_examples""", """num_bytes"""],) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = os.path.join(os.path.dirname(__SCREAMING_SNAKE_CASE ),os.path.basename(__SCREAMING_SNAKE_CASE ) ) shutil.move(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ( self.df.mapInArrow(__SCREAMING_SNAKE_CASE,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ),pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ),pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ),pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ),) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "arrow",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' self._validate_cache_dir() __lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = not is_remote_filesystem(self._fs ) __lowerCAmelCase = os.path.join if is_local else posixpath.join __lowerCAmelCase = """-TTTTT-SSSSS-of-NNNNN""" __lowerCAmelCase = f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' __lowerCAmelCase = path_join(self._output_dir,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] for task_id, content in self._prepare_split_single(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = total_num_examples __lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.' ) if total_shards > 1: __lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): rename( __SCREAMING_SNAKE_CASE,fpath.replace("""SSSSS""",f'{shard_id:05d}' ).replace("""TTTTT""",f'{task_id:05d}' ),fpath.replace("""TTTTT-SSSSS""",f'{global_shard_id:05d}' ).replace("""NNNNN""",f'{total_shards:05d}' ),) __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase , __lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(__SCREAMING_SNAKE_CASE ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__SCREAMING_SNAKE_CASE,len(__SCREAMING_SNAKE_CASE ) ).map(lambda __SCREAMING_SNAKE_CASE : _rename_shard(*__SCREAMING_SNAKE_CASE ) ).collect() else: # don't use any pattern __lowerCAmelCase = 0 __lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""",f'{shard_id:05d}' ).replace("""TTTTT""",f'{task_id:05d}' ),fpath.replace(__SCREAMING_SNAKE_CASE,"""""" ),) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,): '''simple docstring''' return SparkExamplesIterable(self.df )
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' import argparse from collections import defaultdict def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: __lowerCAmelCase = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(lowercase , """r""" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = f'class {class_name}(' __lowerCAmelCase = f'{4 * " "}def {test_name}(' __lowerCAmelCase = f'{8 * " "}{correct_line.split()[0]}' __lowerCAmelCase = f'{16 * " "}{correct_line.split()[0]}' __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] for line in lines: if line.startswith(lowercase ): __lowerCAmelCase = True elif in_class and line.startswith(lowercase ): __lowerCAmelCase = True elif in_class and in_func and (line.startswith(lowercase ) or line.startswith(lowercase )): __lowerCAmelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCAmelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCAmelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = False else: new_lines.append(lowercase ) with open(lowercase , """w""" ) as f: for line in new_lines: f.write(lowercase ) def _lowerCAmelCase ( lowercase , lowercase=None ) -> List[str]: if fail is not None: with open(lowercase , """r""" ) as f: __lowerCAmelCase = {l.strip() for l in f.readlines()} else: __lowerCAmelCase = None with open(lowercase , """r""" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = defaultdict(lowercase ) for line in correct_lines: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase , lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) _a : str = parser.parse_args() main(args.correct_filename, args.fail_filename)
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' from math import ceil, sqrt def _lowerCAmelCase ( lowercase = 100_0000 ) -> int: __lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( lowerCAmelCase_ ): a : Tuple ="""SpeechT5FeatureExtractor""" a : str ="""SpeechT5Tokenizer""" def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def __call__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = kwargs.pop("""audio""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""text""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""text_target""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""audio_target""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""sampling_rate""",__SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: __lowerCAmelCase = self.feature_extractor(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,sampling_rate=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) elif text is not None: __lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = None if audio_target is not None: __lowerCAmelCase = self.feature_extractor(audio_target=__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,sampling_rate=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = targets["""input_values"""] elif text_target is not None: __lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = targets["""input_ids"""] else: __lowerCAmelCase = None if inputs is None: return targets if targets is not None: __lowerCAmelCase = labels __lowerCAmelCase = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowerCAmelCase = decoder_attention_mask return inputs def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = kwargs.pop("""input_values""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""input_ids""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.pop("""labels""",__SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: __lowerCAmelCase = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) elif input_ids is not None: __lowerCAmelCase = self.tokenizer.pad(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = None if labels is not None: if "input_ids" in labels or (isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): __lowerCAmelCase = self.tokenizer.pad(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = targets["""input_ids"""] else: __lowerCAmelCase = self.feature_extractor.feature_size __lowerCAmelCase = self.feature_extractor.num_mel_bins __lowerCAmelCase = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = feature_size_hack __lowerCAmelCase = targets["""input_values"""] else: __lowerCAmelCase = None if inputs is None: return targets if targets is not None: __lowerCAmelCase = labels __lowerCAmelCase = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowerCAmelCase = decoder_attention_mask return inputs def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' from typing import List import numpy as np def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = {key: len(lowercase ) for key, value in gen_kwargs.items() if isinstance(lowercase , lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) __lowerCAmelCase = max(lists_lengths.values() , default=0 ) return max(1 , lowercase ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[range]: __lowerCAmelCase = [] for group_idx in range(lowercase ): __lowerCAmelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __lowerCAmelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __lowerCAmelCase = range(lowercase , start + num_shards_to_add ) shards_indices_per_group.append(lowercase ) return shards_indices_per_group def _lowerCAmelCase ( lowercase , lowercase ) -> List[dict]: __lowerCAmelCase = _number_of_shards_in_gen_kwargs(lowercase ) if num_shards == 1: return [dict(lowercase )] else: __lowerCAmelCase = _distribute_shards(num_shards=lowercase , max_num_jobs=lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase , lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase ) ) ] def _lowerCAmelCase ( lowercase ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _lowerCAmelCase ( lowercase , lowercase ) -> dict: __lowerCAmelCase = {len(lowercase ) for value in gen_kwargs.values() if isinstance(lowercase , lowercase )} __lowerCAmelCase = {} for size in list_sizes: __lowerCAmelCase = list(range(lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __lowerCAmelCase = dict(lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase , lowercase ): __lowerCAmelCase = [value[i] for i in indices_per_size[len(lowercase )]] return shuffled_kwargs
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowerCAmelCase = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __lowerCAmelCase = os.path.join(self.tmpdirname,__SCREAMING_SNAKE_CASE ) with open(self.image_processor_file,"""w""",encoding="""utf-8""" ) as fp: json.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [np.random.randint(2_55,size=(3, 30, 4_00),dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE,0,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE,image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(),image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""",eos_token="""(EOS)""" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE,padding_value=1.0 ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname,bos_token="""(BOS)""",eos_token="""(EOS)""",do_normalize=__SCREAMING_SNAKE_CASE,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE,image_processor=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__SCREAMING_SNAKE_CASE,return_tensors="""np""" ) __lowerCAmelCase = processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1e-2 ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE,image_processor=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = processor(text=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE,image_processor=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__SCREAMING_SNAKE_CASE,images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ),["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__SCREAMING_SNAKE_CASE ): processor() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE,image_processor=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE,image_processor=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__SCREAMING_SNAKE_CASE,images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ),processor.model_input_names )
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Tuple = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = ["""ConvNextFeatureExtractor"""] _a : str = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _a : Optional[Any] = None _a : List[str] = logging.get_logger(__name__) _a : str = """▁""" _a : Union[str, Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _a : Union[str, Any] = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } _a : Optional[Any] = { """google/pegasus-xsum""": 5_1_2, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : str =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] =PegasusTokenizer a : List[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<mask_2>",__SCREAMING_SNAKE_CASE="<mask_1>",__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=1_03,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise TypeError( f'additional_special_tokens should be of type {type(__SCREAMING_SNAKE_CASE )}, but is' f' {type(__SCREAMING_SNAKE_CASE )}' ) __lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(__SCREAMING_SNAKE_CASE ),self.offset - 1 ) ] if len(set(__SCREAMING_SNAKE_CASE ) ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __lowerCAmelCase = additional_special_tokens_extended else: __lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2,self.offset )] super().__init__( __SCREAMING_SNAKE_CASE,tokenizer_file=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,mask_token_sent=__SCREAMING_SNAKE_CASE,offset=__SCREAMING_SNAKE_CASE,additional_special_tokens=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import string import numpy def _lowerCAmelCase ( lowercase , lowercase ) -> int: return b if a == 0 else greatest_common_divisor(b % a , lowercase ) class _UpperCAmelCase : a : Tuple =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a : Union[str, Any] =numpy.vectorize(lambda lowerCAmelCase_ : x % 36 ) a : Optional[int] =numpy.vectorize(lowerCAmelCase_ ) def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.modulus(__SCREAMING_SNAKE_CASE ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCAmelCase = encrypt_key.shape[0] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.key_string.index(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.key_string[round(__SCREAMING_SNAKE_CASE )] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCAmelCase = det % len(self.key_string ) __lowerCAmelCase = len(self.key_string ) if greatest_common_divisor(__SCREAMING_SNAKE_CASE,len(self.key_string ) ) != 1: __lowerCAmelCase = ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [char for char in text.upper() if char in self.key_string] __lowerCAmelCase = chars[-1] while len(__SCREAMING_SNAKE_CASE ) % self.break_key != 0: chars.append(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.process_text(text.upper() ) __lowerCAmelCase = """""" for i in range(0,len(__SCREAMING_SNAKE_CASE ) - self.break_key + 1,self.break_key ): __lowerCAmelCase = text[i : i + self.break_key] __lowerCAmelCase = [self.replace_letters(__SCREAMING_SNAKE_CASE ) for char in batch] __lowerCAmelCase = numpy.array([vec] ).T __lowerCAmelCase = self.modulus(self.encrypt_key.dot(__SCREAMING_SNAKE_CASE ) ).T.tolist()[ 0 ] __lowerCAmelCase = """""".join( self.replace_digits(__SCREAMING_SNAKE_CASE ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCAmelCase = det % len(self.key_string ) __lowerCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCAmelCase = i break __lowerCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.make_decrypt_key() __lowerCAmelCase = self.process_text(text.upper() ) __lowerCAmelCase = """""" for i in range(0,len(__SCREAMING_SNAKE_CASE ) - self.break_key + 