code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json',
'BridgeTower/bridgetower-base-itm-mlm': (
'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'
),
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "bridgetower_vision_model"
def __init__( self : str , A__ : List[str]=7_6_8 , A__ : List[str]=1_2 , A__ : Optional[Any]=3 , A__ : Optional[Any]=1_6 , A__ : Dict=2_8_8 , A__ : str=1 , A__ : Dict=1E-05 , A__ : Optional[Any]=False , A__ : List[str]=True , A__ : List[str]=False , **A__ : List[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**A__ )
a__ : List[str] = hidden_size
a__ : Union[str, Any] = num_hidden_layers
a__ : str = num_channels
a__ : Optional[int] = patch_size
a__ : Union[str, Any] = image_size
a__ : Union[str, Any] = initializer_factor
a__ : Dict = layer_norm_eps
a__ : Any = stop_gradient
a__ : Optional[Any] = share_layernorm
a__ : Optional[int] = remove_last_layer
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , A__ : Union[str, os.PathLike] , **A__ : int ) -> "PretrainedConfig":
'''simple docstring'''
a__ , a__ : Optional[int] = cls.get_config_dict(A__ , **A__ )
if config_dict.get('''model_type''' ) == "bridgetower":
a__ : List[Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(A__ , **A__ )
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "bridgetower_text_model"
def __init__( self : Optional[int] , A__ : Dict=5_0_2_6_5 , A__ : Optional[Any]=7_6_8 , A__ : List[str]=1_2 , A__ : int=1_2 , A__ : Dict=1 , A__ : List[str]=3_0_7_2 , A__ : List[str]="gelu" , A__ : Any=0.1 , A__ : Any=0.1 , A__ : Optional[int]=5_1_4 , A__ : Union[str, Any]=1 , A__ : List[Any]=1E-05 , A__ : Optional[Any]=1 , A__ : str=0 , A__ : Tuple=2 , A__ : str="absolute" , A__ : List[str]=True , **A__ : Optional[int] , ) -> Tuple:
'''simple docstring'''
super().__init__(**A__ )
a__ : Optional[Any] = vocab_size
a__ : int = hidden_size
a__ : Any = num_hidden_layers
a__ : Optional[int] = num_attention_heads
a__ : Union[str, Any] = hidden_act
a__ : Optional[int] = initializer_factor
a__ : Optional[int] = intermediate_size
a__ : str = hidden_dropout_prob
a__ : Tuple = attention_probs_dropout_prob
a__ : Any = max_position_embeddings
a__ : Dict = type_vocab_size
a__ : str = layer_norm_eps
a__ : Union[str, Any] = position_embedding_type
a__ : Tuple = use_cache
a__ : List[str] = pad_token_id
a__ : int = bos_token_id
a__ : Union[str, Any] = eos_token_id
@classmethod
def __lowerCAmelCase ( cls : List[Any] , A__ : Union[str, os.PathLike] , **A__ : Dict ) -> "PretrainedConfig":
'''simple docstring'''
a__ , a__ : str = cls.get_config_dict(A__ , **A__ )
if config_dict.get('''model_type''' ) == "bridgetower":
a__ : List[Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(A__ , **A__ )
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "bridgetower"
def __init__( self : Tuple , A__ : List[str]=True , A__ : List[Any]="gelu" , A__ : int=7_6_8 , A__ : Tuple=1 , A__ : Optional[Any]=1E-05 , A__ : Optional[Any]=False , A__ : List[str]="add" , A__ : int=1_2 , A__ : Tuple=6 , A__ : str=False , A__ : Optional[int]=False , A__ : Tuple=None , A__ : Tuple=None , **A__ : Tuple , ) -> List[str]:
'''simple docstring'''
a__ : int = kwargs.pop('''text_config_dict''' , A__ )
a__ : List[str] = kwargs.pop('''vision_config_dict''' , A__ )
super().__init__(**A__ )
a__ : List[Any] = share_cross_modal_transformer_layers
a__ : Optional[Any] = hidden_act
a__ : Tuple = hidden_size
a__ : Any = initializer_factor
a__ : str = layer_norm_eps
a__ : Dict = share_link_tower_layers
a__ : List[str] = link_tower_type
a__ : Any = num_attention_heads
a__ : Dict = num_hidden_layers
a__ : int = tie_word_embeddings
a__ : str = init_layernorm_from_vision_encoder
if text_config is None:
a__ : List[Any] = {}
logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' )
if vision_config is None:
a__ : List[Any] = {}
logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' )
a__ : Optional[int] = BridgeTowerTextConfig(**A__ )
a__ : Tuple = BridgeTowerVisionConfig(**A__ )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , A__ : BridgeTowerTextConfig , A__ : BridgeTowerVisionConfig , **A__ : Any ) -> Dict:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A__ )
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = copy.deepcopy(self.__dict__ )
a__ : Any = self.text_config.to_dict()
a__ : Tuple = self.vision_config.to_dict()
a__ : Dict = self.__class__.model_type
return output
| 688 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = LxmertTokenizer
__UpperCamelCase = LxmertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : str ) -> str:
'''simple docstring'''
super().setUp()
a__ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : int , A__ : int ) -> int:
'''simple docstring'''
a__ : List[Any] = '''UNwant\u00E9d,running'''
a__ : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
a__ : Optional[int] = self.tokenizer_class(self.vocab_file )
a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] )
def __lowerCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__ : Union[str, Any] = self.get_tokenizer()
a__ : Union[str, Any] = self.get_rust_tokenizer()
a__ : str = '''I was born in 92000, and this is falsé.'''
a__ : Tuple = tokenizer.tokenize(A__ )
a__ : Tuple = rust_tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ )
a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : str = tokenizer.encode(A__ )
a__ : int = rust_tokenizer.encode(A__ )
self.assertListEqual(A__ , A__ )
| 688 | 1 |
'''simple docstring'''
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , A__ : str , A__ : int=1_3 , A__ : int=7 , A__ : Dict=True , A__ : Optional[int]=True , A__ : Tuple=True , A__ : Dict=True , A__ : List[Any]=9_9 , A__ : str=1_6 , A__ : Union[str, Any]=3_6 , A__ : Tuple=6 , A__ : List[str]=6 , A__ : Optional[Any]=6 , A__ : str=3_7 , A__ : Tuple="gelu" , A__ : Dict=0.1 , A__ : int=0.1 , A__ : Optional[int]=5_1_2 , A__ : Union[str, Any]=1_6 , A__ : Dict=2 , A__ : int=0.02 , A__ : Optional[Any]=3 , A__ : Optional[Any]=4 , A__ : List[Any]=None , ) -> List[str]:
'''simple docstring'''
a__ : Tuple = parent
a__ : int = batch_size
a__ : Dict = seq_length
a__ : Dict = is_training
a__ : Optional[Any] = use_input_mask
a__ : Tuple = use_token_type_ids
a__ : Optional[Any] = use_labels
a__ : Optional[int] = vocab_size
a__ : int = embedding_size
a__ : str = hidden_size
a__ : Optional[int] = num_hidden_layers
a__ : Dict = num_hidden_groups
a__ : Union[str, Any] = num_attention_heads
a__ : str = intermediate_size
a__ : Tuple = hidden_act
a__ : Optional[int] = hidden_dropout_prob
a__ : str = attention_probs_dropout_prob
a__ : List[str] = max_position_embeddings
a__ : Optional[int] = type_vocab_size
a__ : List[str] = type_sequence_label_size
a__ : Any = initializer_range
a__ : str = num_labels
a__ : Optional[Any] = num_choices
a__ : Optional[int] = scope
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a__ : Any = None
if self.use_input_mask:
a__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
a__ : List[Any] = None
if self.use_token_type_ids:
a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a__ : Tuple = None
a__ : List[Any] = None
a__ : List[Any] = None
if self.use_labels:
a__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a__ : str = ids_tensor([self.batch_size] , self.num_choices )
a__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __lowerCAmelCase ( self : int , A__ : Optional[Any] , A__ : Tuple , A__ : Any , A__ : List[str] , A__ : List[Any] , A__ : Dict , A__ : Dict ) -> List[str]:
'''simple docstring'''
a__ : Any = AlbertModel(config=A__ )
model.to(A__ )
model.eval()
a__ : Tuple = model(A__ , attention_mask=A__ , token_type_ids=A__ )
a__ : str = model(A__ , token_type_ids=A__ )
a__ : List[Any] = model(A__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowerCAmelCase ( self : List[str] , A__ : Dict , A__ : int , A__ : int , A__ : Optional[Any] , A__ : Any , A__ : Tuple , A__ : str ) -> Optional[Any]:
'''simple docstring'''
a__ : Union[str, Any] = AlbertForPreTraining(config=A__ )
model.to(A__ )
model.eval()
a__ : str = model(
A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , sentence_order_label=A__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Dict , A__ : int , A__ : List[str] , A__ : Dict , A__ : int , A__ : List[str] , A__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
a__ : List[str] = AlbertForMaskedLM(config=A__ )
model.to(A__ )
model.eval()
a__ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[Any] , A__ : List[Any] , A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] , A__ : Optional[int] , A__ : Optional[Any] ) -> int:
'''simple docstring'''
a__ : Union[str, Any] = AlbertForQuestionAnswering(config=A__ )
model.to(A__ )
model.eval()
a__ : Dict = model(
A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Dict , A__ : Optional[int] , A__ : Optional[int] , A__ : Dict , A__ : str , A__ : int , A__ : Union[str, Any] , A__ : Any ) -> Union[str, Any]:
'''simple docstring'''
a__ : List[Any] = self.num_labels
a__ : List[Any] = AlbertForSequenceClassification(A__ )
model.to(A__ )
model.eval()
a__ : List[str] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : int , A__ : List[Any] , A__ : Dict , A__ : str , A__ : Any , A__ : Union[str, Any] , A__ : List[str] , A__ : Optional[Any] ) -> str:
'''simple docstring'''
a__ : List[str] = self.num_labels
a__ : Optional[int] = AlbertForTokenClassification(config=A__ )
model.to(A__ )
model.eval()
a__ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Dict , A__ : List[Any] , A__ : List[str] , A__ : int , A__ : Union[str, Any] , A__ : str , A__ : Optional[Any] , A__ : List[str] ) -> List[Any]:
'''simple docstring'''
a__ : List[Any] = self.num_choices
a__ : Optional[Any] = AlbertForMultipleChoice(config=A__ )
model.to(A__ )
model.eval()
a__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a__ : Optional[Any] = model(
A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
'''simple docstring'''
a__ : int = self.prepare_config_and_inputs()
(
(
a__
) , (
a__
) , (
a__
) , (
a__
) , (
a__
) , (
a__
) , (
a__
) ,
) : Optional[Any] = config_and_inputs
a__ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
__UpperCamelCase = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase = True
def __lowerCAmelCase ( self : str , A__ : Union[str, Any] , A__ : List[str] , A__ : str=False ) -> Optional[int]:
'''simple docstring'''
a__ : List[str] = super()._prepare_for_class(A__ , A__ , return_labels=A__ )
if return_labels:
if model_class in get_values(A__ ):
a__ : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__ )
a__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A__ )
return inputs_dict
def __lowerCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
a__ : Tuple = AlbertModelTester(self )
a__ : str = ConfigTester(self , config_class=A__ , hidden_size=3_7 )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : List[Any] ) -> Any:
'''simple docstring'''
a__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A__ )
def __lowerCAmelCase ( self : Any ) -> Any:
'''simple docstring'''
a__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*A__ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Any:
'''simple docstring'''
a__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A__ )
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
a__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A__ )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A__ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
a__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A__ )
def __lowerCAmelCase ( self : Tuple ) -> int:
'''simple docstring'''
a__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a__ : Tuple = type
self.model_tester.create_and_check_model(*A__ )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ : int = AlbertModel.from_pretrained(A__ )
self.assertIsNotNone(A__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
a__ : Union[str, Any] = AlbertModel.from_pretrained('''albert-base-v2''' )
a__ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
a__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
a__ : Any = model(A__ , attention_mask=A__ )[0]
a__ : str = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , A__ )
a__ : Any = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1E-4 ) )
| 688 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : Any ):
a__ : List[Any] = len(lowerCAmelCase__ )
while cur > 1:
# Find the maximum number in arr
a__ : Optional[Any] = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
a__ : Union[str, Any] = arr[mi::-1] + arr[mi + 1 : len(lowerCAmelCase__ )]
# Reverse whole list
a__ : Tuple = arr[cur - 1 :: -1] + arr[cur : len(lowerCAmelCase__ )]
cur -= 1
return arr
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip()
__SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')]
print(pancake_sort(unsorted))
| 688 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
__SCREAMING_SNAKE_CASE = {
'google/fnet-base': 5_1_2,
'google/fnet-large': 5_1_2,
}
__SCREAMING_SNAKE_CASE = '▁'
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "token_type_ids"]
__UpperCamelCase = FNetTokenizer
def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]:
'''simple docstring'''
a__ : Optional[int] = (
AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ )
if isinstance(A__ , A__ )
else mask_token
)
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , )
a__ : Optional[Any] = do_lower_case
a__ : Dict = remove_space
a__ : List[Any] = keep_accents
a__ : Optional[Any] = vocab_file
a__ : Any = False if not self.vocab_file else True
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Optional[int] = [self.sep_token_id]
a__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Dict = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : Union[str, Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ):
copyfile(self.vocab_file , A__ )
return (out_vocab_file,)
| 688 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ):
# Construct model
if gpta_config_file == "":
a__ : Union[str, Any] = GPTaConfig()
else:
a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ )
a__ : Optional[int] = GPTaModel(lowerCAmelCase__ )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 688 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': 5_1_2,
'distilbert-base-uncased-distilled-squad': 5_1_2,
'distilbert-base-cased': 5_1_2,
'distilbert-base-cased-distilled-squad': 5_1_2,
'distilbert-base-german-cased': 5_1_2,
'distilbert-base-multilingual-cased': 5_1_2,
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = ["input_ids", "attention_mask"]
__UpperCamelCase = DistilBertTokenizer
def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str:
'''simple docstring'''
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , )
a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , A__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars
):
a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) )
a__ : List[Any] = do_lower_case
a__ : str = strip_accents
a__ : List[str] = tokenize_chinese_chars
a__ : Dict = normalizer_class(**A__ )
a__ : List[Any] = do_lower_case
def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]:
'''simple docstring'''
a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : List[str] = [self.sep_token_id]
a__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
a__ : int = self._tokenizer.model.save(A__ , name=A__ )
return tuple(A__ )
| 688 | 1 |
'''simple docstring'''
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ):
# save results
if os.path.exists(lowerCAmelCase__ ):
if os.path.exists(os.path.join(lowerCAmelCase__ , '''config.json''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase__ , '''config.json''' ) ):
os.remove(os.path.join(lowerCAmelCase__ , '''config.json''' ) )
if os.path.exists(os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) )
else:
os.makedirs(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any=False ):
a__ : Union[str, Any] = 2
if unlogit:
a__ : Union[str, Any] = torch.pow(lowerCAmelCase__ , lowerCAmelCase__ )
a__ : Optional[int] = p * torch.log(lowerCAmelCase__ )
a__ : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def __a ( lowerCAmelCase__ : str ):
logger.info('''lv, h >\t''' + '''\t'''.join(F'{x + 1}' for x in range(len(lowerCAmelCase__ ) ) ) )
for row in range(len(lowerCAmelCase__ ) ):
if tensor.dtype != torch.long:
logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:.5f}' for x in tensor[row].cpu().data ) )
else:
logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:d}' for x in tensor[row].cpu().data ) )
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=False ):
a__ , a__ : Tuple = model.config.num_hidden_layers, model.config.num_attention_heads
a__ : Optional[Any] = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device )
a__ : Tuple = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device )
if head_mask is None:
a__ : Union[str, Any] = torch.ones(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCAmelCase__ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
a__ : Dict = None
a__ : Optional[Any] = 0.0
a__ : List[Any] = 0.0
for step, inputs in enumerate(tqdm(lowerCAmelCase__ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
a__ : Any = tuple(t.to(args.device ) for t in inputs )
((a__) , ) : Any = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
a__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , head_mask=lowerCAmelCase__ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
a__ , a__ , a__ : Any = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCAmelCase__ ):
a__ : Optional[int] = entropy(attn.detach() , lowerCAmelCase__ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCAmelCase__ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
a__ : Any = 2
a__ : List[Any] = torch.pow(torch.pow(lowerCAmelCase__ , lowerCAmelCase__ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
a__ : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(lowerCAmelCase__ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(lowerCAmelCase__ )
logger.info('''Head ranked by importance scores''' )
a__ : int = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
a__ : Union[str, Any] = torch.arange(
head_importance.numel() , device=args.device )
a__ : Any = head_ranks.view_as(lowerCAmelCase__ )
print_ad_tensor(lowerCAmelCase__ )
return attn_entropy, head_importance, total_loss
def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
a__ , a__ , a__ : int = compute_heads_importance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ )
a__ : Any = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase__ , original_score * args.masking_threshold )
a__ : int = torch.ones_like(lowerCAmelCase__ )
a__ : Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
a__ : List[str] = original_score
while current_score >= original_score * args.masking_threshold:
a__ : int = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
a__ : Union[str, Any] = float('''Inf''' )
a__ : int = head_importance.view(-1 ).sort()[1]
if len(lowerCAmelCase__ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
a__ : Optional[Any] = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
a__ : Union[str, Any] = new_head_mask.view(-1 )
a__ : Tuple = 0.0
a__ : Any = new_head_mask.view_as(lowerCAmelCase__ )
a__ : Dict = new_head_mask.clone().detach()
print_ad_tensor(lowerCAmelCase__ )
# Compute metric and head importance again
a__ , a__ , a__ : int = compute_heads_importance(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , head_mask=lowerCAmelCase__ )
a__ : List[Any] = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('''Final head mask''' )
print_ad_tensor(lowerCAmelCase__ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ):
a__ : str = datetime.now()
a__ , a__ , a__ : Optional[int] = compute_heads_importance(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , compute_importance=lowerCAmelCase__ , head_mask=lowerCAmelCase__ )
a__ : List[Any] = 1 / loss
a__ : Optional[int] = datetime.now() - before_time
a__ : Tuple = sum(p.numel() for p in model.parameters() )
a__ : Optional[int] = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase__ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : str = [
v,
]
assert sum(len(lowerCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCAmelCase__ )
a__ : int = sum(p.numel() for p in model.parameters() )
a__ : Optional[int] = datetime.now()
a__ , a__ , a__ : List[Any] = compute_heads_importance(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , compute_importance=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , actually_pruned=lowerCAmelCase__ , )
a__ : List[str] = 1 / loss
a__ : Dict = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase__ , lowerCAmelCase__ , pruned_num_params / original_num_params * 100 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase__ , lowerCAmelCase__ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 )
save_model(lowerCAmelCase__ , args.output_dir )
def __a ( ):