1,self.break_key ): __lowerCAmelCase = text[i : i + self.break_key] __lowerCAmelCase = [self.replace_letters(__SCREAMING_SNAKE_CASE ) for char in batch] __lowerCAmelCase = numpy.array([vec] ).T __lowerCAmelCase = self.modulus(decrypt_key.dot(__SCREAMING_SNAKE_CASE ) ).T.tolist()[0] __lowerCAmelCase = """""".join( self.replace_digits(__SCREAMING_SNAKE_CASE ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _lowerCAmelCase ( ) -> None: __lowerCAmelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCAmelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowercase ): __lowerCAmelCase = [int(lowercase ) for x in input().split()] hill_matrix.append(lowercase ) __lowerCAmelCase = HillCipher(numpy.array(lowercase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCAmelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCAmelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowercase ) ) elif option == "2": __lowerCAmelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _a : Tuple = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(lowerCAmelCase_ ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : str ="""rag""" a : Dict =True def __init__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=" / ",__SCREAMING_SNAKE_CASE=" // ",__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=3_00,__SCREAMING_SNAKE_CASE=7_68,__SCREAMING_SNAKE_CASE=8,__SCREAMING_SNAKE_CASE="wiki_dpr",__SCREAMING_SNAKE_CASE="train",__SCREAMING_SNAKE_CASE="compressed",__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,pad_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,decoder_start_token_id=__SCREAMING_SNAKE_CASE,forced_eos_token_id=__SCREAMING_SNAKE_CASE,is_encoder_decoder=__SCREAMING_SNAKE_CASE,prefix=__SCREAMING_SNAKE_CASE,vocab_size=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __lowerCAmelCase = kwargs.pop("""question_encoder""" ) __lowerCAmelCase = question_encoder_config.pop("""model_type""" ) __lowerCAmelCase = kwargs.pop("""generator""" ) __lowerCAmelCase = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __lowerCAmelCase = AutoConfig.for_model(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoConfig.for_model(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = reduce_loss __lowerCAmelCase = label_smoothing __lowerCAmelCase = exclude_bos_score __lowerCAmelCase = do_marginalize __lowerCAmelCase = title_sep __lowerCAmelCase = doc_sep __lowerCAmelCase = n_docs __lowerCAmelCase = max_combined_length __lowerCAmelCase = dataset __lowerCAmelCase = dataset_split __lowerCAmelCase = index_name __lowerCAmelCase = retrieval_vector_size __lowerCAmelCase = retrieval_batch_size __lowerCAmelCase = passages_path __lowerCAmelCase = index_path __lowerCAmelCase = use_dummy_dataset __lowerCAmelCase = output_retrieved __lowerCAmelCase = do_deduplication __lowerCAmelCase = use_cache if self.forced_eos_token_id is None: __lowerCAmelCase = getattr(self.generator,"""forced_eos_token_id""",__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.question_encoder.to_dict() __lowerCAmelCase = self.generator.to_dict() __lowerCAmelCase = self.__class__.model_type return output
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a : str = logging.get_logger("""transformers.models.speecht5""") def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: hf_model.apply_weight_norm() __lowerCAmelCase = checkpoint["""input_conv.weight_g"""] __lowerCAmelCase = checkpoint["""input_conv.weight_v"""] __lowerCAmelCase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): __lowerCAmelCase = checkpoint[f'upsamples.{i}.1.weight_g'] __lowerCAmelCase = checkpoint[f'upsamples.{i}.1.weight_v'] __lowerCAmelCase = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCAmelCase = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] __lowerCAmelCase = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] __lowerCAmelCase = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] __lowerCAmelCase = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] __lowerCAmelCase = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] __lowerCAmelCase = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] __lowerCAmelCase = checkpoint["""output_conv.1.weight_g"""] __lowerCAmelCase = checkpoint["""output_conv.1.weight_v"""] __lowerCAmelCase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ) -> List[str]: if config_path is not None: __lowerCAmelCase = SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = SpeechTaHifiGanConfig() __lowerCAmelCase = SpeechTaHifiGan(lowercase ) __lowerCAmelCase = torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) __lowerCAmelCase = np.load(lowercase ) __lowerCAmelCase = stats[0].reshape(-1 ) __lowerCAmelCase = stats[1].reshape(-1 ) __lowerCAmelCase = torch.from_numpy(lowercase ).float() __lowerCAmelCase = torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _a : Dict = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ) -> Tuple: __lowerCAmelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowercase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowercase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowercase ) return parser.parse_args() def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowercase ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase ) -> None: create_state_space_tree(lowercase , [] , 0 , [0 for i in range(len(lowercase ) )] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , ) -> None: if index == len(lowercase ): print(lowercase ) return for i in range(len(lowercase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __lowerCAmelCase = True create_state_space_tree(lowercase , lowercase , index + 1 , lowercase ) current_sequence.pop() __lowerCAmelCase = False _a : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) _a : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Union[str, Any] =BertJapaneseTokenizer a : Optional[Any] =False a : str =True def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" __lowerCAmelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.decode(__SCREAMING_SNAKE_CASE,clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return text, ids def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase = os.path.join(self.tmpdirname,"""tokenizer.bin""" ) with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as handle: pickle.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as handle: __lowerCAmelCase = pickle.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' try: __lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' try: __lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = MecabTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' try: __lowerCAmelCase = MecabTokenizer( do_lower_case=__SCREAMING_SNAKE_CASE,normalize_text=__SCREAMING_SNAKE_CASE,mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = MecabTokenizer(normalize_text=__SCREAMING_SNAKE_CASE,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase = os.path.join(self.tmpdirname,"""tokenizer.bin""" ) with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as handle: pickle.