a__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=lowerCAmelCase__ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=lowerCAmelCase__ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=lowerCAmelCase__ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=lowerCAmelCase__ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=lowerCAmelCase__ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase__ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=lowerCAmelCase__ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase__ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=lowerCAmelCase__ , default=42 )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=lowerCAmelCase__ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=lowerCAmelCase__ , default='''''' , help='''Can be used for distant debugging.''' )
a__ : List[str] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
a__ : Any = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
a__ : Dict = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
a__ : Optional[Any] = torch.device('''cuda''' , args.local_rank )
a__ : Dict = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
a__ : Tuple = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
a__ : Tuple = nn.parallel.DistributedDataParallel(
lowerCAmelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase__ )
elif args.n_gpu > 1:
a__ : Optional[Any] = nn.DataParallel(lowerCAmelCase__ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ )
torch.save(lowerCAmelCase__ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ )
# Prepare dataset
a__ : List[Any] = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
a__ : List[Any] = (torch.from_numpy(lowerCAmelCase__ ),)
a__ : int = TensorDataset(*lowerCAmelCase__ )
a__ : str = RandomSampler(lowerCAmelCase__ )
a__ : str = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
a__ : int = mask_heads(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
prune_heads(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 688 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__SCREAMING_SNAKE_CASE = tuple[int, int]
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None:
'''simple docstring'''
a__ : Optional[int] = pos_x
a__ : str = pos_y
a__ : Optional[int] = (pos_y, pos_x)
a__ : List[str] = goal_x
a__ : Any = goal_y
a__ : Any = g_cost
a__ : Optional[int] = parent
a__ : Union[str, Any] = self.calculate_heuristic()
a__ : List[Any] = self.g_cost + self.h_cost
def __lowerCAmelCase ( self : Union[str, Any] ) -> float:
'''simple docstring'''
a__ : List[str] = self.pos_x - self.goal_x
a__ : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A__ ) + abs(A__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[Any] , A__ : Node ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]:
'''simple docstring'''
a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ )
a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ )
a__ : Dict = [self.start]
a__ : list[Node] = []
a__ : str = False
def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a__ : Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A__ )
self.closed_nodes.append(A__ )
a__ : List[Any] = self.get_successors(A__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A__ )
else:
self.open_nodes.append(A__ )
return [self.start.pos]
def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]:
'''simple docstring'''
a__ : Optional[int] = []
for action in delta:
a__ : List[Any] = parent.pos_x + action[1]
a__ : Tuple = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) )
return successors
def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]:
'''simple docstring'''
a__ : Union[str, Any] = node
a__ : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a__ : Any = current_node.parent
path.reverse()
return path
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None:
'''simple docstring'''
a__ : str = AStar(A__ , A__ )
a__ : Optional[int] = AStar(A__ , A__ )
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
a__ : int = self.fwd_astar.open_nodes.pop(0 )
a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A__ , A__ )
self.fwd_astar.closed_nodes.append(A__ )
self.bwd_astar.closed_nodes.append(A__ )
a__ : Tuple = current_bwd_node
a__ : Optional[int] = current_fwd_node
a__ : Optional[int] = {
self.fwd_astar: self.fwd_astar.get_successors(A__ ),
self.bwd_astar: self.bwd_astar.get_successors(A__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A__ )
else:
astar.open_nodes.append(A__ )
return [self.fwd_astar.start.pos]
def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]:
'''simple docstring'''
a__ : str = self.fwd_astar.retrace_path(A__ )
a__ : List[str] = self.bwd_astar.retrace_path(A__ )
bwd_path.pop()
bwd_path.reverse()
a__ : Optional[int] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE = (0, 0)
__SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = AStar(init, goal)
__SCREAMING_SNAKE_CASE = a_star.search()
__SCREAMING_SNAKE_CASE = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal)
__SCREAMING_SNAKE_CASE = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 688 | 1 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ):
# Construct model
if gpta_config_file == "":
a__ : Union[str, Any] = GPTaConfig()
else:
a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ )
a__ : Optional[int] = GPTaModel(lowerCAmelCase__ )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 688 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "xglm"
__UpperCamelCase = ["past_key_values"]
__UpperCamelCase = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , A__ : Tuple=2_5_6_0_0_8 , A__ : Union[str, Any]=2_0_4_8 , A__ : Any=1_0_2_4 , A__ : Tuple=4_0_9_6 , A__ : Dict=2_4 , A__ : Any=1_6 , A__ : Optional[Any]="gelu" , A__ : Optional[int]=0.1 , A__ : str=0.1 , A__ : List[Any]=0.0 , A__ : List[str]=0.0 , A__ : Tuple=0.02 , A__ : Tuple=True , A__ : Tuple=True , A__ : int=2 , A__ : Optional[int]=1 , A__ : Union[str, Any]=0 , A__ : Optional[Any]=2 , **A__ : Tuple , ) -> Any:
'''simple docstring'''
a__ : str = vocab_size
a__ : List[str] = max_position_embeddings
a__ : Any = d_model
a__ : List[str] = ffn_dim
a__ : int = num_layers
a__ : List[Any] = attention_heads
a__ : Optional[int] = activation_function
a__ : Any = dropout
a__ : List[Any] = attention_dropout
a__ : List[Any] = activation_dropout
a__ : Optional[int] = layerdrop
a__ : int = init_std
a__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True
a__ : List[str] = use_cache
super().__init__(
pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , decoder_start_token_id=A__ , **A__ , )
| 688 |
'''simple docstring'''
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
__SCREAMING_SNAKE_CASE = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
__SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
__SCREAMING_SNAKE_CASE = reader.read()
__SCREAMING_SNAKE_CASE = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
__SCREAMING_SNAKE_CASE = UNetaDModel(**config)
else:
__SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
__SCREAMING_SNAKE_CASE = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__SCREAMING_SNAKE_CASE = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__SCREAMING_SNAKE_CASE = config[key]
del config[key]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
__SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
__SCREAMING_SNAKE_CASE = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
__SCREAMING_SNAKE_CASE = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
__SCREAMING_SNAKE_CASE = param_value
__SCREAMING_SNAKE_CASE = True
if not has_changed:
__SCREAMING_SNAKE_CASE = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 688 | 1 |
'''simple docstring'''
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def __a ( lowerCAmelCase__ : Any ):
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() )
@pytest.fixture
def __a ( lowerCAmelCase__ : List[Any] ):
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : int , A__ : Dict ) -> Dict:
'''simple docstring'''
a__ : int = metric_id
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = [MetricMock(lowerCAmelCase_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]]
def __lowerCAmelCase ( self : str ) -> List[str]:
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() )
@pytest.mark.parametrize(
'''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ):
if "tmp_path" in args:
a__ : List[Any] = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(lowerCAmelCase__ , match='''https://huggingface.co/docs/evaluate''' ):
func(*lowerCAmelCase__ )
| 688 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = (KDPMaDiscreteScheduler,)
__UpperCamelCase = 10
def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int:
'''simple docstring'''
a__ : Optional[int] = {
'''num_train_timesteps''': 1_1_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**A__ )
return config
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=A__ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=A__ , beta_end=A__ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A__ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
a__ : Any = self.scheduler_classes[0]
a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
a__ : Dict = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : Tuple = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Dict = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ )
a__ : Union[str, Any] = model(A__ , A__ )
a__ : List[str] = scheduler.step(A__ , A__ , A__ )
a__ : Optional[Any] = output.prev_sample
a__ : Tuple = torch.sum(torch.abs(A__ ) )
a__ : Optional[int] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
a__ : List[Any] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : Tuple = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : List[Any] = self.dummy_model()
a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Any = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : str = scheduler.scale_model_input(A__ , A__ )
a__ : List[str] = model(A__ , A__ )
a__ : str = scheduler.step(A__ , A__ , A__ )
a__ : List[Any] = output.prev_sample
a__ : Dict = torch.sum(torch.abs(A__ ) )
a__ : Optional[Any] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
a__ : Optional[int] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : List[Any] = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps , device=A__ )
a__ : Union[str, Any] = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ )
a__ : List[Any] = model(A__ , A__ )
a__ : Any = scheduler.step(A__ , A__ , A__ )
a__ : List[str] = output.prev_sample
a__ : Any = torch.sum(torch.abs(A__ ) )
a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) )
if str(A__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 688 | 1 |
'''simple docstring'''
import math
def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
a__ : str = len(lowerCAmelCase__ )
a__ : Optional[Any] = int(math.floor(math.sqrt(lowerCAmelCase__ ) ) )
a__ : Any = 0
while arr[min(lowerCAmelCase__ , lowerCAmelCase__ ) - 1] < x:
a__ : Any = step
step += int(math.floor(math.sqrt(lowerCAmelCase__ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
a__ : Tuple = prev + 1
if prev == min(lowerCAmelCase__ , lowerCAmelCase__ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip()
__SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')]
__SCREAMING_SNAKE_CASE = int(input('Enter the number to be searched:\n'))
__SCREAMING_SNAKE_CASE = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(f'Number {x} is at index {res}')
| 688 |
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
a__ : str = ['''a''', '''b''', '''c''']
# Defaults to last layer if both are None
a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ )
self.assertEqual(A__ , ['''c'''] )
self.assertEqual(A__ , [2] )
# Out indices set to match out features
a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features set to match out indices
a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features selected from negative indices
a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [-3, -1] )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ )
# Out features must be a list
with self.assertRaises(A__ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
a__ : Optional[Any] = BackboneMixin()
a__ : int = ['''a''', '''b''', '''c''']
a__ : List[Any] = ['''a''', '''c''']
a__ : Tuple = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
a__ : Dict = ['''a''', '''b''']
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
a__ : int = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 688 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Tuple , A__ : Dict , A__ : Union[str, Any] , A__ : Any , A__ : int=None ) -> List[str]:
'''simple docstring'''
super().__init__(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : Union[str, Any] = None
def __lowerCAmelCase ( self : Dict , A__ : int ) -> Dict:
'''simple docstring'''
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
a__ : str = self._infer_socket_ifname()
# avoid clash with the NCCL port
a__ : int = str(distributed_port + 1 )
a__ : Dict = dist.new_group(ranks=A__ , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def __lowerCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
return dist.get_rank(group=self.process_group ) == 0
def __lowerCAmelCase ( self : Optional[int] , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=torch.floataa ) -> Optional[int]:
'''simple docstring'''
a__ : int = torch.empty(A__ , dtype=A__ )
dist.scatter(A__ , src=0 , scatter_list=A__ , group=self.process_group )
return target_tensor
def __lowerCAmelCase ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
a__ : Any = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
a__ : str = next((addr for addr in addrs if addr.startswith('''e''' )) , A__ )
return ifname
def __lowerCAmelCase ( self : Optional[Any] , A__ : np.ndarray , A__ : int ) -> Tuple[np.ndarray, List[dict]]:
'''simple docstring'''
if not dist.is_initialized():
a__ , a__ : Tuple = self._main_retrieve(A__ , A__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ )
# distributed training
a__ : List[str] = dist.get_world_size(group=self.process_group )
# gather logic
a__ : Optional[int] = None
if self._is_main():
a__ : int = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A__ )]
dist.gather(torch.tensor(A__ ) , dst=0 , gather_list=A__ , group=self.process_group )
# scatter logic
a__ : Optional[Any] = question_hidden_states.shape[0]
a__ : Optional[int] = []
a__ : Any = []
if self._is_main():
assert len(A__ ) == world_size
a__ , a__ : int = self._main_retrieve(torch.cat(A__ ).numpy() , A__ )
a__ , a__ : Any = torch.tensor(A__ ), torch.tensor(A__ )
a__ : List[str] = self._chunk_tensor(A__ , A__ )
a__ : Optional[int] = self._chunk_tensor(A__ , A__ )
a__ : List[str] = self._scattered(A__ , [n_queries, n_docs] , target_type=torch.intaa )
a__ : Optional[Any] = self._scattered(A__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A__ )
| 688 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __a ( lowerCAmelCase__ : List[Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
a__ : Dict = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' )
a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' )
a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' )
a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' )
a__ : Any = value.float()
for key, value in codebook_state_dict.items():
a__ : List[str] = value
return upgrade
@torch.no_grad()
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ):
if config_path is not None:
a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ )
else:
a__ : Optional[int] = FlavaConfig()
a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval()
a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
else:
a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )
a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
a__ : Any = hf_model.state_dict()
a__ : Optional[Any] = count_parameters(lowerCAmelCase__ )
a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 688 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
a__ : Union[str, Any] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
a__ : Tuple = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
a__ : Optional[int] = '''The dog is cute and lives in the garden house'''
a__ : int = jnp.array([tokenizer.encode(A__ )] )
a__ : Optional[int] = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim
a__ : List[str] = jnp.array(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
a__ : Dict = model(A__ )['''last_hidden_state''']
self.assertEqual(output.shape , A__ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , A__ , atol=1E-3 ) )
| 688 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__SCREAMING_SNAKE_CASE = 4
__SCREAMING_SNAKE_CASE = 3
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
def __a ( lowerCAmelCase__ : List[str] ):
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def __a ( ):
a__ : str = int(os.environ['''RANK'''] )
a__ : int = int(os.environ['''WORLD_SIZE'''] )
a__ : str = ArgumentParser()
parser.add_argument('''--streaming''' , type=lowerCAmelCase__ )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ )
parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 )
a__ : int = parser.parse_args()
a__ : List[str] = args.streaming
a__ : Dict = args.num_workers
a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) )
a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a__ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 688 | 1 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : int ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : List[Any] = F'Input value of [number={number}] must be an integer'
raise TypeError(lowerCAmelCase__ )
if number < 1:
a__ : Any = F'Input value of [number={number}] must be > 0'
raise ValueError(lowerCAmelCase__ )
a__ : List[Any] = 1
for i in range(1 , lowerCAmelCase__ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 | 1 |
'''simple docstring'''
from math import isqrt, loga
def __a ( lowerCAmelCase__ : int ):
a__ : str = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : Any = False
return [i for i in range(2 , lowerCAmelCase__ ) if is_prime[i]]
def __a ( lowerCAmelCase__ : int = 800800 , lowerCAmelCase__ : int = 800800 ):
a__ : Optional[Any] = degree * loga(lowerCAmelCase__ )
a__ : str = int(lowerCAmelCase__ )
a__ : str = calculate_prime_numbers(lowerCAmelCase__ )
a__ : List[Any] = 0
a__ : Tuple = 0
a__ : str = len(lowerCAmelCase__ ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(f'{solution() = }')
| 688 |
'''simple docstring'''
import enum
import shutil
import sys
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size()
__SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class lowerCAmelCase__ ( enum.Enum ):
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 1
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ):
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ):
forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def __a ( ):
forceWrite('''\r''' )
def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def __a ( ):
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def __a ( ):
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 688 | 1 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : int = 10**9 ):
a__ : Optional[Any] = 1
a__ : str = 2
a__ : Optional[int] = 0
a__ : Tuple = 0
a__ : int = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
a__ : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'{solution() = }')
| 688 |
'''simple docstring'''
import inspect
import unittest
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
a__ : int = '''k-diffusion'''
elif backend == "invisible_watermark":
a__ : int = '''invisible-watermark'''
assert backend in deps, F'{backend} is not in the deps table!'
| 688 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt')
__SCREAMING_SNAKE_CASE = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
__SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , )
__UpperCamelCase = field(default=lowerCAmelCase_ , metadata={"help": "A folder containing the training data."} )
__UpperCamelCase = field(default=lowerCAmelCase_ , metadata={"help": "A folder containing the validation data."} )
__UpperCamelCase = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
__UpperCamelCase = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} )
__UpperCamelCase = field(
default=0.6 , metadata={"help": "Percentage of patches to mask."} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
a__ : List[Any] = {}
if self.train_dir is not None:
a__ : int = self.train_dir
if self.validation_dir is not None:
a__ : List[str] = self.validation_dir
a__ : Dict = data_files if data_files else None
@dataclass
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a "
"checkpoint identifier on the hub. "
"Don't set if you want to train a model from scratch."
)
} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase_ )} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , )
__UpperCamelCase = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCamelCase = field(default=lowerCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"The size (resolution) of each image. If not specified, will use `image_size` of the configuration."
)
} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={
"help": (
"The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration."
)
} , )
__UpperCamelCase = field(
default=lowerCAmelCase_ , metadata={"help": "Stride to use for the encoder."} , )
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Any , A__ : List[str]=1_9_2 , A__ : str=3_2 , A__ : int=4 , A__ : Optional[Any]=0.6 ) -> Optional[int]:
'''simple docstring'''
a__ : Union[str, Any] = input_size
a__ : List[Any] = mask_patch_size
a__ : Optional[Any] = model_patch_size
a__ : Dict = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError('''Input size must be divisible by mask patch size''' )
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError('''Mask patch size must be divisible by model patch size''' )
a__ : List[str] = self.input_size // self.mask_patch_size
a__ : Optional[Any] = self.mask_patch_size // self.model_patch_size
a__ : Optional[int] = self.rand_size**2
a__ : Tuple = int(np.ceil(self.token_count * self.mask_ratio ) )
def __call__( self : Dict ) -> Dict:
'''simple docstring'''
a__ : Tuple = np.random.permutation(self.token_count )[: self.mask_count]
a__ : int = np.zeros(self.token_count , dtype=A__ )
a__ : int = 1
a__ : str = mask.reshape((self.rand_size, self.rand_size) )
a__ : Any = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 )
return torch.tensor(mask.flatten() )
def __a ( lowerCAmelCase__ : str ):
a__ : Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] )
a__ : Any = torch.stack([example['''mask'''] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def __a ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
a__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
a__ , a__ , a__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
a__ , a__ , a__ : int = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_mim''' , lowerCAmelCase__ , lowerCAmelCase__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
a__ : Dict = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
a__ : Tuple = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
a__ : int = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset.
a__ : Any = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
a__ : Union[str, Any] = None if '''validation''' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0:
a__ : Union[str, Any] = ds['''train'''].train_test_split(data_args.train_val_split )
a__ : List[str] = split['''train''']
a__ : str = split['''test''']
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
a__ : Any = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
a__ : Tuple = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowerCAmelCase__ )
elif model_args.model_name_or_path:
a__ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ )
else:
a__ : Any = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F'Overriding config: {model_args.config_overrides}' )
config.update_from_string(model_args.config_overrides )
logger.info(F'New config: {config}' )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(lowerCAmelCase__ , '''decoder_type''' ):
a__ : Any = '''simmim'''
# adapt config
a__ : Optional[Any] = model_args.image_size if model_args.image_size is not None else config.image_size
a__ : Tuple = model_args.patch_size if model_args.patch_size is not None else config.patch_size
a__ : int = (
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
'''image_size''': model_args.image_size,
'''patch_size''': model_args.patch_size,
'''encoder_stride''': model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
a__ : List[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase__ )
elif model_args.model_name_or_path:
a__ : Optional[int] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ )
else:
a__ : Any = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
a__ : List[Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
a__ : List[Any] = AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
a__ : Optional[int] = AutoModelForMaskedImageModeling.from_config(lowerCAmelCase__ )
if training_args.do_train:
a__ : Tuple = ds['''train'''].column_names
else:
a__ : Optional[int] = ds['''validation'''].column_names
if data_args.image_column_name is not None:
a__ : Union[str, Any] = data_args.image_column_name
elif "image" in column_names:
a__ : Union[str, Any] = '''image'''
elif "img" in column_names:
a__ : str = '''img'''
else:
a__ : Any = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
a__ : Tuple = Compose(
[
Lambda(lambda lowerCAmelCase__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
# create mask generator
a__ : Union[str, Any] = MaskGenerator(
input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , )
def preprocess_images(lowerCAmelCase__ : Optional[Any] ):
a__ : int = [transforms(lowerCAmelCase__ ) for image in examples[image_column_name]]
a__ : List[Any] = [mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('''--do_train requires a train dataset''' )
if data_args.max_train_samples is not None:
a__ : Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(lowerCAmelCase__ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('''--do_eval requires a validation dataset''' )
if data_args.max_eval_samples is not None:
a__ : List[str] = (
ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(lowerCAmelCase__ )
# Initialize our trainer
a__ : int = Trainer(
model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , )
# Training
if training_args.do_train:
a__ : Union[str, Any] = None
if training_args.resume_from_checkpoint is not None:
a__ : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
a__ : List[Any] = last_checkpoint
a__ : Tuple = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
a__ : Any = trainer.evaluate()
trainer.log_metrics('''eval''' , lowerCAmelCase__ )
trainer.save_metrics('''eval''' , lowerCAmelCase__ )
# Write model card and (optionally) push to hub
a__ : List[Any] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''masked-image-modeling''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''masked-image-modeling'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 688 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def __a ( lowerCAmelCase__ : Dict ):
a__ , a__ : int = image.size
a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0
a__ : Any = image[None].transpose(0 , 3 , 1 , 2 )
a__ : Dict = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ )
@torch.no_grad()
def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
if isinstance(A__ , PIL.Image.Image ):
a__ : List[Any] = 1
elif isinstance(A__ , torch.Tensor ):
a__ : List[str] = image.shape[0]
else:
raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' )
if isinstance(A__ , PIL.Image.Image ):
a__ : Union[str, Any] = preprocess(A__ )
a__ , a__ : Dict = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width)
a__ : Optional[int] = next(self.unet.parameters() ).dtype
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ )
a__ : Any = image.to(device=self.device , dtype=A__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(A__ , device=self.device )
a__ : int = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
a__ : str = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
a__ : str = {}
if accepts_eta:
a__ : Dict = eta
for t in self.progress_bar(A__ ):
# concat latents and low resolution image in the channel dimension.
a__ : str = torch.cat([latents, image] , dim=1 )
a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
a__ : Union[str, Any] = self.unet(A__ , A__ ).sample
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample
# decode the image latents with the VQVAE
a__ : List[Any] = self.vqvae.decode(A__ ).sample
a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 )
a__ : Optional[Any] = image / 2 + 0.5
a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a__ : Union[str, Any] = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 1 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ):
a__ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a__ : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=A__ , scheduler=A__ , movq=A__ , )
a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if latents is None:
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
a__ : int = latents.to(A__ )
a__ : Tuple = latents * scheduler.init_noise_sigma
return latents
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' )
a__ : Union[str, Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A__ , A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
a__ : int = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=A__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a__ : Dict = None
for cpu_offloaded_model in [self.unet, self.movq]:
a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ )
# We'll offload the last model manually.
a__ : Dict = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(A__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A__ )
def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str:
'''simple docstring'''
a__ : Optional[Any] = self._execution_device
a__ : List[str] = guidance_scale > 1.0
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : Optional[int] = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 )
a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
self.scheduler.set_timesteps(A__ , device=A__ )
a__ : int = self.scheduler.timesteps
a__ : str = self.movq.config.latent_channels
a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor )
# create initial latent
a__ : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(A__ ) ):
# expand the latents if we are doing classifier free guidance
a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint}
a__ : Union[str, Any] = self.unet(
sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0]
if do_classifier_free_guidance:
a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
a__ , a__ : Dict = noise_pred.chunk(2 )
a__ , a__ : Optional[Any] = variance_pred.chunk(2 )
a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(
A__ , A__ , A__ , generator=A__ , )[0]
# post-processing
a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a__ : Union[str, Any] = image * 0.5 + 0.5
a__ : str = image.clamp(0 , 1 )
a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a__ : int = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 1 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__SCREAMING_SNAKE_CASE = '__DUMMY_TRANSFORMERS_USER__'
__SCREAMING_SNAKE_CASE = 'Dummy User'
__SCREAMING_SNAKE_CASE = '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'
__SCREAMING_SNAKE_CASE = 'https://hub-ci.huggingface.co'
__SCREAMING_SNAKE_CASE = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
__SCREAMING_SNAKE_CASE = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
__SCREAMING_SNAKE_CASE = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def __a ( lowerCAmelCase__ : str ):
monkeypatch.setattr(
'''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , lowerCAmelCase__ )
@pytest.fixture
def __a ( lowerCAmelCase__ : Optional[int] ):
monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , lowerCAmelCase__ )
monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , lowerCAmelCase__ )
@pytest.fixture
def __a ( lowerCAmelCase__ : Tuple ):
monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , lowerCAmelCase__ )
@pytest.fixture
def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ):
HfFolder.save_token(lowerCAmelCase__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope='''session''' )
def __a ( ):
return HfApi(endpoint=lowerCAmelCase__ )
@pytest.fixture(scope='''session''' )
def __a ( lowerCAmelCase__ : HfApi ):
a__ : Optional[int] = HfFolder.get_token()
HfFolder.save_token(lowerCAmelCase__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(lowerCAmelCase__ )
@pytest.fixture
def __a ( lowerCAmelCase__ : Any ):
def _cleanup_repo(lowerCAmelCase__ : List[Any] ):
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' )
return _cleanup_repo
@pytest.fixture
def __a ( lowerCAmelCase__ : Tuple ):
@contextmanager
def _temporary_repo(lowerCAmelCase__ : Optional[Any] ):
try:
yield repo_id
finally:
cleanup_repo(lowerCAmelCase__ )
return _temporary_repo
@pytest.fixture(scope='''session''' )
def __a ( lowerCAmelCase__ : HfApi , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ):
a__ : str = F'repo_txt_data-{int(time.time() * 10E3 )}'
a__ : Dict = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' , private=lowerCAmelCase__ )
hf_api.upload_file(
token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo='''data/text_data.txt''' , repo_id=lowerCAmelCase__ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ):
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='''session''' )
def __a ( lowerCAmelCase__ : HfApi , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ):
a__ : str = F'repo_zipped_txt_data-{int(time.time() * 10E3 )}'
a__ : Dict = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' , private=lowerCAmelCase__ )
hf_api.upload_file(
token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo='''data.zip''' , repo_id=lowerCAmelCase__ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ):
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='''session''' )
def __a ( lowerCAmelCase__ : HfApi , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ):
a__ : str = F'repo_zipped_img_data-{int(time.time() * 10E3 )}'
a__ : Optional[int] = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' , private=lowerCAmelCase__ )
hf_api.upload_file(
token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo='''data.zip''' , repo_id=lowerCAmelCase__ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : int ):
return hf_private_dataset_repo_zipped_img_data_
| 688 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__SCREAMING_SNAKE_CASE = {
'facebook/esm2_t6_8M_UR50D': 1_0_2_4,
'facebook/esm2_t12_35M_UR50D': 1_0_2_4,
}
def __a ( lowerCAmelCase__ : Union[str, Any] ):
with open(lowerCAmelCase__ , '''r''' ) as f:
a__ : Optional[int] = f.read().splitlines()
return [l.strip() for l in lines]
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**A__ )
a__ : Union[str, Any] = load_vocab_file(A__ )
a__ : int = dict(enumerate(self.all_tokens ) )
a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
a__ : List[Any] = unk_token
a__ : Any = cls_token
a__ : Any = pad_token
a__ : Any = mask_token
a__ : Any = eos_token
a__ : int = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __lowerCAmelCase ( self : Any , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]:
'''simple docstring'''
return text.split()
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
return len(self._id_to_token )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def __lowerCAmelCase ( self : Any , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Tuple = [self.cls_token_id]
a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
a__ : Any = [1] + ([0] * len(A__ )) + [1]
if token_ids_a is not None:
mask += [0] * len(A__ ) + [1]
return mask
def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __lowerCAmelCase ( self : Any ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int:
'''simple docstring'''
return super()._add_tokens(A__ , special_tokens=A__ )
| 688 | 1 |
'''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class lowerCAmelCase__ ( ctypes.Structure ):
"""simple docstring"""
__UpperCamelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
def __a ( ):
if os.name == "nt":
a__ : List[Any] = CursorInfo()
a__ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) )
a__ : Optional[int] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def __a ( ):
if os.name == "nt":
a__ : List[str] = CursorInfo()
a__ : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) )
a__ : List[str] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def __a ( ):
try:
hide_cursor()
yield
finally:
show_cursor()
| 688 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str ) -> Dict:
'''simple docstring'''
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]:
'''simple docstring'''
if not self.initialized:
a__ : Optional[Any] = RagRetriever(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : Union[str, Any] = True
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
self.retriever.index.init_index()
def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ )
return doc_ids, retrieved_doc_embeds
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]:
'''simple docstring'''
if index is not None and index.is_initialized() and len(A__ ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : List[str] = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ )
for worker in self.retrieval_workers
] )
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict:
'''simple docstring'''
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) )
else:
a__ , a__ : int = self._main_retrieve(A__ , A__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ )
a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ )
a__ : str = rag_tokenizer.question_encoder
a__ : List[str] = rag_tokenizer.generator
if indexed_dataset is not None:
a__ : List[Any] = '''custom'''
a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ )
else:
a__ : Optional[Any] = cls._build_index(A__ )
return cls(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
| 688 | 1 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=A__ , )
assert hasattr(self , '''env''' )
def __lowerCAmelCase ( self : Optional[Any] , A__ : int ) -> Dict:
'''simple docstring'''
a__ : int = F'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}'
# distributed data settings
a__ : str = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A__ , instance_count=A__ , instance_type=self.instance_type , debugger_hook_config=A__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A__ , py_version='''py36''' , )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : List[Any] ) -> List[Any]:
'''simple docstring'''
TrainingJobAnalytics(A__ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' )
@parameterized.expand([(2,)] )
def __lowerCAmelCase ( self : Dict , A__ : Dict ) -> Dict:
'''simple docstring'''
a__ : Optional[Any] = self.create_estimator(A__ )
# run training
estimator.fit()
# result dataframe
a__ : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
a__ : str = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
a__ : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
a__ : List[str] = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A__ )
| 688 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
a__ : List[str] = len(lowerCAmelCase__ )
a__ : int = [[0] * n for i in range(lowerCAmelCase__ )]
for i in range(lowerCAmelCase__ ):
a__ : Dict = y_points[i]
for i in range(2 , lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : Any = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'spm_char.model'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model',
'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model',
'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model',
}
}
__SCREAMING_SNAKE_CASE = {
'microsoft/speecht5_asr': 1_0_2_4,
'microsoft/speecht5_tts': 1_0_2_4,
'microsoft/speecht5_vc': 1_0_2_4,
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , A__ : Optional[int] , A__ : int="<s>" , A__ : Any="</s>" , A__ : Optional[Any]="<unk>" , A__ : Union[str, Any]="<pad>" , A__ : Optional[Dict[str, Any]] = None , **A__ : Dict , ) -> None:
'''simple docstring'''
a__ : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A__ , eos_token=A__ , unk_token=A__ , pad_token=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , )
a__ : List[str] = vocab_file
a__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A__ )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
'''simple docstring'''
a__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[str] ) -> int:
'''simple docstring'''
a__ : Optional[Any] = self.__dict__.copy()
a__ : List[str] = None
return state
def __setstate__( self : Any , A__ : Optional[int] ) -> Any:
'''simple docstring'''
a__ : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
a__ : Optional[Any] = {}
a__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Tuple , A__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(A__ , out_type=A__ )
def __lowerCAmelCase ( self : Dict , A__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(A__ )
def __lowerCAmelCase ( self : Optional[int] , A__ : Dict ) -> int:
'''simple docstring'''
a__ : str = self.sp_model.IdToPiece(A__ )
return token
def __lowerCAmelCase ( self : List[str] , A__ : List[Any] ) -> str:
'''simple docstring'''
a__ : Optional[Any] = []
a__ : Optional[Any] = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(A__ ) + token
a__ : str = []
else:
current_sub_tokens.append(A__ )
out_string += self.sp_model.decode(A__ )
return out_string.strip()
def __lowerCAmelCase ( self : List[str] , A__ : List[Any] , A__ : Any=None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self : Optional[int] , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ )
a__ : List[str] = [1]
if token_ids_a is None:
return ([0] * len(A__ )) + suffix_ones
return ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones
def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : List[Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , A__ )
elif not os.path.isfile(self.vocab_file ):
with open(A__ , '''wb''' ) as fi:
a__ : Any = self.sp_model.serialized_model_proto()
fi.write(A__ )
return (out_vocab_file,)
| 688 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "swin2sr"
__UpperCamelCase = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**A__ )
a__ : List[str] = image_size
a__ : Optional[Any] = patch_size
a__ : Dict = num_channels
a__ : Optional[int] = embed_dim
a__ : int = depths
a__ : Optional[int] = len(A__ )
a__ : Dict = num_heads
a__ : List[Any] = window_size
a__ : Optional[int] = mlp_ratio
a__ : Optional[int] = qkv_bias
a__ : Union[str, Any] = hidden_dropout_prob
a__ : Dict = attention_probs_dropout_prob
a__ : Union[str, Any] = drop_path_rate
a__ : int = hidden_act
a__ : int = use_absolute_embeddings
a__ : Dict = layer_norm_eps
a__ : List[str] = initializer_range
a__ : List[Any] = upscale
a__ : List[Any] = img_range
a__ : Optional[int] = resi_connection
a__ : int = upsampler
| 688 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "ClapFeatureExtractor"
__UpperCamelCase = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self : str , A__ : List[Any] , A__ : Any ) -> List[Any]:
'''simple docstring'''
super().__init__(A__ , A__ )
def __call__( self : int , A__ : int=None , A__ : int=None , A__ : Optional[Any]=None , **A__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
a__ : Any = kwargs.pop('''sampling_rate''' , A__ )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
a__ : Optional[int] = self.tokenizer(A__ , return_tensors=A__ , **A__ )
if audios is not None:
a__ : Optional[Any] = self.feature_extractor(
A__ , sampling_rate=A__ , return_tensors=A__ , **A__ )
if text is not None and audios is not None:
a__ : List[Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ )
def __lowerCAmelCase ( self : int , *A__ : List[str] , **A__ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*A__ , **A__ )
def __lowerCAmelCase ( self : int , *A__ : int , **A__ : Optional[int] ) -> int:
'''simple docstring'''
return self.tokenizer.decode(*A__ , **A__ )
@property
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
a__ : str = self.tokenizer.model_input_names
a__ : List[Any] = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 688 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
a__ : int = 0
def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Dict = CLIPConfig()
# Create a dummy config file with image_proceesor_type
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[int] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict()
config_dict.pop('''image_processor_type''' )
a__ : Union[str, Any] = CLIPImageProcessor(**A__ )
# save in new folder
model_config.save_pretrained(A__ )
config.save_pretrained(A__ )
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ )
# make sure private variable is not incorrectly saved
a__ : Optional[Any] = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''clip-base is not a local folder and is not a valid model identifier''' ):
a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' )
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
with self.assertRaises(A__ ):
a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(A__ ):
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(A__ ):
AutoImageProcessor.register(A__ , A__ )
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[str] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = CustomImageProcessor.from_pretrained(A__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
'''simple docstring'''
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = True
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# If remote code is not set, the default is to use local
a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
a__ : Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
a__ : Optional[int] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(A__ , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 688 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__SCREAMING_SNAKE_CASE = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 688 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__SCREAMING_SNAKE_CASE = get_logger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = "dummy_data"
__UpperCamelCase = "datasets"
__UpperCamelCase = False
def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int:
'''simple docstring'''
a__ : Tuple = 0
a__ : Any = dataset_name
a__ : int = cache_dir
a__ : str = use_local_dummy_data
a__ : List[str] = config
# download_callbacks take a single url as input
a__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
a__ : str = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
a__ : Optional[Any] = str(A__ )
# to be downloaded
a__ : Tuple = None
a__ : Tuple = None
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if self._dummy_file is None:
a__ : Dict = self.download_dummy_data()
return self._dummy_file
@property
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('''dummy''' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('''dummy''' , self.version_name )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
a__ : str = cached_path(
A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ )
return os.path.join(A__ , self.dummy_file_name )
@property
def __lowerCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if self._bucket_url is None:
a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) )
return self._bucket_url
@property
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]:
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
a__ : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
a__ : Union[str, Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A__ , A__ ):
return self.create_dummy_data_dict(A__ , A__ )
elif isinstance(A__ , (list, tuple) ):
return self.create_dummy_data_list(A__ , A__ )
else:
return self.create_dummy_data_single(A__ , A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]:
'''simple docstring'''
return path
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
return {}
def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any:
'''simple docstring'''
a__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A__ , A__ ):
for single_url in single_urls:
download_callback(A__ )
else:
a__ : Dict = single_urls
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A__ , A__ ):
a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls]
else:
a__ : Optional[Any] = single_urls
a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) )
a__ : List[str] = value
# make sure that values are unique
if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
a__ : str = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url )
a__ : Optional[Any] = all(
url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
a__ : Dict = [data_url[0]] * len(A__ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) )
dummy_data_list.append(A__ )
return dummy_data_list
def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]:
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) )
if os.path.exists(A__ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any:
'''simple docstring'''
def _iter_archive_members(A__ : str ):
# this preserves the order of the members inside the ZIP archive
a__ : Dict = Path(self.dummy_file ).parent
a__ : Tuple = path.relative_to(A__ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
a__ : Optional[Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A__ )
a__ : str = Path(A__ )
a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ):
yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' )
def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple:
'''simple docstring'''
if not isinstance(A__ , A__ ):
a__ : int = [paths]
for path in paths:
if os.path.isfile(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
continue
dirnames.sort()
for filename in sorted(A__ ):
if filename.startswith(('''.''', '''__''') ):
continue
yield os.path.join(A__ , A__ )
| 688 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE = {
'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'],
'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = ['BertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
'BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BertForMaskedLM',
'BertForMultipleChoice',
'BertForNextSentencePrediction',
'BertForPreTraining',
'BertForQuestionAnswering',
'BertForSequenceClassification',
'BertForTokenClassification',
'BertLayer',
'BertLMHeadModel',
'BertModel',
'BertPreTrainedModel',
'load_tf_weights_in_bert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBertEmbeddings',
'TFBertForMaskedLM',
'TFBertForMultipleChoice',
'TFBertForNextSentencePrediction',
'TFBertForPreTraining',
'TFBertForQuestionAnswering',
'TFBertForSequenceClassification',
'TFBertForTokenClassification',
'TFBertLMHeadModel',
'TFBertMainLayer',
'TFBertModel',
'TFBertPreTrainedModel',
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = ['TFBertTokenizer']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
'FlaxBertForCausalLM',
'FlaxBertForMaskedLM',
'FlaxBertForMultipleChoice',
'FlaxBertForNextSentencePrediction',
'FlaxBertForPreTraining',
'FlaxBertForQuestionAnswering',
'FlaxBertForSequenceClassification',
'FlaxBertForTokenClassification',
'FlaxBertModel',
'FlaxBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 688 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = LxmertTokenizer
__UpperCamelCase = LxmertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : str ) -> str:
'''simple docstring'''
super().setUp()
a__ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : int , A__ : int ) -> int:
'''simple docstring'''
a__ : List[Any] = '''UNwant\u00E9d,running'''
a__ : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
a__ : Optional[int] = self.tokenizer_class(self.vocab_file )
a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] )
def __lowerCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__ : Union[str, Any] = self.get_tokenizer()
a__ : Union[str, Any] = self.get_rust_tokenizer()
a__ : str = '''I was born in 92000, and this is falsé.'''