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as handle: __lowerCAmelCase = pickle.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""",sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ),["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""",sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ),["""外国人""", """参政権"""] ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""",sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ),["""外国人参政権"""] ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),[""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(normalize_text=__SCREAMING_SNAKE_CASE,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(trim_whitespace=__SCREAMING_SNAKE_CASE,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase = os.path.join(self.tmpdirname,"""tokenizer.bin""" ) with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as handle: pickle.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as handle: __lowerCAmelCase = pickle.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer(normalize_text=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer(trim_whitespace=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ),["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __lowerCAmelCase = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ),[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ),["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ),["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ),["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __lowerCAmelCase = tokenizer.subword_tokenizer __lowerCAmelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __lowerCAmelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __lowerCAmelCase = tokenizer.encode("""ありがとう。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode("""どういたしまして。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Tuple =BertJapaneseTokenizer a : List[Any] =False def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname,subword_tokenizer_type="""character""",**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" __lowerCAmelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,subword_tokenizer_type="""character""" ) __lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE,["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowerCAmelCase = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = i __lowerCAmelCase = CharacterTokenizer(vocab=__SCREAMING_SNAKE_CASE,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ),[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ),["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ),["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __lowerCAmelCase = tokenizer.encode("""ありがとう。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode("""どういたしまして。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cl-tohoku/bert-base-japanese""" __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""",level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __lowerCAmelCase = """bert-base-cased""" with self.assertLogs("""transformers""",level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=3 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3 , __lowerCAmelCase=1_0 , __lowerCAmelCase=[8, 1_6, 3_2, 6_4] , __lowerCAmelCase=[1, 1, 2, 1] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=["stage2", "stage3", "stage4"] , __lowerCAmelCase=[2, 3, 4] , __lowerCAmelCase=1 , ): """simple docstring""" __magic_name__ :Optional[int] = parent __magic_name__ :str = batch_size __magic_name__ :List[Any] = image_size __magic_name__ :Any = num_channels __magic_name__ :Optional[Any] = embeddings_size __magic_name__ :Any = hidden_sizes __magic_name__ :Tuple = depths __magic_name__ :Any = is_training __magic_name__ :Union[str, Any] = use_labels __magic_name__ :List[str] = hidden_act __magic_name__ :Optional[int] = num_labels __magic_name__ :Any = scope __magic_name__ :Dict = len(__lowerCAmelCase ) __magic_name__ :Any = out_features __magic_name__ :str = out_indices __magic_name__ :Tuple = num_groups def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :Any = None if self.use_labels: __magic_name__ :str = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ :Optional[int] = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = BitModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = self.num_labels __magic_name__ :int = BitForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :str = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = BitBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[int] = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __magic_name__ :Any = None __magic_name__ :Union[str, Any] = BitBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ :int = config_and_inputs __magic_name__ :str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :Dict = BitModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :int = model_class(__lowerCAmelCase ) __magic_name__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :int = [*signature.parameters.keys()] __magic_name__ :Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :Tuple = model_class(config=__lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(__lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): __magic_name__ :Tuple = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) __magic_name__ :List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ :Dict = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ , __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ :int = layer_type __magic_name__ :Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ :Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :List[str] = BitModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self ): """simple docstring""" __magic_name__ :Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self.default_image_processor __magic_name__ :int = prepare_img() __magic_name__ :Tuple = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): __magic_name__ :Tuple = model(**__lowerCAmelCase ) # verify the logits __magic_name__ :Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __magic_name__ :int = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @require_torch class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A ( self ): """simple docstring""" __magic_name__ :Dict = BitModelTester(self )
0
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCamelCase (_a ): _lowercase = """roformer""" def __init__( self: List[Any],A_: Union[str, Any]=5_0000,A_: List[str]=None,A_: List[Any]=768,A_: List[Any]=12,A_: List[str]=12,A_: Any=3072,A_: Tuple="gelu",A_: List[str]=0.1,A_: int=0.1,A_: str=1536,A_: Dict=2,A_: List[str]=0.0_2,A_: int=1E-12,A_: List[str]=0,A_: Optional[Any]=False,A_: str=True,**A_: Optional[int],): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size if embedding_size is None else embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = rotary_value __UpperCamelCase = use_cache class __lowerCamelCase (_a ): @property def snake_case_ ( self: str ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : T ) -> Optional[Any]: _A = data _A = None def __str__( self : Optional[Any] ) -> str: return f'''{self.data}''' class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Any ) -> None: _A = None def __iter__( self : int ) -> Iterator[T]: _A = self.top while node: yield node.data _A = node.next def __str__( self : Any ) -> str: return "->".join([str(__lowerCAmelCase ) for item in self] ) def __len__( self : List[str] ) -> int: return len(tuple(iter(self ) ) ) def snake_case_ ( self : Optional[Any] ) -> bool: return self.top is None def snake_case_ ( self : int , __lowerCAmelCase : T ) -> None: _A = Node(__lowerCAmelCase ) if not self.is_empty(): _A = self.top _A = node def snake_case_ ( self : List[Any] ) -> T: if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowerCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def snake_case_ ( self : Optional[int] ) -> T: if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def snake_case_ ( self : Tuple ) -> None: _A = None if __name__ == "__main__": from doctest import testmod testmod()
2
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[Any] = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return str(_UpperCAmelCase ) == str(_UpperCAmelCase )[::-1] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return int(_UpperCAmelCase ) + int(str(_UpperCAmelCase )[::-1] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 1_0000 ): lowerCAmelCase = [] for num in range(1 , _UpperCAmelCase ): lowerCAmelCase = 0 lowerCAmelCase = num while iterations < 50: lowerCAmelCase = sum_reverse(_UpperCAmelCase ) iterations += 1 if is_palindrome(_UpperCAmelCase ): break else: lychrel_nums.append(_UpperCAmelCase ) return len(_UpperCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
4
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = r"""\w+[.]\d+""" _lowerCAmelCase = re.findall(__lowerCamelCase , __lowerCamelCase ) for pat in pats: _lowerCAmelCase = key.replace(__lowerCamelCase , """_""".join(pat.split(""".""" ) ) ) return key def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Any , __lowerCamelCase :int ): _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowerCAmelCase = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": _lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :Dict=42 ): # Step 1: Convert pytorch tensor to numpy _lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowerCAmelCase = flax_model.init_weights(PRNGKey(__lowerCamelCase ) ) _lowerCAmelCase = flatten_dict(__lowerCamelCase ) _lowerCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase = rename_key(__lowerCamelCase ) _lowerCAmelCase = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase )
5
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = (DDIMParallelScheduler,) lowerCamelCase_ = (("eta", 0.0), ("num_inference_steps", 50)) def _snake_case ( self :List[Any] , **__A :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**__A ) return config def _snake_case ( self :int , **__A :List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__A ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10, 0.0 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(__A ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ = model(__A , __A ) SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , __A ).prev_sample return sample def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__A ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _snake_case ( self :List[str] ) -> Any: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _snake_case ( self :int ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _snake_case ( self :Optional[Any] ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def _snake_case ( self :Any ) -> Any: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__A ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__A ) def _snake_case ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def _snake_case ( self :Optional[int] ) -> List[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=__A ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__A , num_inference_steps=__A ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__A , eta=__A ) def _snake_case ( self :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5 def _snake_case ( self :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10, 0.0 scheduler.set_timesteps(__A ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE__ = samplea.shape[0] SCREAMING_SNAKE_CASE__ = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.arange(__A )[0:3, None].repeat(1 , __A ) SCREAMING_SNAKE_CASE__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE__ = scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def _snake_case ( self :Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
6
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
0
"""simple docstring""" import os import numpy import onnx def _snake_case ( _snake_case : Optional[Any] , _snake_case : Any ) -> Dict: '''simple docstring''' _A = a.name _A = b.name _A = '' _A = '' _A = a == b _A = name_a _A = name_b return res def _snake_case ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_snake_case , _snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , _snake_case , _snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) def _snake_case ( _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Any ) -> int: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(_snake_case , _snake_case , _snake_case ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Any ) -> Optional[Any]: '''simple docstring''' _A = list(model.graph.initializer ) _A = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _A = inits[i].name _A = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _snake_case , _snake_case ) def _snake_case ( _snake_case : int ) -> int: '''simple docstring''' _A = os.path.dirname(_snake_case ) _A = os.path.basename(_snake_case ) _A = onnx.load(os.path.join(_snake_case , _snake_case ) ) _A = list(model.graph.initializer ) _A = set() _A = {} _A = [] _A = 0 for i in range(len(_snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(_snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_snake_case ) dup_set.add(_snake_case ) _A = inits[j].data_type _A = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _snake_case ) total_reduced_size += mem_size _A = inits[i].name _A = inits[j].name if name_i in dup_map: dup_map[name_i].append(_snake_case ) else: _A = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 10_24 / 10_24 / 10_24 , 'GB' ) _A = sorted(_snake_case ) _remove_dup_initializers_from_model(_snake_case , _snake_case , _snake_case ) _A = 'optimized_' + model_file_name _A = os.path.join(_snake_case , _snake_case ) onnx.save(_snake_case , _snake_case ) return new_model