a__ : Tuple = tokenizer.tokenize(A__ )
a__ : Tuple = rust_tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ )
a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : str = tokenizer.encode(A__ )
a__ : int = rust_tokenizer.encode(A__ )
self.assertListEqual(A__ , A__ )
| 688 | 1 |
'''simple docstring'''
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
__SCREAMING_SNAKE_CASE = {
'<': operator.lt,
'<=': operator.le,
'==': operator.eq,
'!=': operator.ne,
'>=': operator.ge,
'>': operator.gt,
}
def __a ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ):
if got_ver is None or want_ver is None:
raise ValueError(
F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'
F' reinstalling {pkg}.' )
if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ):
raise ImportError(
F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' )
def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ):
a__ : int = F'\n{hint}' if hint is not None else ''''''
# non-versioned check
if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ):
a__ , a__ , a__ : Union[str, Any] = requirement, None, None
else:
a__ : Union[str, Any] = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
F' got {requirement}' )
a__ , a__ : List[str] = match[0]
a__ : Optional[Any] = want_full.split(''',''' ) # there could be multiple requirements
a__ : Optional[int] = {}
for w in want_range:
a__ : Tuple = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
F' but got {requirement}' )
a__ , a__ : List[str] = match[0]
a__ : List[Any] = want_ver
if op not in ops:
raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' )
# special case
if pkg == "python":
a__ : Optional[Any] = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return
# check if any version is installed
try:
a__ : Optional[int] = importlib.metadata.version(lowerCAmelCase__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( lowerCAmelCase__ : Any ):
a__ : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
| 688 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = LxmertTokenizer
__UpperCamelCase = LxmertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : str ) -> str:
'''simple docstring'''
super().setUp()
a__ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : int , A__ : int ) -> int:
'''simple docstring'''
a__ : List[Any] = '''UNwant\u00E9d,running'''
a__ : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
a__ : Optional[int] = self.tokenizer_class(self.vocab_file )
a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] )
def __lowerCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__ : Union[str, Any] = self.get_tokenizer()
a__ : Union[str, Any] = self.get_rust_tokenizer()
a__ : str = '''I was born in 92000, and this is falsé.'''
a__ : Tuple = tokenizer.tokenize(A__ )
a__ : Tuple = rust_tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ )
a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : str = tokenizer.encode(A__ )
a__ : int = rust_tokenizer.encode(A__ )
self.assertListEqual(A__ , A__ )
| 688 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
__SCREAMING_SNAKE_CASE = {
'google/fnet-base': 5_1_2,
'google/fnet-large': 5_1_2,
}
__SCREAMING_SNAKE_CASE = '▁'
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "token_type_ids"]
__UpperCamelCase = FNetTokenizer
def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]:
'''simple docstring'''
a__ : Optional[int] = (
AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ )
if isinstance(A__ , A__ )
else mask_token
)
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , )
a__ : Optional[Any] = do_lower_case
a__ : Dict = remove_space
a__ : List[Any] = keep_accents
a__ : Optional[Any] = vocab_file
a__ : Any = False if not self.vocab_file else True
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Optional[int] = [self.sep_token_id]
a__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Dict = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : Union[str, Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ):
copyfile(self.vocab_file , A__ )
return (out_vocab_file,)
| 688 | 1 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = (KDPMaDiscreteScheduler,)
__UpperCamelCase = 10
def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int:
'''simple docstring'''
a__ : Optional[int] = {
'''num_train_timesteps''': 1_1_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**A__ )
return config
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=A__ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=A__ , beta_end=A__ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A__ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
a__ : Any = self.scheduler_classes[0]
a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
a__ : Dict = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : Tuple = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Dict = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ )
a__ : Union[str, Any] = model(A__ , A__ )
a__ : List[str] = scheduler.step(A__ , A__ , A__ )
a__ : Optional[Any] = output.prev_sample
a__ : Tuple = torch.sum(torch.abs(A__ ) )
a__ : Optional[int] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
a__ : List[Any] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : Tuple = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : List[Any] = self.dummy_model()
a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Any = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : str = scheduler.scale_model_input(A__ , A__ )
a__ : List[str] = model(A__ , A__ )
a__ : str = scheduler.step(A__ , A__ , A__ )
a__ : List[Any] = output.prev_sample
a__ : Dict = torch.sum(torch.abs(A__ ) )
a__ : Optional[Any] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
a__ : Optional[int] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : List[Any] = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps , device=A__ )
a__ : Union[str, Any] = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ )
a__ : List[Any] = model(A__ , A__ )
a__ : Any = scheduler.step(A__ , A__ , A__ )
a__ : List[str] = output.prev_sample
a__ : Any = torch.sum(torch.abs(A__ ) )
a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) )
if str(A__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 688 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': 5_1_2,
'distilbert-base-uncased-distilled-squad': 5_1_2,
'distilbert-base-cased': 5_1_2,
'distilbert-base-cased-distilled-squad': 5_1_2,
'distilbert-base-german-cased': 5_1_2,
'distilbert-base-multilingual-cased': 5_1_2,
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = ["input_ids", "attention_mask"]
__UpperCamelCase = DistilBertTokenizer
def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str:
'''simple docstring'''
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , )
a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , A__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars
):
a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) )
a__ : List[Any] = do_lower_case
a__ : str = strip_accents
a__ : List[str] = tokenize_chinese_chars
a__ : Dict = normalizer_class(**A__ )
a__ : List[Any] = do_lower_case
def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]:
'''simple docstring'''
a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : List[str] = [self.sep_token_id]
a__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
a__ : int = self._tokenizer.model.save(A__ , name=A__ )
return tuple(A__ )
| 688 | 1 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : int = 4000000 ):
a__ : Union[str, Any] = []
a__ , a__ : Optional[int] = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(lowerCAmelCase__ )
a__ , a__ : str = b, a + b
return sum(lowerCAmelCase__ )
if __name__ == "__main__":
print(f'{solution() = }')
| 688 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__SCREAMING_SNAKE_CASE = tuple[int, int]
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None:
'''simple docstring'''
a__ : Optional[int] = pos_x
a__ : str = pos_y
a__ : Optional[int] = (pos_y, pos_x)
a__ : List[str] = goal_x
a__ : Any = goal_y
a__ : Any = g_cost
a__ : Optional[int] = parent
a__ : Union[str, Any] = self.calculate_heuristic()
a__ : List[Any] = self.g_cost + self.h_cost
def __lowerCAmelCase ( self : Union[str, Any] ) -> float:
'''simple docstring'''
a__ : List[str] = self.pos_x - self.goal_x
a__ : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A__ ) + abs(A__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[Any] , A__ : Node ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]:
'''simple docstring'''
a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ )
a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ )
a__ : Dict = [self.start]
a__ : list[Node] = []
a__ : str = False
def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a__ : Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A__ )
self.closed_nodes.append(A__ )
a__ : List[Any] = self.get_successors(A__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A__ )
else:
self.open_nodes.append(A__ )
return [self.start.pos]
def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]:
'''simple docstring'''
a__ : Optional[int] = []
for action in delta:
a__ : List[Any] = parent.pos_x + action[1]
a__ : Tuple = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) )
return successors
def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]:
'''simple docstring'''
a__ : Union[str, Any] = node
a__ : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a__ : Any = current_node.parent
path.reverse()
return path
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None:
'''simple docstring'''
a__ : str = AStar(A__ , A__ )
a__ : Optional[int] = AStar(A__ , A__ )
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
a__ : int = self.fwd_astar.open_nodes.pop(0 )
a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A__ , A__ )
self.fwd_astar.closed_nodes.append(A__ )
self.bwd_astar.closed_nodes.append(A__ )
a__ : Tuple = current_bwd_node
a__ : Optional[int] = current_fwd_node
a__ : Optional[int] = {
self.fwd_astar: self.fwd_astar.get_successors(A__ ),
self.bwd_astar: self.bwd_astar.get_successors(A__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A__ )
else:
astar.open_nodes.append(A__ )
return [self.fwd_astar.start.pos]
def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]:
'''simple docstring'''
a__ : str = self.fwd_astar.retrace_path(A__ )
a__ : List[str] = self.bwd_astar.retrace_path(A__ )
bwd_path.pop()
bwd_path.reverse()
a__ : Optional[int] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE = (0, 0)
__SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = AStar(init, goal)
__SCREAMING_SNAKE_CASE = a_star.search()
__SCREAMING_SNAKE_CASE = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal)
__SCREAMING_SNAKE_CASE = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 688 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __a ( ):
a__ : Optional[int] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' )
a__ : List[Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' )
# Register commands
EnvironmentCommand.register_subcommand(lowerCAmelCase__ )
# Let's go
a__ : Union[str, Any] = parser.parse_args()
if not hasattr(lowerCAmelCase__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
a__ : Any = args.func(lowerCAmelCase__ )
service.run()
if __name__ == "__main__":
main()
| 688 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ):
# Construct model
if gpta_config_file == "":
a__ : Union[str, Any] = GPTaConfig()
else:
a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ )
a__ : Optional[int] = GPTaModel(lowerCAmelCase__ )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 688 | 1 |
'''simple docstring'''
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'artists_file': 'artists.json',
'lyrics_file': 'lyrics.json',
'genres_file': 'genres.json',
}
__SCREAMING_SNAKE_CASE = {
'artists_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json',
},
'genres_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json',
},
'lyrics_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json',
},
}
__SCREAMING_SNAKE_CASE = {
'jukebox': 5_1_2,
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_LYRIC_TOKENS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , A__ : Any , A__ : List[Any] , A__ : Tuple , A__ : Any=["v3", "v2", "v2"] , A__ : Union[str, Any]=5_1_2 , A__ : Tuple=5 , A__ : List[str]="<|endoftext|>" , **A__ : List[Any] , ) -> Tuple:
'''simple docstring'''
a__ : Union[str, Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else unk_token
super().__init__(
unk_token=A__ , n_genres=A__ , version=A__ , max_n_lyric_tokens=A__ , **A__ , )
a__ : List[str] = version
a__ : Optional[Any] = max_n_lyric_tokens
a__ : Tuple = n_genres
with open(A__ , encoding='''utf-8''' ) as vocab_handle:
a__ : List[Any] = json.load(A__ )
with open(A__ , encoding='''utf-8''' ) as vocab_handle:
a__ : Any = json.load(A__ )
with open(A__ , encoding='''utf-8''' ) as vocab_handle:
a__ : Dict = json.load(A__ )
a__ : Tuple = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 7_9:
a__ : str = oov.replace(r'''\-\'''' , r'''\-+\'''' )
a__ : List[str] = regex.compile(A__ )
a__ : List[str] = {v: k for k, v in self.artists_encoder.items()}
a__ : Optional[Any] = {v: k for k, v in self.genres_encoder.items()}
a__ : Union[str, Any] = {v: k for k, v in self.lyrics_encoder.items()}
@property
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , A__ : List[str] , A__ : Dict ) -> Any:
'''simple docstring'''
a__ : Union[str, Any] = [self.artists_encoder.get(A__ , 0 ) for artist in list_artists]
for genres in range(len(A__ ) ):
a__ : Dict = [self.genres_encoder.get(A__ , 0 ) for genre in list_genres[genres]]
a__ : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
a__ : Dict = [[self.lyrics_encoder.get(A__ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def __lowerCAmelCase ( self : Optional[Any] , A__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
return list(A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , A__ : str , A__ : int , **A__ : str ) -> Any:
'''simple docstring'''
a__ , a__ , a__ : Optional[int] = self.prepare_for_tokenization(A__ , A__ , A__ )
a__ : Any = self._tokenize(A__ )
return artist, genre, lyrics
def __lowerCAmelCase ( self : Dict , A__ : str , A__ : str , A__ : str , A__ : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
a__ : Optional[Any] = artists[idx].lower()
a__ : Union[str, Any] = [genres[idx].lower()]
else:
a__ : str = self._normalize(artists[idx] ) + '''.v2'''
a__ : Union[str, Any] = [
self._normalize(A__ ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
a__ : Any = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
a__ : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
a__ : List[Any] = {vocab[index]: index + 1 for index in range(len(A__ ) )}
a__ : int = 0
a__ : List[str] = len(A__ ) + 1
a__ : Any = self.vocab
a__ : List[str] = {v: k for k, v in self.vocab.items()}
a__ : Any = ''''''
else:
a__ : Any = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
a__ : Any = self._run_strip_accents(A__ )
a__ : Dict = lyrics.replace('''\\''' , '''\n''' )
a__ : Union[str, Any] = self.out_of_vocab.sub('''''' , A__ ), [], []
return artists, genres, lyrics
def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[Any] ) -> str:
'''simple docstring'''
a__ : Union[str, Any] = unicodedata.normalize('''NFD''' , A__ )
a__ : int = []
for char in text:
a__ : Union[str, Any] = unicodedata.category(A__ )
if cat == "Mn":
continue
output.append(A__ )
return "".join(A__ )
def __lowerCAmelCase ( self : Optional[int] , A__ : str ) -> str:
'''simple docstring'''
a__ : List[Any] = (
[chr(A__ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )]
+ [chr(A__ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )]
+ [chr(A__ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )]
+ ['''.''']
)
a__ : Dict = frozenset(A__ )
a__ : Tuple = re.compile(r'''_+''' )
a__ : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
a__ : Any = pattern.sub('''_''' , A__ ).strip('''_''' )
return text
def __lowerCAmelCase ( self : Tuple , A__ : List[str] ) -> str:
'''simple docstring'''
return " ".join(A__ )
def __lowerCAmelCase ( self : Optional[Any] , A__ : int , A__ : Optional[Union[str, TensorType]] = None , A__ : bool = False ) -> int:
'''simple docstring'''
if not isinstance(A__ , A__ ):
a__ : Optional[Any] = TensorType(A__ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
a__ : Dict = tf.constant
a__ : Optional[Any] = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
a__ : Optional[Any] = torch.tensor
a__ : int = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
a__ : str = jnp.array
a__ : str = _is_jax
else:
a__ : int = np.asarray
a__ : List[str] = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
a__ : int = [inputs]
if not is_tensor(A__ ):
a__ : str = as_tensor(A__ )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Any , A__ : Union[str, Any] , A__ : List[Any] , A__ : str="" , A__ : str="pt" ) -> BatchEncoding:
'''simple docstring'''
a__ : Dict = [0, 0, 0]
a__ : str = [artist] * len(self.version )
a__ : Optional[int] = [genres] * len(self.version )
a__ , a__ , a__ : Union[str, Any] = self.tokenize(A__ , A__ , A__ )
a__ , a__ , a__ : Any = self._convert_token_to_id(A__ , A__ , A__ )
a__ : str = [-INFINITY] * len(full_tokens[-1] )
a__ : Optional[Any] = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A__ )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : Optional[Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(A__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=A__ ) )
a__ : List[Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(A__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=A__ ) )
a__ : Optional[Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(A__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A__ ) )
return (artists_file, genres_file, lyrics_file)
def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[Any] , A__ : Dict ) -> Union[str, Any]:
'''simple docstring'''
a__ : Tuple = self.artists_decoder.get(A__ )
a__ : Any = [self.genres_decoder.get(A__ ) for genre in genres_index]
a__ : Any = [self.lyrics_decoder.get(A__ ) for character in lyric_index]
return artist, genres, lyrics
| 688 |
'''simple docstring'''
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
__SCREAMING_SNAKE_CASE = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
__SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
__SCREAMING_SNAKE_CASE = reader.read()
__SCREAMING_SNAKE_CASE = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
__SCREAMING_SNAKE_CASE = UNetaDModel(**config)
else:
__SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
__SCREAMING_SNAKE_CASE = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__SCREAMING_SNAKE_CASE = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__SCREAMING_SNAKE_CASE = config[key]
del config[key]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
__SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
__SCREAMING_SNAKE_CASE = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
__SCREAMING_SNAKE_CASE = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
__SCREAMING_SNAKE_CASE = param_value
__SCREAMING_SNAKE_CASE = True
if not has_changed:
__SCREAMING_SNAKE_CASE = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 688 | 1 |
'''simple docstring'''
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = RoFormerTokenizer
__UpperCamelCase = RoFormerTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
super().setUp()
def __lowerCAmelCase ( self : Dict , **A__ : List[str] ) -> Tuple:
'''simple docstring'''
return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **A__ )
def __lowerCAmelCase ( self : Optional[Any] , **A__ : List[Any] ) -> int:
'''simple docstring'''
return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **A__ )
def __lowerCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
a__ : Optional[Any] = '''永和服装饰品有限公司,今天天气非常好'''
a__ : Tuple = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好'''
return input_text, output_text
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
a__ : Union[str, Any] = self.get_tokenizer()
a__ , a__ : List[str] = self.get_chinese_input_output_texts()
a__ : Dict = tokenizer.tokenize(A__ )
self.assertListEqual(A__ , output_text.split() )
a__ : Tuple = tokens + [tokenizer.unk_token]
a__ : Optional[int] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
a__ : str = self.get_rust_tokenizer()
a__ , a__ : Union[str, Any] = self.get_chinese_input_output_texts()
a__ : Tuple = tokenizer.tokenize(A__ )
self.assertListEqual(A__ , output_text.split() )
a__ : Optional[Any] = tokens + [tokenizer.unk_token]
a__ : Any = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
pass
| 688 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = (KDPMaDiscreteScheduler,)
__UpperCamelCase = 10
def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int:
'''simple docstring'''
a__ : Optional[int] = {
'''num_train_timesteps''': 1_1_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**A__ )
return config
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=A__ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=A__ , beta_end=A__ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A__ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
a__ : Any = self.scheduler_classes[0]
a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
a__ : Dict = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : Tuple = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Dict = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ )
a__ : Union[str, Any] = model(A__ , A__ )
a__ : List[str] = scheduler.step(A__ , A__ , A__ )
a__ : Optional[Any] = output.prev_sample
a__ : Tuple = torch.sum(torch.abs(A__ ) )
a__ : Optional[int] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
a__ : List[Any] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : Tuple = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : List[Any] = self.dummy_model()
a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Any = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : str = scheduler.scale_model_input(A__ , A__ )
a__ : List[str] = model(A__ , A__ )
a__ : str = scheduler.step(A__ , A__ , A__ )
a__ : List[Any] = output.prev_sample
a__ : Dict = torch.sum(torch.abs(A__ ) )
a__ : Optional[Any] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
a__ : Optional[int] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : List[Any] = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps , device=A__ )
a__ : Union[str, Any] = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ )
a__ : List[Any] = model(A__ , A__ )
a__ : Any = scheduler.step(A__ , A__ , A__ )
a__ : List[str] = output.prev_sample
a__ : Any = torch.sum(torch.abs(A__ ) )
a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) )
if str(A__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 688 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__SCREAMING_SNAKE_CASE = {
'facebook/esm2_t6_8M_UR50D': 1_0_2_4,
'facebook/esm2_t12_35M_UR50D': 1_0_2_4,
}
def __a ( lowerCAmelCase__ : Union[str, Any] ):
with open(lowerCAmelCase__ , '''r''' ) as f:
a__ : Optional[int] = f.read().splitlines()
return [l.strip() for l in lines]
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**A__ )
a__ : Union[str, Any] = load_vocab_file(A__ )
a__ : int = dict(enumerate(self.all_tokens ) )
a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
a__ : List[Any] = unk_token
a__ : Any = cls_token
a__ : Any = pad_token
a__ : Any = mask_token
a__ : Any = eos_token
a__ : int = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __lowerCAmelCase ( self : Any , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]:
'''simple docstring'''
return text.split()
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
return len(self._id_to_token )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def __lowerCAmelCase ( self : Any , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Tuple = [self.cls_token_id]
a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
a__ : Any = [1] + ([0] * len(A__ )) + [1]
if token_ids_a is not None:
mask += [0] * len(A__ ) + [1]
return mask
def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __lowerCAmelCase ( self : Any ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int:
'''simple docstring'''
return super()._add_tokens(A__ , special_tokens=A__ )
| 688 |
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
a__ : str = ['''a''', '''b''', '''c''']
# Defaults to last layer if both are None
a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ )
self.assertEqual(A__ , ['''c'''] )
self.assertEqual(A__ , [2] )
# Out indices set to match out features
a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features set to match out indices
a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features selected from negative indices
a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [-3, -1] )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ )
# Out features must be a list
with self.assertRaises(A__ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
a__ : Optional[Any] = BackboneMixin()
a__ : int = ['''a''', '''b''', '''c''']
a__ : List[Any] = ['''a''', '''c''']
a__ : Tuple = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
a__ : Dict = ['''a''', '''b''']
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
a__ : int = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 688 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__SCREAMING_SNAKE_CASE = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 688 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __a ( lowerCAmelCase__ : List[Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
a__ : Dict = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' )
a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' )
a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' )
a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' )
a__ : Any = value.float()
for key, value in codebook_state_dict.items():
a__ : List[str] = value
return upgrade
@torch.no_grad()
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ):
if config_path is not None:
a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ )
else:
a__ : Optional[int] = FlavaConfig()
a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval()
a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
else:
a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )
a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
a__ : Any = hf_model.state_dict()
a__ : Optional[Any] = count_parameters(lowerCAmelCase__ )
a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 688 | 1 |
'''simple docstring'''
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
__SCREAMING_SNAKE_CASE = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
__SCREAMING_SNAKE_CASE = 'main'
# Default branch name
__SCREAMING_SNAKE_CASE = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'
# One particular commit (not the top of `main`)
__SCREAMING_SNAKE_CASE = 'aaaaaaa'
# This commit does not exist, so we should 404.
__SCREAMING_SNAKE_CASE = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684'
# Sha-1 of config.json on the top of `main`, for checking purposes
__SCREAMING_SNAKE_CASE = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'
@contextlib.contextmanager
def __a ( ):
print('''Welcome!''' )
yield
print('''Bye!''' )
@contextlib.contextmanager
def __a ( ):
print('''Bonjour!''' )
yield
print('''Au revoir!''' )
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
assert transformers.__spec__ is not None
assert importlib.util.find_spec('''transformers''' ) is not None
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __lowerCAmelCase ( self : Optional[Any] , A__ : Any ) -> Any:
'''simple docstring'''
with ContextManagers([] ):
print('''Transformers are awesome!''' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> Tuple:
'''simple docstring'''
with ContextManagers([context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __lowerCAmelCase ( self : Tuple , A__ : Dict ) -> Dict:
'''simple docstring'''
with ContextManagers([context_fr(), context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' )
@require_torch
def __lowerCAmelCase ( self : Union[str, Any] ) -> str:
'''simple docstring'''
self.assertEqual(find_labels(A__ ) , ['''labels'''] )
self.assertEqual(find_labels(A__ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(A__ ) , ['''start_positions''', '''end_positions'''] )
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
self.assertEqual(find_labels(A__ ) , ['''labels'''] )
@require_tf
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
self.assertEqual(find_labels(A__ ) , ['''labels'''] )
self.assertEqual(find_labels(A__ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(A__ ) , ['''start_positions''', '''end_positions'''] )
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
self.assertEqual(find_labels(A__ ) , ['''labels'''] )
@require_flax
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
self.assertEqual(find_labels(A__ ) , [] )
self.assertEqual(find_labels(A__ ) , [] )
self.assertEqual(find_labels(A__ ) , [] )
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
self.assertEqual(find_labels(A__ ) , [] )
| 688 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__SCREAMING_SNAKE_CASE = 4
__SCREAMING_SNAKE_CASE = 3
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
def __a ( lowerCAmelCase__ : List[str] ):
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def __a ( ):
a__ : str = int(os.environ['''RANK'''] )
a__ : int = int(os.environ['''WORLD_SIZE'''] )
a__ : str = ArgumentParser()
parser.add_argument('''--streaming''' , type=lowerCAmelCase__ )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ )
parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 )
a__ : int = parser.parse_args()
a__ : List[str] = args.streaming
a__ : Dict = args.num_workers
a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) )
a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a__ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 688 | 1 |
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __lt__( self : Optional[int] , A__ : Any ) -> int:
'''simple docstring'''
return self[-1] < other[-1]
def __eq__( self : Dict , A__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
return self[-1] == other[-1]
def __a ( lowerCAmelCase__ : list ):
a__ : list[Stack] = []
# sort into stacks
for element in collection:
a__ : List[Any] = Stack([element] )
a__ : Optional[int] = bisect_left(lowerCAmelCase__ , lowerCAmelCase__ )
if i != len(lowerCAmelCase__ ):
stacks[i].append(lowerCAmelCase__ )
else:
stacks.append(lowerCAmelCase__ )
# use a heap-based merge to merge stack efficiently
a__ : List[str] = merge(*(reversed(lowerCAmelCase__ ) for stack in stacks) )
return collection
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip()
__SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')]
print(patience_sort(unsorted))
| 688 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 | 1 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__SCREAMING_SNAKE_CASE = '.'
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__SCREAMING_SNAKE_CASE = [
'Assert',
'AssignVariableOp',
'EmptyTensorList',
'MergeV2Checkpoints',
'ReadVariableOp',
'ResourceGather',
'RestoreV2',
'SaveV2',
'ShardedFilename',
'StatefulPartitionedCall',
'StaticRegexFullMatch',
'VarHandleOp',
]
def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ):
a__ : Dict = SavedModel()
a__ : List[str] = []
with open(os.path.join(lowerCAmelCase__ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f:
a__ : Tuple = json.load(lowerCAmelCase__ )['''opsets''']
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(lowerCAmelCase__ )] )
with open(lowerCAmelCase__ , '''rb''' ) as f:
saved_model.ParseFromString(f.read() )
a__ : List[str] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
a__ : Any = sorted(lowerCAmelCase__ )
a__ : Optional[Any] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(lowerCAmelCase__ )
if strict and len(lowerCAmelCase__ ) > 0:
raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops )
elif len(lowerCAmelCase__ ) > 0:
print(F'Found the following incompatible ops for the opset {opset}:' )
print(*lowerCAmelCase__ , sep='''\n''' )
else:
print(F'The saved model {saved_model_path} can properly be converted with ONNX.' )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).')
parser.add_argument(
'--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.'
)
parser.add_argument(
'--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.'
)
parser.add_argument(
'--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 688 |
'''simple docstring'''
import enum
import shutil
import sys
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size()
__SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class lowerCAmelCase__ ( enum.Enum ):
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 1
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ):
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ):
forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def __a ( ):
forceWrite('''\r''' )
def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def __a ( ):
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def __a ( ):
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 688 | 1 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : str , A__ : str = "▁" , A__ : bool = True , A__ : Union[str, AddedToken] = "<unk>" , A__ : Union[str, AddedToken] = "</s>" , A__ : Union[str, AddedToken] = "<pad>" , ) -> int:
'''simple docstring'''
a__ : List[Any] = {
'''pad''': {'''id''': 0, '''token''': pad_token},
'''eos''': {'''id''': 1, '''token''': eos_token},
'''unk''': {'''id''': 2, '''token''': unk_token},
}
a__ : Tuple = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
a__ : List[Any] = token_dict['''token''']
a__ : Optional[int] = Tokenizer(Unigram() )
a__ : List[str] = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ),
normalizers.Lowercase(),
] )
a__ : List[Any] = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=A__ , add_prefix_space=A__ ),
pre_tokenizers.Digits(individual_digits=A__ ),
pre_tokenizers.Punctuation(),
] )
a__ : Any = decoders.Metaspace(replacement=A__ , add_prefix_space=A__ )
a__ : List[Any] = TemplateProcessing(
single=F'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , )
a__ : str = {
'''model''': '''SentencePieceUnigram''',
'''replacement''': replacement,
'''add_prefix_space''': add_prefix_space,
}
super().__init__(A__ , A__ )
def __lowerCAmelCase ( self : Dict , A__ : Union[str, List[str]] , A__ : int = 8_0_0_0 , A__ : bool = True , ) -> Optional[Any]:
'''simple docstring'''
a__ : Tuple = trainers.UnigramTrainer(
vocab_size=A__ , special_tokens=self.special_tokens_list , show_progress=A__ , )
if isinstance(A__ , A__ ):
a__ : Optional[Any] = [files]
self._tokenizer.train(A__ , trainer=A__ )
self.add_unk_id()
def __lowerCAmelCase ( self : Optional[Any] , A__ : Union[Iterator[str], Iterator[Iterator[str]]] , A__ : int = 8_0_0_0 , A__ : bool = True , ) -> Optional[int]:
'''simple docstring'''
a__ : str = trainers.UnigramTrainer(
vocab_size=A__ , special_tokens=self.special_tokens_list , show_progress=A__ , )
self._tokenizer.train_from_iterator(A__ , trainer=A__ )
self.add_unk_id()
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
a__ : Optional[int] = json.loads(self._tokenizer.to_str() )
a__ : List[Any] = self.special_tokens['''unk''']['''id''']
a__ : List[Any] = Tokenizer.from_str(json.dumps(A__ ) )
| 688 |
'''simple docstring'''
import inspect
import unittest
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
a__ : int = '''k-diffusion'''
elif backend == "invisible_watermark":
a__ : int = '''invisible-watermark'''
assert backend in deps, F'{backend} is not in the deps table!'