7
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ : Any = '''pt''' elif is_tf_available(): lowercase__ : Tuple = '''tf''' else: lowercase__ : Union[str, Any] = '''jax''' class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = ByTaTokenizer lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() __A : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small') def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5): '''simple docstring''' __A : Optional[Any] = [] for i in range(len(_UpperCAmelCase)): try: __A : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase) except UnicodeDecodeError: pass toks.append((i, tok)) __A : List[str] = list(filter(lambda _UpperCAmelCase: re.match(R'^[ a-zA-Z]+$' , t[1]) , _UpperCAmelCase)) __A : Optional[Any] = list(filter(lambda _UpperCAmelCase: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase) , _UpperCAmelCase)) if max_length is not None and len(_UpperCAmelCase) > max_length: __A : Optional[int] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase) < min_length and len(_UpperCAmelCase) > 0: while len(_UpperCAmelCase) < min_length: __A : Tuple = toks + toks # toks_str = [t[1] for t in toks] __A : Tuple = [t[0] for t in toks] # Ensure consistency __A : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase) if " " not in output_txt and len(_UpperCAmelCase) > 1: __A : Union[str, Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase) ) if with_prefix_space: __A : Dict = ' ' + output_txt __A : int = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) return output_txt, output_ids def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.ta_base_tokenizer __A : Tuple = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>']) __A : List[Any] = tokenizer(['hi', 'I went to the gym', '']) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.ta_base_tokenizer __A : Any = 'Unicode €.' __A : Union[str, Any] = tokenizer(_UpperCAmelCase) __A : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase) # decoding __A : List[str] = tokenizer.decode(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , 'Unicode €.</s>') __A : Any = tokenizer('e è é ê ë') __A : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase) # decoding __A : Optional[int] = tokenizer.decode(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , 'e è é ê ë</s>') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , 'e è é ê ë</s>') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.ta_base_tokenizer __A : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __A : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __A : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) if FRAMEWORK != "jax": __A : Optional[Any] = list(batch.input_ids.numpy()[0]) else: __A : str = list(batch.input_ids.tolist()[0]) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.ta_base_tokenizer __A : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __A : Tuple = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase) self.assertIn('attention_mask' , _UpperCAmelCase) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.ta_base_tokenizer __A : Any = [ 'Summary of the text.', 'Another summary.', ] __A : Optional[Any] = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.assertEqual(32 , targets['input_ids'].shape[1]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.ta_base_tokenizer __A : Optional[Any] = ['A long paragraph for summarization. </s>'] __A : Dict = ['Summary of the text. </s>'] # fmt: off __A : str = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __A : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __A : Any = tokenizer(_UpperCAmelCase , text_target=_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , batch['input_ids'][0]) self.assertEqual(_UpperCAmelCase , batch['labels'][0]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test __A : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc __A : Dict = tempfile.mkdtemp() __A : Dict = ' He is very happy, UNwant\u00E9d,running' __A : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) __A : Optional[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase) __A : Dict = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) shutil.rmtree(_UpperCAmelCase) __A : List[Any] = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc __A : List[str] = tempfile.mkdtemp() __A : str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam']) __A : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token') tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens}) __A : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = tokenizer.__class__.from_pretrained(_UpperCAmelCase) __A : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) __A : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json') , encoding='utf-8') as json_file: __A : Tuple = json.load(_UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json') , encoding='utf-8') as json_file: __A : List[Any] = json.load(_UpperCAmelCase) __A : str = [F'<extra_id_{i}>' for i in range(125)] __A : Union[str, Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] __A : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __A : Any = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __A : Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase)] __A : int = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase) __A : Optional[Any] = tokenizer_class.from_pretrained(_UpperCAmelCase) self.assertTrue(tokenizer.decode([255]) == '') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): __A : List[str] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __A : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): __A : Tuple = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __A : Optional[int] = 0 __A : List[Any] = tokenizer.convert_ids_to_tokens( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) for attr in attributes_list: setattr(_UpperCAmelCase , attr + '_id' , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , _UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , attr + '_id') , _UpperCAmelCase) setattr(_UpperCAmelCase , attr + '_id' , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , _UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , attr + '_id') , _UpperCAmelCase) setattr(_UpperCAmelCase , 'additional_special_tokens_ids' , []) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens') , []) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens_ids') , []) setattr(_UpperCAmelCase , 'additional_special_tokens_ids' , [token_id_to_test_setters]) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens') , [token_to_test_setters]) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens_ids') , [token_id_to_test_setters])
8
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> Union[str, Any]: A__ = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A__ = MaskFormerConfig(backbone_config=__UpperCamelCase ) A__ = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok A__ = 847 A__ = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok A__ = 150 A__ = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok A__ = 171 A__ = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO A__ = 133 A__ = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok A__ = 19 A__ = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok A__ = 65 A__ = 'mapillary-vistas-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} return config def A ( __UpperCamelCase ) -> Dict: A__ = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase ) -> str: A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: # fmt: off A__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: hidden_size, :] A__ = in_proj_bias[:config.hidden_size] A__ = in_proj_weight[hidden_size : hidden_size * 2, :] A__ = in_proj_bias[hidden_size : hidden_size * 2] A__ = in_proj_weight[-hidden_size :, :] A__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: hidden_size, :] A__ = in_proj_bias[:config.hidden_size] A__ = in_proj_weight[hidden_size : hidden_size * 2, :] A__ = in_proj_bias[hidden_size : hidden_size * 2] A__ = in_proj_weight[-hidden_size :, :] A__ = in_proj_bias[-hidden_size :] # fmt: on def A ( ) -> torch.Tensor: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[Any]: A__ = get_maskformer_config(__UpperCamelCase ) # load original state_dict with open(__UpperCamelCase , 'rb' ) as f: A__ = pickle.load(__UpperCamelCase ) A__ = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A__ = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_swin_q_k_v(__UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCamelCase , __UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): A__ = torch.from_numpy(__UpperCamelCase ) # load 🤗 model A__ = MaskFormerForInstanceSegmentation(__UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(__UpperCamelCase , param.shape ) A__ , A__ = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__UpperCamelCase ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results A__ = prepare_img() if "vistas" in model_name: A__ = 65 elif "cityscapes" in model_name: A__ = 65_535 else: A__ = 255 A__ = True if 'ade' in model_name else False A__ = MaskFormerImageProcessor(ignore_index=__UpperCamelCase , reduce_labels=__UpperCamelCase ) A__ = image_processor(__UpperCamelCase , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
9
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "upernet" def __init__( self : List[str] , _A : Union[str, Any]=None , _A : List[Any]=512 , _A : Dict=0.02 , _A : str=[1, 2, 3, 6] , _A : Tuple=True , _A : List[Any]=0.4 , _A : Optional[Any]=384 , _A : List[Any]=256 , _A : Optional[int]=1 , _A : str=False , _A : str=255 , **_A : int , ): super().__init__(**_A ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(_A , _A ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A ) _UpperCamelCase = backbone_config _UpperCamelCase = hidden_size _UpperCamelCase = initializer_range _UpperCamelCase = pool_scales _UpperCamelCase = use_auxiliary_head _UpperCamelCase = auxiliary_loss_weight _UpperCamelCase = auxiliary_in_channels _UpperCamelCase = auxiliary_channels _UpperCamelCase = auxiliary_num_convs _UpperCamelCase = auxiliary_concat_input _UpperCamelCase = loss_ignore_index def UpperCamelCase_ ( self : str ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> Optional[int]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> Tuple: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> Tuple: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = True __lowerCamelCase : int = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxRobertaModelTester(self ) @slow def a__ (self ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''roberta-base''' , from_pt=A ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A )
11
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : Tuple = tmp_path / """cache""" lowercase__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[int] = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_sql_dataset(lowercase_ , lowercase_ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : Optional[int] = tmp_path / """cache""" lowercase__ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : Optional[int] = features.copy() if features else default_expected_features lowercase__ : str = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Tuple = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowercase_ , cache_dir=lowercase_ ).read() _check_sql_dataset(lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' with contextlib.closing(sqlitea.connect(lowercase_ ) ) as con: lowercase__ : str = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : str = tmp_path / """cache""" lowercase__ : Optional[Any] = os.path.join(lowercase_ , """tmp.sql""" ) lowercase__ : Union[str, Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read() SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase__ : Optional[Any] = iter_sql_file(lowercase_ ) lowercase__ : int = iter_sql_file(lowercase_ ) for rowa, rowa in zip(lowercase_ , lowercase_ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : List[str] = tmp_path / """cache""" lowercase__ : str = os.path.join(lowercase_ , """tmp.sql""" ) lowercase__ : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read() SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase__ : List[Any] = iter_sql_file(lowercase_ ) lowercase__ : Tuple = iter_sql_file(lowercase_ ) for rowa, rowa in zip(lowercase_ , lowercase_ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Tuple = tmp_path / """cache""" lowercase__ : Union[str, Any] = os.path.join(lowercase_ , """tmp.sql""" ) lowercase__ : Dict = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read() with pytest.raises(lowercase_ ): SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
12