| 688 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = OpenAIGPTTokenizer
__UpperCamelCase = OpenAIGPTTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = False
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
a__ : List[str] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
a__ : int = dict(zip(A__ , range(len(A__ ) ) ) )
a__ : Dict = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', '''''']
a__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(A__ ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(A__ ) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple ) -> int:
'''simple docstring'''
return "lower newer", "lower newer"
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
a__ : Tuple = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
a__ : Tuple = '''lower'''
a__ : int = ['''low''', '''er</w>''']
a__ : Optional[Any] = tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Dict = tokens + ['''<unk>''']
a__ : str = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
def __lowerCAmelCase ( self : Tuple , A__ : int=1_5 ) -> Optional[int]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
a__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ )
# Simple input
a__ : List[str] = '''This is a simple input'''
a__ : int = ['''This is a simple input 1''', '''This is a simple input 2''']
a__ : List[str] = ('''This is a simple input''', '''This is a pair''')
a__ : Optional[int] = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' )
# Simple input
self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' )
# Simple input
self.assertRaises(
A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , )
# Pair input
self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' )
# Pair input
self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' )
# Pair input
self.assertRaises(
A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
pass
@require_ftfy
@require_spacy
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
| 688 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def __a ( lowerCAmelCase__ : Dict ):
a__ , a__ : int = image.size
a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0
a__ : Any = image[None].transpose(0 , 3 , 1 , 2 )
a__ : Dict = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ )
@torch.no_grad()
def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
if isinstance(A__ , PIL.Image.Image ):
a__ : List[Any] = 1
elif isinstance(A__ , torch.Tensor ):
a__ : List[str] = image.shape[0]
else:
raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' )
if isinstance(A__ , PIL.Image.Image ):
a__ : Union[str, Any] = preprocess(A__ )
a__ , a__ : Dict = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width)
a__ : Optional[int] = next(self.unet.parameters() ).dtype
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ )
a__ : Any = image.to(device=self.device , dtype=A__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(A__ , device=self.device )
a__ : int = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
a__ : str = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
a__ : str = {}
if accepts_eta:
a__ : Dict = eta
for t in self.progress_bar(A__ ):
# concat latents and low resolution image in the channel dimension.
a__ : str = torch.cat([latents, image] , dim=1 )
a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
a__ : Union[str, Any] = self.unet(A__ , A__ ).sample
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample
# decode the image latents with the VQVAE
a__ : List[Any] = self.vqvae.decode(A__ ).sample
a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 )
a__ : Optional[Any] = image / 2 + 0.5
a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a__ : Union[str, Any] = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ):
a__ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a__ : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=A__ , scheduler=A__ , movq=A__ , )
a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if latents is None:
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
a__ : int = latents.to(A__ )
a__ : Tuple = latents * scheduler.init_noise_sigma
return latents
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' )
a__ : Union[str, Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A__ , A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
a__ : int = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=A__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a__ : Dict = None
for cpu_offloaded_model in [self.unet, self.movq]:
a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ )
# We'll offload the last model manually.
a__ : Dict = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(A__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A__ )
def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str:
'''simple docstring'''
a__ : Optional[Any] = self._execution_device
a__ : List[str] = guidance_scale > 1.0
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : Optional[int] = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 )
a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
self.scheduler.set_timesteps(A__ , device=A__ )
a__ : int = self.scheduler.timesteps
a__ : str = self.movq.config.latent_channels
a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor )
# create initial latent
a__ : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(A__ ) ):
# expand the latents if we are doing classifier free guidance
a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint}
a__ : Union[str, Any] = self.unet(
sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0]
if do_classifier_free_guidance:
a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
a__ , a__ : Dict = noise_pred.chunk(2 )
a__ , a__ : Optional[Any] = variance_pred.chunk(2 )
a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(
A__ , A__ , A__ , generator=A__ , )[0]
# post-processing
a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a__ : Union[str, Any] = image * 0.5 + 0.5
a__ : str = image.clamp(0 , 1 )
a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a__ : int = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ):
a__ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a__ : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=A__ , scheduler=A__ , movq=A__ , )
a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if latents is None:
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
a__ : int = latents.to(A__ )
a__ : Tuple = latents * scheduler.init_noise_sigma
return latents
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' )
a__ : Union[str, Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A__ , A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
a__ : int = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=A__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a__ : Dict = None
for cpu_offloaded_model in [self.unet, self.movq]:
a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ )
# We'll offload the last model manually.
a__ : Dict = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(A__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A__ )
def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str:
'''simple docstring'''
a__ : Optional[Any] = self._execution_device
a__ : List[str] = guidance_scale > 1.0
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : Optional[int] = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 )
a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
self.scheduler.set_timesteps(A__ , device=A__ )
a__ : int = self.scheduler.timesteps
a__ : str = self.movq.config.latent_channels
a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor )
# create initial latent
a__ : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(A__ ) ):
# expand the latents if we are doing classifier free guidance
a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint}
a__ : Union[str, Any] = self.unet(
sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0]
if do_classifier_free_guidance:
a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
a__ , a__ : Dict = noise_pred.chunk(2 )
a__ , a__ : Optional[Any] = variance_pred.chunk(2 )
a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(
A__ , A__ , A__ , generator=A__ , )[0]
# post-processing
a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a__ : Union[str, Any] = image * 0.5 + 0.5
a__ : str = image.clamp(0 , 1 )
a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a__ : int = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE = {'configuration_encoder_decoder': ['EncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = ['EncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = ['TFEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = ['FlaxEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 688 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__SCREAMING_SNAKE_CASE = {
'facebook/esm2_t6_8M_UR50D': 1_0_2_4,
'facebook/esm2_t12_35M_UR50D': 1_0_2_4,
}
def __a ( lowerCAmelCase__ : Union[str, Any] ):
with open(lowerCAmelCase__ , '''r''' ) as f:
a__ : Optional[int] = f.read().splitlines()
return [l.strip() for l in lines]
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**A__ )
a__ : Union[str, Any] = load_vocab_file(A__ )
a__ : int = dict(enumerate(self.all_tokens ) )
a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
a__ : List[Any] = unk_token
a__ : Any = cls_token
a__ : Any = pad_token
a__ : Any = mask_token
a__ : Any = eos_token
a__ : int = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __lowerCAmelCase ( self : Any , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]:
'''simple docstring'''
return text.split()
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
return len(self._id_to_token )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def __lowerCAmelCase ( self : Any , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Tuple = [self.cls_token_id]
a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
a__ : Any = [1] + ([0] * len(A__ )) + [1]
if token_ids_a is not None:
mask += [0] * len(A__ ) + [1]
return mask
def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __lowerCAmelCase ( self : Any ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int:
'''simple docstring'''
return super()._add_tokens(A__ , special_tokens=A__ )
| 688 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__SCREAMING_SNAKE_CASE = {
'config': [
'EXTERNAL_DATA_FORMAT_SIZE_LIMIT',
'OnnxConfig',
'OnnxConfigWithPast',
'OnnxSeq2SeqConfigWithPast',
'PatchingSpec',
],
'convert': ['export', 'validate_model_outputs'],
'features': ['FeaturesManager'],
'utils': ['ParameterFormat', 'compute_serialized_parameters_size'],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 688 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str ) -> Dict:
'''simple docstring'''
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]:
'''simple docstring'''
if not self.initialized:
a__ : Optional[Any] = RagRetriever(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : Union[str, Any] = True
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
self.retriever.index.init_index()
def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ )
return doc_ids, retrieved_doc_embeds
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]:
'''simple docstring'''
if index is not None and index.is_initialized() and len(A__ ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : List[str] = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ )
for worker in self.retrieval_workers
] )
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict:
'''simple docstring'''
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) )
else:
a__ , a__ : int = self._main_retrieve(A__ , A__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ )
a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ )
a__ : str = rag_tokenizer.question_encoder
a__ : List[str] = rag_tokenizer.generator
if indexed_dataset is not None:
a__ : List[Any] = '''custom'''
a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ )
else:
a__ : Optional[Any] = cls._build_index(A__ )
return cls(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
| 688 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
def __lowercase ( snake_case, snake_case=False, snake_case=False ):
"""simple docstring"""
__magic_name__ :Any = '''backbone.''' if is_semantic else ''''''
__magic_name__ :Tuple = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def __lowercase ( snake_case, snake_case, snake_case=False, snake_case=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
__magic_name__ :str = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
__magic_name__ :Union[str, Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
__magic_name__ :str = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
__magic_name__ :Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
__magic_name__ :Optional[Any] = in_proj_weight[
: config.hidden_size, :
]
__magic_name__ :str = q_bias
__magic_name__ :int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__magic_name__ :Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
__magic_name__ :Tuple = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
__magic_name__ :Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
__magic_name__ :Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
__magic_name__ :List[Any] = gamma_a
__magic_name__ :Optional[int] = gamma_a
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = dct.pop(snake_case )
__magic_name__ :Tuple = val
def __lowercase ( ):
"""simple docstring"""
__magic_name__ :str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__magic_name__ :List[Any] = Image.open(requests.get(snake_case, stream=snake_case ).raw )
return im
@torch.no_grad()
def __lowercase ( snake_case, snake_case, snake_case=False ):
"""simple docstring"""
__magic_name__ :Tuple = False if '''rvlcdip''' in checkpoint_url else True
__magic_name__ :int = BeitConfig(use_absolute_position_embeddings=snake_case, use_mask_token=snake_case )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
__magic_name__ :Tuple = 1_0_2_4
__magic_name__ :int = 4_0_9_6
__magic_name__ :List[Any] = 2_4
__magic_name__ :Union[str, Any] = 1_6
# labels
if "rvlcdip" in checkpoint_url:
__magic_name__ :List[str] = 1_6
__magic_name__ :Dict = '''huggingface/label-files'''
__magic_name__ :int = '''rvlcdip-id2label.json'''
__magic_name__ :Optional[int] = json.load(open(hf_hub_download(snake_case, snake_case, repo_type='''dataset''' ), '''r''' ) )
__magic_name__ :List[str] = {int(snake_case ): v for k, v in idalabel.items()}
__magic_name__ :List[str] = idalabel
__magic_name__ :Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
__magic_name__ :Union[str, Any] = torch.hub.load_state_dict_from_url(snake_case, map_location='''cpu''' )['''model''']
__magic_name__ :Dict = create_rename_keys(snake_case, has_lm_head=snake_case )
for src, dest in rename_keys:
rename_key(snake_case, snake_case, snake_case )
read_in_q_k_v(snake_case, snake_case, has_lm_head=snake_case )
# load HuggingFace model
__magic_name__ :Union[str, Any] = BeitForMaskedImageModeling(snake_case ) if has_lm_head else BeitForImageClassification(snake_case )
model.eval()
model.load_state_dict(snake_case )
# Check outputs on an image
__magic_name__ :Dict = BeitImageProcessor(
size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=snake_case )
__magic_name__ :int = prepare_img()
__magic_name__ :Dict = image_processor(images=snake_case, return_tensors='''pt''' )
__magic_name__ :str = encoding['''pixel_values''']
__magic_name__ :List[str] = model(snake_case )
__magic_name__ :int = outputs.logits
# verify logits
__magic_name__ :Optional[int] = [1, 1_6] if '''rvlcdip''' in checkpoint_url else [1, 1_9_6, 8_1_9_2]
assert logits.shape == torch.Size(snake_case ), "Shape of logits not as expected"
Path(snake_case ).mkdir(exist_ok=snake_case )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case )
if push_to_hub:
if has_lm_head:
__magic_name__ :Union[str, Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
__magic_name__ :str = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(snake_case, snake_case ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=snake_case, )
model.push_to_hub(
repo_path_or_name=Path(snake_case, snake_case ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=snake_case, )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
a__ : List[str] = len(lowerCAmelCase__ )
a__ : int = [[0] * n for i in range(lowerCAmelCase__ )]
for i in range(lowerCAmelCase__ ):
a__ : Dict = y_points[i]
for i in range(2 , lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : Any = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__snake_case = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_lowercase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_lowercase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_lowercase = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def snake_case_ ( self: Tuple,A_: List[str],A_: str,A_: str ):
'''simple docstring'''
__UpperCamelCase = ZeroShotClassificationPipeline(
model=A_,tokenizer=A_,candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def snake_case_ ( self: Optional[Any],A_: Tuple,A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = classifier('Who are you voting for in 2020?',candidate_labels='politics' )
self.assertEqual(A_,{'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} )
# No kwarg
__UpperCamelCase = classifier('Who are you voting for in 2020?',['politics'] )
self.assertEqual(A_,{'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} )
__UpperCamelCase = classifier('Who are you voting for in 2020?',candidate_labels=['politics'] )
self.assertEqual(A_,{'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} )
__UpperCamelCase = classifier('Who are you voting for in 2020?',candidate_labels='politics, public health' )
self.assertEqual(
A_,{'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ),1.0 )
__UpperCamelCase = classifier('Who are you voting for in 2020?',candidate_labels=['politics', 'public health'] )
self.assertEqual(
A_,{'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ),1.0 )
__UpperCamelCase = classifier(
'Who are you voting for in 2020?',candidate_labels='politics',hypothesis_template='This text is about {}' )
self.assertEqual(A_,{'sequence': ANY(A_ ), 'labels': [ANY(A_ )], 'scores': [ANY(A_ )]} )
# https://github.com/huggingface/transformers/issues/13846
__UpperCamelCase = classifier(['I am happy'],['positive', 'negative'] )
self.assertEqual(
A_,[
{'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]}
for i in range(1 )
],)
__UpperCamelCase = classifier(['I am happy', 'I am sad'],['positive', 'negative'] )
self.assertEqual(
A_,[
{'sequence': ANY(A_ ), 'labels': [ANY(A_ ), ANY(A_ )], 'scores': [ANY(A_ ), ANY(A_ )]}
for i in range(2 )
],)
with self.assertRaises(A_ ):
classifier('',candidate_labels='politics' )
with self.assertRaises(A_ ):
classifier(A_,candidate_labels='politics' )
with self.assertRaises(A_ ):
classifier('Who are you voting for in 2020?',candidate_labels='' )
with self.assertRaises(A_ ):
classifier('Who are you voting for in 2020?',candidate_labels=A_ )
with self.assertRaises(A_ ):
classifier(
'Who are you voting for in 2020?',candidate_labels='politics',hypothesis_template='Not formatting template',)
with self.assertRaises(A_ ):
classifier(
'Who are you voting for in 2020?',candidate_labels='politics',hypothesis_template=A_,)
self.run_entailment_id(A_ )
def snake_case_ ( self: List[str],A_: Pipeline ):
'''simple docstring'''
__UpperCamelCase = zero_shot_classifier.model.config
__UpperCamelCase = config.labelaid
__UpperCamelCase = zero_shot_classifier.entailment_id
__UpperCamelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id,-1 )
__UpperCamelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id,0 )
__UpperCamelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id,0 )
__UpperCamelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id,2 )
__UpperCamelCase = original_labelaid
self.assertEqual(A_,zero_shot_classifier.entailment_id )
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = pipeline(
'zero-shot-classification',model='sshleifer/tiny-distilbert-base-cased-distilled-squad',framework='pt',)
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 100,candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = pipeline(
'zero-shot-classification',model='sshleifer/tiny-distilbert-base-cased-distilled-squad',framework='pt',)
__UpperCamelCase = zero_shot_classifier(
'Who are you voting for in 2020?',candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(A_ ),{
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
},)
@require_tf
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = pipeline(
'zero-shot-classification',model='sshleifer/tiny-distilbert-base-cased-distilled-squad',framework='tf',)
__UpperCamelCase = zero_shot_classifier(
'Who are you voting for in 2020?',candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(A_ ),{
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
},)
@slow
@require_torch
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = pipeline('zero-shot-classification',model='roberta-large-mnli',framework='pt' )
__UpperCamelCase = zero_shot_classifier(
'Who are you voting for in 2020?',candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(A_ ),{
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
},)
__UpperCamelCase = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.',candidate_labels=['machine learning', 'statistics', 'translation', 'vision'],multi_label=A_,)
self.assertEqual(
nested_simplify(A_ ),{
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
},)
@slow
@require_tf
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = pipeline('zero-shot-classification',model='roberta-large-mnli',framework='tf' )
__UpperCamelCase = zero_shot_classifier(
'Who are you voting for in 2020?',candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(A_ ),{
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
},)
__UpperCamelCase = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.',candidate_labels=['machine learning', 'statistics', 'translation', 'vision'],multi_label=A_,)
self.assertEqual(
nested_simplify(A_ ),{
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
},)
| 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "swin2sr"
__UpperCamelCase = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**A__ )
a__ : List[str] = image_size
a__ : Optional[Any] = patch_size
a__ : Dict = num_channels
a__ : Optional[int] = embed_dim
a__ : int = depths
a__ : Optional[int] = len(A__ )
a__ : Dict = num_heads
a__ : List[Any] = window_size
a__ : Optional[int] = mlp_ratio
a__ : Optional[int] = qkv_bias
a__ : Union[str, Any] = hidden_dropout_prob
a__ : Dict = attention_probs_dropout_prob
a__ : Union[str, Any] = drop_path_rate
a__ : int = hidden_act
a__ : int = use_absolute_embeddings
a__ : Dict = layer_norm_eps
a__ : List[str] = initializer_range
a__ : List[Any] = upscale
a__ : List[Any] = img_range
a__ : Optional[int] = resi_connection
a__ : int = upsampler
| 688 | 0 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__)
@dataclass
class lowerCamelCase__ ( datasets.BuilderConfig):
"""simple docstring"""
a__ : Optional[datasets.Features] = None
a__ : str = "utf-8"
a__ : Optional[str] = None
a__ : Optional[str] = None
a__ : bool = True # deprecated
a__ : Optional[int] = None # deprecated
a__ : int = 10 << 20 # 10MB
a__ : Optional[bool] = None
class lowerCamelCase__ ( datasets.ArrowBasedBuilder):
"""simple docstring"""
a__ : List[Any] = JsonConfig
def snake_case_ ( self : Any ) -> List[str]:
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' )
_A = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' )
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' )
return datasets.DatasetInfo(features=self.config.features )
def snake_case_ ( self : int , __lowerCAmelCase : Dict ) -> Any:
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
_A = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__lowerCAmelCase , (str, list, tuple) ):
_A = data_files
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_A = [files]
_A = [dl_manager.iter_files(__lowerCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
_A = []
for split_name, files in data_files.items():
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_A = [files]
_A = [dl_manager.iter_files(__lowerCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) )
return splits
def snake_case_ ( self : Dict , __lowerCAmelCase : pa.Table ) -> pa.Table:
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
_A = self.config.features.arrow_schema.field(__lowerCAmelCase ).type
_A = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
_A = table_cast(__lowerCAmelCase , self.config.features.arrow_schema )
return pa_table
def snake_case_ ( self : Any , __lowerCAmelCase : str ) -> int:
for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
_A = json.load(__lowerCAmelCase )
# We keep only the field we are interested in
_A = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__lowerCAmelCase , (list, tuple) ):
_A = set().union(*[row.keys() for row in dataset] )
_A = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys}
else:
_A = dataset
_A = pa.Table.from_pydict(__lowerCAmelCase )
yield file_idx, self._cast_table(__lowerCAmelCase )
# If the file has one json object per line
else:
with open(__lowerCAmelCase , '''rb''' ) as f:
_A = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
_A = max(self.config.chunksize // 32 , 16 << 10 )
_A = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
_A = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__lowerCAmelCase )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
_A = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' )
try:
while True:
try:
_A = paj.read_json(
io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__lowerCAmelCase , pa.ArrowInvalid )
and "straddling" not in str(__lowerCAmelCase )
or block_size > len(__lowerCAmelCase )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f'''Batch of {len(__lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
_A = json.load(__lowerCAmelCase )
except json.JSONDecodeError:
logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON
try:
_A = set().union(*[row.keys() for row in dataset] )
_A = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys}
_A = pa.Table.from_pydict(__lowerCAmelCase )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}''' )
raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(__lowerCAmelCase )
break
else:
logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}''' )
raise ValueError(
f'''Not able to read records in the JSON file at {file}. '''
f'''You should probably indicate the field of the JSON file containing your records. '''
f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase )
batch_idx += 1
| 2 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
a__ : int = 0
def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Dict = CLIPConfig()
# Create a dummy config file with image_proceesor_type
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[int] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict()
config_dict.pop('''image_processor_type''' )
a__ : Union[str, Any] = CLIPImageProcessor(**A__ )
# save in new folder
model_config.save_pretrained(A__ )
config.save_pretrained(A__ )
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ )
# make sure private variable is not incorrectly saved
a__ : Optional[Any] = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''clip-base is not a local folder and is not a valid model identifier''' ):
a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' )
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
with self.assertRaises(A__ ):
a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(A__ ):
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(A__ ):
AutoImageProcessor.register(A__ , A__ )
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[str] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = CustomImageProcessor.from_pretrained(A__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
'''simple docstring'''
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = True
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# If remote code is not set, the default is to use local
a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
a__ : Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
a__ : Optional[int] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(A__ , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 688 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , )-> int:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = self.get_config()
return config, pixel_values
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def UpperCAmelCase_ ( self , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = FlaxRegNetModel(config=A_ )
UpperCamelCase = model(A_ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.num_labels
UpperCamelCase = FlaxRegNetForImageClassification(config=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def UpperCAmelCase_ ( self )-> None:
'''simple docstring'''
UpperCamelCase = FlaxRegNetModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCAmelCase_ ( self )-> int:
'''simple docstring'''
def check_hidden_states_output(A_ , A_ , A_ ):
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(A_ ) , expected_num_stages + 1 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(A_ , A_ )
UpperCamelCase = model_class(A_ )
@jax.jit
def model_jitted(A_ , **A_ ):
return model(pixel_values=A_ , **A_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase = model_jitted(**A_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**A_ ).to_tuple()
self.assertEqual(len(A_ ) , len(A_ ) )
for jitted_output, output in zip(A_ , A_ ):
self.assertEqual(jitted_output.shape , output.shape )
def A_( ):
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
@cached_property
def UpperCAmelCase_ ( self )-> Optional[Any]:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='np' )
UpperCamelCase = model(**A_ )
# verify the logits
UpperCamelCase = (1, 1000)
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
| 3 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__SCREAMING_SNAKE_CASE = get_logger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = "dummy_data"
__UpperCamelCase = "datasets"
__UpperCamelCase = False
def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int:
'''simple docstring'''
a__ : Tuple = 0
a__ : Any = dataset_name
a__ : int = cache_dir
a__ : str = use_local_dummy_data
a__ : List[str] = config
# download_callbacks take a single url as input
a__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
a__ : str = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
a__ : Optional[Any] = str(A__ )
# to be downloaded
a__ : Tuple = None
a__ : Tuple = None
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if self._dummy_file is None:
a__ : Dict = self.download_dummy_data()
return self._dummy_file
@property
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('''dummy''' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('''dummy''' , self.version_name )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
a__ : str = cached_path(
A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ )
return os.path.join(A__ , self.dummy_file_name )
@property
def __lowerCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if self._bucket_url is None:
a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) )
return self._bucket_url
@property
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]:
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
a__ : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
a__ : Union[str, Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A__ , A__ ):
return self.create_dummy_data_dict(A__ , A__ )
elif isinstance(A__ , (list, tuple) ):
return self.create_dummy_data_list(A__ , A__ )
else:
return self.create_dummy_data_single(A__ , A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]:
'''simple docstring'''
return path
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
return {}
def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any:
'''simple docstring'''
a__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A__ , A__ ):
for single_url in single_urls:
download_callback(A__ )
else:
a__ : Dict = single_urls
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A__ , A__ ):
a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls]
else:
a__ : Optional[Any] = single_urls
a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) )
a__ : List[str] = value
# make sure that values are unique
if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
a__ : str = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url )
a__ : Optional[Any] = all(
url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
a__ : Dict = [data_url[0]] * len(A__ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) )
dummy_data_list.append(A__ )
return dummy_data_list
def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]:
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) )
if os.path.exists(A__ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any:
'''simple docstring'''
def _iter_archive_members(A__ : str ):
# this preserves the order of the members inside the ZIP archive
a__ : Dict = Path(self.dummy_file ).parent
a__ : Tuple = path.relative_to(A__ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
a__ : Optional[Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A__ )
a__ : str = Path(A__ )
a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ):
yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' )
def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple:
'''simple docstring'''
if not isinstance(A__ , A__ ):
a__ : int = [paths]
for path in paths:
if os.path.isfile(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
continue
dirnames.sort()
for filename in sorted(A__ ):
if filename.startswith(('''.''', '''__''') ):
continue
yield os.path.join(A__ , A__ )
| 688 | 0 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__UpperCamelCase : int = '''pt'''
elif is_tf_available():
__UpperCamelCase : Optional[Any] = '''tf'''
else:
__UpperCamelCase : int = '''jax'''
class a ( a__ , unittest.TestCase ):
snake_case__ = ByTaTokenizer
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
lowerCAmelCase = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=20 , _snake_case=5 ):
"""simple docstring"""
lowerCAmelCase = []
for i in range(len(_snake_case ) ):
try:
lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowerCAmelCase = list(filter(lambda _snake_case : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _snake_case ) )
lowerCAmelCase = list(filter(lambda _snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case ) , _snake_case ) )
if max_length is not None and len(_snake_case ) > max_length:
lowerCAmelCase = toks[:max_length]
if min_length is not None and len(_snake_case ) < min_length and len(_snake_case ) > 0:
while len(_snake_case ) < min_length:
lowerCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
lowerCAmelCase = [t[0] for t in toks]
# Ensure consistency
lowerCAmelCase = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case )
if " " not in output_txt and len(_snake_case ) > 1:
lowerCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case )
)
if with_prefix_space:
lowerCAmelCase = ' ' + output_txt
lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
return output_txt, output_ids
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.ta_base_tokenizer
lowerCAmelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
lowerCAmelCase = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.ta_base_tokenizer
lowerCAmelCase = 'Unicode €.'
lowerCAmelCase = tokenizer(_snake_case )
lowerCAmelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1]
self.assertEqual(encoded['input_ids'] , _snake_case )
# decoding
lowerCAmelCase = tokenizer.decode(_snake_case )
self.assertEqual(_snake_case , 'Unicode €.</s>' )
lowerCAmelCase = tokenizer('e è é ê ë' )
lowerCAmelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1]
self.assertEqual(encoded['input_ids'] , _snake_case )
# decoding
lowerCAmelCase = tokenizer.decode(_snake_case )
self.assertEqual(_snake_case , 'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.ta_base_tokenizer
lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0]
# fmt: on
lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case )
self.assertIsInstance(_snake_case , _snake_case )
if FRAMEWORK != "jax":
lowerCAmelCase = list(batch.input_ids.numpy()[0] )
else:
lowerCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_snake_case , _snake_case )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.ta_base_tokenizer
lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _snake_case )
self.assertIn('attention_mask' , _snake_case )
self.assertNotIn('decoder_input_ids' , _snake_case )
self.assertNotIn('decoder_attention_mask' , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.ta_base_tokenizer
lowerCAmelCase = [
'Summary of the text.',
'Another summary.',
]
lowerCAmelCase = tokenizer(
text_target=_snake_case , max_length=32 , padding='max_length' , truncation=_snake_case , return_tensors=_snake_case )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.ta_base_tokenizer
lowerCAmelCase = ['A long paragraph for summarization. </s>']
lowerCAmelCase = ['Summary of the text. </s>']
# fmt: off
lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1]
lowerCAmelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1]
# fmt: on
lowerCAmelCase = tokenizer(_snake_case , text_target=_snake_case )
self.assertEqual(_snake_case , batch['input_ids'][0] )
self.assertEqual(_snake_case , batch['labels'][0] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
lowerCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running'
lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
tokenizer.save_pretrained(_snake_case )
lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case )
lowerCAmelCase = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
self.assertListEqual(_snake_case , _snake_case )
shutil.rmtree(_snake_case )
lowerCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
lowerCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
tokenizer.save_pretrained(_snake_case )
lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case )
lowerCAmelCase = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
self.assertListEqual(_snake_case , _snake_case )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_snake_case )
with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
lowerCAmelCase = json.load(_snake_case )
with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
lowerCAmelCase = json.load(_snake_case )
lowerCAmelCase = [F'<extra_id_{i}>' for i in range(1_25 )]
lowerCAmelCase = added_tokens_extra_ids + [
'an_additional_special_token'
]
lowerCAmelCase = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_snake_case , _snake_case )
with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_snake_case , _snake_case )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowerCAmelCase = tokenizer_class.from_pretrained(
_snake_case , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowerCAmelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_snake_case )]
lowerCAmelCase = tokenizer_class.from_pretrained(
_snake_case , additional_special_tokens=_snake_case , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_snake_case )
lowerCAmelCase = tokenizer_class.from_pretrained(_snake_case )
self.assertTrue(tokenizer.decode([2_55] ) == '' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
lowerCAmelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
lowerCAmelCase = tokenizer.convert_tokens_to_string(_snake_case )
self.assertIsInstance(_snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
lowerCAmelCase = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
lowerCAmelCase = 0
lowerCAmelCase = tokenizer.convert_ids_to_tokens(
_snake_case , skip_special_tokens=_snake_case )
for attr in attributes_list:
setattr(_snake_case , attr + '_id' , _snake_case )
self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case )
self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case )
setattr(_snake_case , attr + '_id' , _snake_case )
self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case )
self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case )
setattr(_snake_case , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [] )
setattr(_snake_case , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
| 4 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = LxmertTokenizer
__UpperCamelCase = LxmertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : str ) -> str:
'''simple docstring'''
super().setUp()
a__ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : int , A__ : int ) -> int:
'''simple docstring'''
a__ : List[Any] = '''UNwant\u00E9d,running'''
a__ : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
a__ : Optional[int] = self.tokenizer_class(self.vocab_file )
a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] )
def __lowerCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__ : Union[str, Any] = self.get_tokenizer()
a__ : Union[str, Any] = self.get_rust_tokenizer()
a__ : str = '''I was born in 92000, and this is falsé.'''
a__ : Tuple = tokenizer.tokenize(A__ )
a__ : Tuple = rust_tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ )
a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : str = tokenizer.encode(A__ )
a__ : int = rust_tokenizer.encode(A__ )
self.assertListEqual(A__ , A__ )
| 688 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def A (__lowerCamelCase :int ):
_lowerCAmelCase = botoa.client("""iam""" )
_lowerCAmelCase = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) )
_lowerCAmelCase = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__lowerCamelCase , PolicyName=f'{role_name}_policy_permission' , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f'role {role_name} already exists. Using existing one' )
def A (__lowerCamelCase :List[str] ):
_lowerCAmelCase = botoa.client("""iam""" )
return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"]
def A ():
_lowerCAmelCase = _ask_options(
"""How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __lowerCamelCase , )
_lowerCAmelCase = None
if credentials_configuration == 0:
_lowerCAmelCase = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" )
_lowerCAmelCase = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
_lowerCAmelCase = _ask_field("""AWS Access Key ID: """ )
_lowerCAmelCase = aws_access_key_id
_lowerCAmelCase = _ask_field("""AWS Secret Access Key: """ )
_lowerCAmelCase = aws_secret_access_key
_lowerCAmelCase = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" )
_lowerCAmelCase = aws_region
_lowerCAmelCase = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __lowerCamelCase , )
if role_management == 0:
_lowerCAmelCase = _ask_field("""Enter your IAM role name: """ )
else:
_lowerCAmelCase = """accelerate_sagemaker_execution_role"""
print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' )
_create_iam_role_for_sagemaker(__lowerCamelCase )
_lowerCAmelCase = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
_lowerCAmelCase = None
if is_custom_docker_image:
_lowerCAmelCase = _ask_field("""Enter your Docker image: """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() )
_lowerCAmelCase = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
_lowerCAmelCase = None
if is_sagemaker_inputs_enabled:
_lowerCAmelCase = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , )
_lowerCAmelCase = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
_lowerCAmelCase = None
if is_sagemaker_metrics_enabled:
_lowerCAmelCase = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , )
_lowerCAmelCase = _ask_options(
"""What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , )
_lowerCAmelCase = {}
_lowerCAmelCase = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
if use_dynamo:
_lowerCAmelCase = """dynamo_"""
_lowerCAmelCase = _ask_options(
"""Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
_lowerCAmelCase = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
if use_custom_options:
_lowerCAmelCase = _ask_options(
"""Which mode do you want to use?""" , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default="""default""" , )
_lowerCAmelCase = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
_lowerCAmelCase = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="""Please enter yes or no.""" , )
_lowerCAmelCase = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
_lowerCAmelCase = _ask_options(
__lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
_lowerCAmelCase = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default="""ml.p3.2xlarge""" )
_lowerCAmelCase = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
_lowerCAmelCase = _ask_field(
"""How many machines do you want use? [1]: """ , __lowerCamelCase , default=1 , )
_lowerCAmelCase = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
| 5 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
import math
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Any ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(UpperCamelCase__ )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("""This should never happen""" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
_lowerCamelCase = 'Enter the base and the power separated by a comma: '
_lowerCamelCase , _lowerCamelCase = map(int, input(prompt).split(','))
_lowerCamelCase , _lowerCamelCase = map(int, input(prompt).split(','))
# We find the log of each number, using the function res(), which takes two
# arguments.
_lowerCamelCase = res(xa, ya)
_lowerCamelCase = res(xa, ya)
# We check for the largest number
if resa > resa:
print('Largest number is', xa, '^', ya)
elif resa > resa:
print('Largest number is', xa, '^', ya)
else:
print('Both are equal') | 6 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
__SCREAMING_SNAKE_CASE = {
'google/fnet-base': 5_1_2,
'google/fnet-large': 5_1_2,
}
__SCREAMING_SNAKE_CASE = '▁'
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "token_type_ids"]
__UpperCamelCase = FNetTokenizer
def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]:
'''simple docstring'''
a__ : Optional[int] = (
AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ )
if isinstance(A__ , A__ )
else mask_token
)
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , )
a__ : Optional[Any] = do_lower_case
a__ : Dict = remove_space
a__ : List[Any] = keep_accents
a__ : Optional[Any] = vocab_file
a__ : Any = False if not self.vocab_file else True
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Optional[int] = [self.sep_token_id]
a__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Dict = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : Union[str, Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ):
copyfile(self.vocab_file , A__ )
return (out_vocab_file,)
| 688 | 0 |
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
a = '''src/transformers'''
a = '''docs/source/en'''
a = '''.'''