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ : str = 256047 A__ : int = 256145 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = NllbTokenizer lowerCamelCase : Optional[int] = NllbTokenizerFast lowerCamelCase : List[Any] = True lowerCamelCase : Dict = True lowerCamelCase : int = {} def lowercase_ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Union[str, Any] = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : int = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Union[str, Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = tempfile.mkdtemp() __lowerCamelCase : Any = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __lowerCamelCase : List[str] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __lowerCamelCase : Tuple = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True __lowerCamelCase : Any = tempfile.mkdtemp() __lowerCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __lowerCamelCase : Optional[Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False __lowerCamelCase : Any = tempfile.mkdtemp() __lowerCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def lowercase_ ( self ) -> Optional[int]: if not self.test_seqaseq: return __lowerCamelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __lowerCamelCase : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __lowerCamelCase : List[str] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __lowerCamelCase : Optional[Any] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __lowerCamelCase : int = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __lowerCamelCase : List[str] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def lowercase_ ( self ) -> Optional[Any]: pass def lowercase_ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Dict = [AddedToken('<special>' , lstrip=SCREAMING_SNAKE_CASE_ )] __lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer_r.encode('Hey this is a <special> token' ) __lowerCamelCase : Union[str, Any] = tokenizer_r.encode('<special>' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Dict = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = tokenizer_p.encode('Hey this is a <special> token' ) __lowerCamelCase : Union[str, Any] = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = 'facebook/nllb-200-distilled-600M' lowerCamelCase : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase : List[str] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase : Tuple = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def lowercase_ ( cls ) -> Union[str, Any]: __lowerCamelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __lowerCamelCase : Dict = 1 return cls def lowercase_ ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_60_57 ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) # fmt: off __lowerCamelCase : List[Any] = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __lowerCamelCase : Optional[int] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 10 __lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_62_03, 3] ) def lowercase_ ( self ) -> str: __lowerCamelCase : Dict = tempfile.mkdtemp() __lowerCamelCase : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def lowercase_ ( self ) -> Any: __lowerCamelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __lowerCamelCase : Dict = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __lowerCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : int = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) __lowerCamelCase : Tuple = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) __lowerCamelCase : Optional[int] = targets['input_ids'] __lowerCamelCase : List[Any] = shift_tokens_right( SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[25_60_47, 70, 73_56, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_60_57, } , ) @require_torch def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[Any] = True __lowerCamelCase : Any = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __lowerCamelCase : List[Any] = False __lowerCamelCase : Union[str, Any] = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
13
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
14
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __a ( A__ : List[str] , A__ : Optional[Any] , A__ : Optional[int] ): # Initialise PyTorch model SCREAMING_SNAKE_CASE = BertConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
16
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
0
from __future__ import annotations import typing from collections import Counter def __SCREAMING_SNAKE_CASE ( a__ : int ) -> typing.Counter[int]: __A : typing.Counter[int] = Counter() for base in range(1 ,max_perimeter + 1 ): for perpendicular in range(a__ ,max_perimeter + 1 ): __A : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __A : int = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __SCREAMING_SNAKE_CASE ( a__ : int = 1000 ) -> int: __A : str = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
17
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) while queue: _lowerCAmelCase = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) if cnt != len(SCREAMING_SNAKE_CASE_ ): print("Cycle exists" ) else: print(SCREAMING_SNAKE_CASE_ ) # Adjacency List of Graph _SCREAMING_SNAKE_CASE = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
18
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'AutoImageProcessor' lowercase__ = 'AutoTokenizer' def __init__( self , __a=None , __a=None , **__a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) _UpperCamelCase = self.image_processor _UpperCamelCase = False def __call__( self , *__a , **__a) -> Optional[int]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a) _UpperCamelCase = kwargs.pop('''images''' , __a) _UpperCamelCase = kwargs.pop('''text''' , __a) if len(__a) > 0: _UpperCamelCase = args[0] _UpperCamelCase = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''') if images is not None: _UpperCamelCase = self.image_processor(__a , *__a , **__a) if text is not None: _UpperCamelCase = self.tokenizer(__a , **__a) if text is None: return inputs elif images is None: return encodings else: _UpperCamelCase = encodings['''input_ids'''] return inputs def UpperCAmelCase ( self , *__a , **__a) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @contextmanager def UpperCAmelCase ( self) -> Any: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''') _UpperCamelCase = True _UpperCamelCase = self.tokenizer yield _UpperCamelCase = self.image_processor _UpperCamelCase = False def UpperCAmelCase ( self , __a , __a=False , __a=None) -> Any: '''simple docstring''' if added_vocab is None: _UpperCamelCase = self.tokenizer.get_added_vocab() _UpperCamelCase = {} while tokens: _UpperCamelCase = re.search(R'''<s_(.*?)>''' , __a , re.IGNORECASE) if start_token is None: break _UpperCamelCase = start_token.group(1) _UpperCamelCase = re.search(RF'''</s_{key}>''' , __a , re.IGNORECASE) _UpperCamelCase = start_token.group() if end_token is None: _UpperCamelCase = tokens.replace(__a , '''''') else: _UpperCamelCase = end_token.group() _UpperCamelCase = re.escape(__a) _UpperCamelCase = re.escape(__a) _UpperCamelCase = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , __a , re.IGNORECASE) if content is not None: _UpperCamelCase = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _UpperCamelCase = self.tokenajson(__a , is_inner_value=__a , added_vocab=__a) if value: if len(__a) == 1: _UpperCamelCase = value[0] _UpperCamelCase = value else: # leaf nodes _UpperCamelCase = [] for leaf in content.split(R'''<sep/>'''): _UpperCamelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _UpperCamelCase = leaf[1:-2] # for categorical special tokens output[key].append(__a) if len(output[key]) == 1: _UpperCamelCase = output[key][0] _UpperCamelCase = tokens[tokens.find(__a) + len(__a) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__a , added_vocab=__a) if len(__a): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
0