def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
with open(_snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
# Find the start prompt.
_A = 0
while not lines[start_index].startswith(_snake_case ):
start_index += 1
start_index += 1
_A = start_index
while not lines[end_index].startswith(_snake_case ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
a = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
a = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
a = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
a = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
a = direct_transformers_import(TRANSFORMERS_PATH)
def _snake_case ( _snake_case : Dict ) -> List[str]:
'''simple docstring'''
_A = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _snake_case )
return [m.group(0 ) for m in matches]
def _snake_case ( _snake_case : str , _snake_case : Any ) -> int:
'''simple docstring'''
_A = 2 if text == '✅' or text == '❌' else len(_snake_case )
_A = (width - text_length) // 2
_A = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_A = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_A = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
# Let's lookup through all transformers object (once).
for attr_name in dir(_snake_case ):
_A = None
if attr_name.endswith('Tokenizer' ):
_A = slow_tokenizers
_A = attr_name[:-9]
elif attr_name.endswith('TokenizerFast' ):
_A = fast_tokenizers
_A = attr_name[:-13]
elif _re_tf_models.match(_snake_case ) is not None:
_A = tf_models
_A = _re_tf_models.match(_snake_case ).groups()[0]
elif _re_flax_models.match(_snake_case ) is not None:
_A = flax_models
_A = _re_flax_models.match(_snake_case ).groups()[0]
elif _re_pt_models.match(_snake_case ) is not None:
_A = pt_models
_A = _re_pt_models.match(_snake_case ).groups()[0]
if lookup_dict is not None:
while len(_snake_case ) > 0:
if attr_name in model_name_to_prefix.values():
_A = True
break
# Try again after removing the last word in the name
_A = ''.join(camel_case_split(_snake_case )[:-1] )
# Let's build that table!
_A = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_A = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_A = [len(_snake_case ) + 2 for c in columns]
_A = max([len(_snake_case ) for name in model_names] ) + 2
# Build the table per se
_A = '|' + '|'.join([_center_text(_snake_case , _snake_case ) for c, w in zip(_snake_case , _snake_case )] ) + '|\n'
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n"
_A = {True: '✅', False: '❌'}
for name in model_names:
_A = model_name_to_prefix[name]
_A = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_snake_case , _snake_case ) for l, w in zip(_snake_case , _snake_case )] ) + "|\n"
return table
def _snake_case ( _snake_case : List[str]=False ) -> Union[str, Any]:
'''simple docstring'''
_A , _A , _A , _A = _find_text_in_file(
filename=os.path.join(_snake_case , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , )
_A = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_snake_case , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 7 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': 5_1_2,
'distilbert-base-uncased-distilled-squad': 5_1_2,
'distilbert-base-cased': 5_1_2,
'distilbert-base-cased-distilled-squad': 5_1_2,
'distilbert-base-german-cased': 5_1_2,
'distilbert-base-multilingual-cased': 5_1_2,
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = ["input_ids", "attention_mask"]
__UpperCamelCase = DistilBertTokenizer
def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str:
'''simple docstring'''
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , )
a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , A__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars
):
a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) )
a__ : List[Any] = do_lower_case
a__ : str = strip_accents
a__ : List[str] = tokenize_chinese_chars
a__ : Dict = normalizer_class(**A__ )
a__ : List[Any] = do_lower_case
def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]:
'''simple docstring'''
a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : List[str] = [self.sep_token_id]
a__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
a__ : int = self._tokenizer.model.save(A__ , name=A__ )
return tuple(A__ )
| 688 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (a__ , a__ ):
@register_to_config
def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = ("DownEncoderBlock2D",) , _UpperCAmelCase = ("UpDecoderBlock2D",) , _UpperCAmelCase = (64,) , _UpperCAmelCase = 1 , _UpperCAmelCase = "silu" , _UpperCAmelCase = 3 , _UpperCAmelCase = 32 , _UpperCAmelCase = 256 , _UpperCAmelCase = 32 , _UpperCAmelCase = None , _UpperCAmelCase = 0.18215 , _UpperCAmelCase = "group" , ):
'''simple docstring'''
super().__init__()
# pass init params to Encoder
__A : Optional[int] = Encoder(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , )
__A : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels
__A : Union[str, Any] = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1)
__A : List[Any] = VectorQuantizer(_UpperCAmelCase , _UpperCAmelCase , beta=0.25 , remap=_UpperCAmelCase , sane_index_shape=_UpperCAmelCase)
__A : Dict = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1)
# pass init params to Decoder
__A : Any = Decoder(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , norm_type=_UpperCAmelCase , )
@apply_forward_hook
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = True):
'''simple docstring'''
__A : Optional[int] = self.encoder(_UpperCAmelCase)
__A : str = self.quant_conv(_UpperCAmelCase)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_UpperCAmelCase)
@apply_forward_hook
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True):
'''simple docstring'''
if not force_not_quantize:
__A ,__A ,__A : Dict = self.quantize(_UpperCAmelCase)
else:
__A : int = h
__A : List[Any] = self.post_quant_conv(_UpperCAmelCase)
__A : Union[str, Any] = self.decoder(_UpperCAmelCase , quant if self.config.norm_type == 'spatial' else None)
if not return_dict:
return (dec,)
return DecoderOutput(sample=_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = True):
'''simple docstring'''
__A : Any = sample
__A : Optional[int] = self.encode(_UpperCAmelCase).latents
__A : Union[str, Any] = self.decode(_UpperCAmelCase).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_UpperCAmelCase) | 8 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__SCREAMING_SNAKE_CASE = tuple[int, int]
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None:
'''simple docstring'''
a__ : Optional[int] = pos_x
a__ : str = pos_y
a__ : Optional[int] = (pos_y, pos_x)
a__ : List[str] = goal_x
a__ : Any = goal_y
a__ : Any = g_cost
a__ : Optional[int] = parent
a__ : Union[str, Any] = self.calculate_heuristic()
a__ : List[Any] = self.g_cost + self.h_cost
def __lowerCAmelCase ( self : Union[str, Any] ) -> float:
'''simple docstring'''
a__ : List[str] = self.pos_x - self.goal_x
a__ : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A__ ) + abs(A__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[Any] , A__ : Node ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]:
'''simple docstring'''
a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ )
a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ )
a__ : Dict = [self.start]
a__ : list[Node] = []
a__ : str = False
def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a__ : Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A__ )
self.closed_nodes.append(A__ )
a__ : List[Any] = self.get_successors(A__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A__ )
else:
self.open_nodes.append(A__ )
return [self.start.pos]
def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]:
'''simple docstring'''
a__ : Optional[int] = []
for action in delta:
a__ : List[Any] = parent.pos_x + action[1]
a__ : Tuple = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) )
return successors
def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]:
'''simple docstring'''
a__ : Union[str, Any] = node
a__ : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a__ : Any = current_node.parent
path.reverse()
return path
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None:
'''simple docstring'''
a__ : str = AStar(A__ , A__ )
a__ : Optional[int] = AStar(A__ , A__ )
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
a__ : int = self.fwd_astar.open_nodes.pop(0 )
a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A__ , A__ )
self.fwd_astar.closed_nodes.append(A__ )
self.bwd_astar.closed_nodes.append(A__ )
a__ : Tuple = current_bwd_node
a__ : Optional[int] = current_fwd_node
a__ : Optional[int] = {
self.fwd_astar: self.fwd_astar.get_successors(A__ ),
self.bwd_astar: self.bwd_astar.get_successors(A__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A__ )
else:
astar.open_nodes.append(A__ )
return [self.fwd_astar.start.pos]
def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]:
'''simple docstring'''
a__ : str = self.fwd_astar.retrace_path(A__ )
a__ : List[str] = self.bwd_astar.retrace_path(A__ )
bwd_path.pop()
bwd_path.reverse()
a__ : Optional[int] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE = (0, 0)
__SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = AStar(init, goal)
__SCREAMING_SNAKE_CASE = a_star.search()
__SCREAMING_SNAKE_CASE = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal)
__SCREAMING_SNAKE_CASE = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 688 | 0 |
SCREAMING_SNAKE_CASE__ = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
SCREAMING_SNAKE_CASE__ = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 9 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ):
# Construct model
if gpta_config_file == "":
a__ : Union[str, Any] = GPTaConfig()
else:
a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ )
a__ : Optional[int] = GPTaModel(lowerCAmelCase__ )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 688 | 0 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = projection_dim
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = bos_token_id
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_UpperCamelCase = input_mask.numpy()
_UpperCamelCase , _UpperCamelCase = input_mask.shape
_UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(_A )
def UpperCamelCase_ ( self : str ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ):
_UpperCamelCase = TFBlipTextModel(config=_A )
_UpperCamelCase = model(_A , attention_mask=_A , training=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = BlipTextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : List[str] ):
pass
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFBlipTextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase_ ( self : int , _A : Optional[int]=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
| 10 |
'''simple docstring'''
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
__SCREAMING_SNAKE_CASE = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
__SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
__SCREAMING_SNAKE_CASE = reader.read()
__SCREAMING_SNAKE_CASE = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
__SCREAMING_SNAKE_CASE = UNetaDModel(**config)
else:
__SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
__SCREAMING_SNAKE_CASE = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__SCREAMING_SNAKE_CASE = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__SCREAMING_SNAKE_CASE = config[key]
del config[key]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
__SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
__SCREAMING_SNAKE_CASE = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
__SCREAMING_SNAKE_CASE = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
__SCREAMING_SNAKE_CASE = param_value
__SCREAMING_SNAKE_CASE = True
if not has_changed:
__SCREAMING_SNAKE_CASE = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 688 | 0 |
'''simple docstring'''
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __A :
'''simple docstring'''
def __init__(self , A , A=2 , A=3 , A=4 , A=2 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=36 , A=3 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=6 , A=6 , A=3 , A=4 , A=None , A=1_000 , ) -> List[str]:
"""simple docstring"""
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = patch_size
_a = text_seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = coordinate_size
_a = shape_size
_a = num_labels
_a = num_choices
_a = scope
_a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_a = text_seq_length
_a = (image_size // patch_size) ** 2 + 1
_a = self.text_seq_length + self.image_seq_length
def a__ (self ) -> Optional[int]:
"""simple docstring"""
_a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_a = bbox[i, j, 3]
_a = bbox[i, j, 1]
_a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_a = bbox[i, j, 2]
_a = bbox[i, j, 0]
_a = t
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.text_seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def a__ (self , A , A , A , A , A , A , A , A ) -> List[str]:
"""simple docstring"""
_a = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
_a = model(A , pixel_values=A )
_a = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A )
_a = model(A , bbox=A , pixel_values=A , token_type_ids=A )
_a = model(A , bbox=A , pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_a = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_a = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def a__ (self , A , A , A , A , A , A , A , A ) -> Tuple:
"""simple docstring"""
_a = self.num_labels
_a = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
_a = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ (self , A , A , A , A , A , A , A , A ) -> Optional[Any]:
"""simple docstring"""
_a = self.num_labels
_a = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
_a = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def a__ (self , A , A , A , A , A , A , A , A ) -> Any:
"""simple docstring"""
_a = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
_a = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ (self ) -> int:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __A ( A , A , unittest.TestCase ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = False
__lowerCamelCase : int = False
__lowerCamelCase : int = False
__lowerCamelCase : List[str] = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCamelCase : List[str] = (
{'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel}
if is_torch_available()
else {}
)
def a__ (self , A , A , A , A , A ) -> Dict:
"""simple docstring"""
return True
def a__ (self ) -> Dict:
"""simple docstring"""
_a = LayoutLMvaModelTester(self )
_a = ConfigTester(self , config_class=A , hidden_size=37 )
def a__ (self , A , A , A=False ) -> List[str]:
"""simple docstring"""
_a = copy.deepcopy(A )
if model_class in get_values(A ):
_a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(A , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
_a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A )
elif model_class in get_values(A ):
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
elif model_class in [
*get_values(A ),
]:
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
elif model_class in [
*get_values(A ),
]:
_a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A , )
return inputs_dict
def a__ (self ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ (self ) -> Optional[Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def a__ (self ) -> Tuple:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_a = type
self.model_tester.create_and_check_model(*A )
def a__ (self ) -> List[str]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def a__ (self ) -> List[str]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def a__ (self ) -> List[Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def a__ (self ) -> List[Any]:
"""simple docstring"""
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowerCAmelCase ():
"""simple docstring"""
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
return image
@require_torch
class __A ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def a__ (self ) -> Optional[int]:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def a__ (self ) -> Any:
"""simple docstring"""
_a = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(A )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=A , return_tensors='''pt''' ).pixel_values.to(A )
_a = torch.tensor([[1, 2]] )
_a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
_a = model(
input_ids=input_ids.to(A ) , bbox=bbox.to(A ) , pixel_values=pixel_values.to(A ) , )
# verify the logits
_a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , A )
_a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1E-4 ) )
| 11 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = (KDPMaDiscreteScheduler,)
__UpperCamelCase = 10
def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int:
'''simple docstring'''
a__ : Optional[int] = {
'''num_train_timesteps''': 1_1_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**A__ )
return config
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=A__ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=A__ , beta_end=A__ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A__ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
a__ : Any = self.scheduler_classes[0]
a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
a__ : Dict = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : Tuple = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Dict = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ )
a__ : Union[str, Any] = model(A__ , A__ )
a__ : List[str] = scheduler.step(A__ , A__ , A__ )
a__ : Optional[Any] = output.prev_sample
a__ : Tuple = torch.sum(torch.abs(A__ ) )
a__ : Optional[int] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
a__ : List[Any] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : Tuple = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : List[Any] = self.dummy_model()
a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Any = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : str = scheduler.scale_model_input(A__ , A__ )
a__ : List[str] = model(A__ , A__ )
a__ : str = scheduler.step(A__ , A__ , A__ )
a__ : List[Any] = output.prev_sample
a__ : Dict = torch.sum(torch.abs(A__ ) )
a__ : Optional[Any] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
a__ : Optional[int] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : List[Any] = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps , device=A__ )
a__ : Union[str, Any] = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ )
a__ : List[Any] = model(A__ , A__ )
a__ : Any = scheduler.step(A__ , A__ , A__ )
a__ : List[str] = output.prev_sample
a__ : Any = torch.sum(torch.abs(A__ ) )
a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) )
if str(A__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 688 | 0 |
def UpperCamelCase ( lowercase_ ) -> set:
'''simple docstring'''
lowercase__ : Optional[Any] = set()
# edges = list of graph's edges
lowercase__ : List[Any] = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase__ , lowercase__ : Union[str, Any] = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def UpperCamelCase ( lowercase_ ) -> set:
'''simple docstring'''
lowercase__ : Tuple = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 12 |
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
a__ : str = ['''a''', '''b''', '''c''']
# Defaults to last layer if both are None
a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ )
self.assertEqual(A__ , ['''c'''] )
self.assertEqual(A__ , [2] )
# Out indices set to match out features
a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features set to match out indices
a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features selected from negative indices
a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [-3, -1] )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ )
# Out features must be a list
with self.assertRaises(A__ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
a__ : Optional[Any] = BackboneMixin()
a__ : int = ['''a''', '''b''', '''c''']
a__ : List[Any] = ['''a''', '''c''']
a__ : Tuple = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
a__ : Dict = ['''a''', '''b''']
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
a__ : int = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 688 | 0 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "AAPL" ) -> str:
__lowerCamelCase : str = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
__lowerCamelCase : Optional[int] = BeautifulSoup(requests.get(UpperCAmelCase_ ).text , 'html.parser' )
__lowerCamelCase : Optional[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __a ( lowerCAmelCase__ : List[Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
a__ : Dict = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' )
a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' )
a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' )
a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' )
a__ : Any = value.float()
for key, value in codebook_state_dict.items():
a__ : List[str] = value
return upgrade
@torch.no_grad()
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ):
if config_path is not None:
a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ )
else:
a__ : Optional[int] = FlavaConfig()
a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval()
a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
else:
a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )
a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
a__ : Any = hf_model.state_dict()
a__ : Optional[Any] = count_parameters(lowerCAmelCase__ )
a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 688 | 0 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def __UpperCAmelCase ( __a : Any ) -> Union[str, Any]:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_a : List[Any] = k.replace(__a ,__a )
if k.startswith('''encoder''' ):
_a : Dict = k.replace('''.attn''' ,'''.self_attn''' )
_a : Optional[int] = k.replace('''norm1''' ,'''self_attn_layer_norm''' )
_a : Union[str, Any] = k.replace('''norm2''' ,'''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_a : int = k.replace('''norm1''' ,'''self_attn_layer_norm''' )
_a : Any = k.replace('''norm2''' ,'''encoder_attn_layer_norm''' )
_a : List[Any] = k.replace('''norm3''' ,'''final_layer_norm''' )
return k
def __UpperCAmelCase ( __a : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_a : List[str] = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_a : List[str] = sd.pop(__a )
_a : Any = k.replace('''layernorm_embedding''' ,'''layer_norm''' )
assert new_k not in sd
_a : str = v
a__ = ['''START''']
@torch.no_grad()
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> str:
"""simple docstring"""
_a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )
_a : Optional[int] = model['''model''']
_a : Tuple = BlenderbotConfig.from_json_file(__a )
_a : Tuple = BlenderbotForConditionalGeneration(__a )
_a : Union[str, Any] = m.model.state_dict().keys()
_a : str = []
_a : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_a : str = rename_state_dict_key(__a )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_a : int = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__a )
m.model.load_state_dict(__a ,strict=__a )
m.half()
m.save_pretrained(__a )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
a__ = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 14 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__SCREAMING_SNAKE_CASE = 4
__SCREAMING_SNAKE_CASE = 3
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
def __a ( lowerCAmelCase__ : List[str] ):
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def __a ( ):
a__ : str = int(os.environ['''RANK'''] )
a__ : int = int(os.environ['''WORLD_SIZE'''] )
a__ : str = ArgumentParser()
parser.add_argument('''--streaming''' , type=lowerCAmelCase__ )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ )
parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 )
a__ : int = parser.parse_args()
a__ : List[str] = args.streaming
a__ : Dict = args.num_workers
a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) )
a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a__ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 688 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = KandinskyVaaControlnetImgaImgPipeline
A__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
A__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
A__ = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
A__ = False
@property
def lowerCamelCase__ (self : Tuple ) -> int:
"""simple docstring"""
return 32
@property
def lowerCamelCase__ (self : Optional[int] ) -> List[Any]:
"""simple docstring"""
return 32
@property
def lowerCamelCase__ (self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCamelCase__ (self : Any ) -> List[Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCamelCase__ (self : List[str] ) -> Any:
"""simple docstring"""
return 100
@property
def lowerCamelCase__ (self : Optional[int] ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase__ = UNetaDConditionModel(**_UpperCAmelCase )
return model
@property
def lowerCamelCase__ (self : Dict ) -> List[str]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCamelCase__ (self : Any ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCamelCase__ (self : Tuple ) -> str:
"""simple docstring"""
lowercase__ = self.dummy_unet
lowercase__ = self.dummy_movq
lowercase__ = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00_085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
lowercase__ = DDIMScheduler(**_UpperCAmelCase )
lowercase__ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCamelCase__ (self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=0 ) -> Dict:
"""simple docstring"""
lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_UpperCAmelCase )
# create init_image
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create hint
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
if str(_UpperCAmelCase ).startswith("""mps""" ):
lowercase__ = torch.manual_seed(_UpperCAmelCase )
else:
lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
lowercase__ = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase__ (self : int ) -> List[str]:
"""simple docstring"""
lowercase__ = """cpu"""
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**_UpperCAmelCase )
lowercase__ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
lowercase__ = output.images
lowercase__ = pipe(
**self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0]
lowercase__ = image[0, -3:, -3:, -1]
lowercase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ = np.array(
[0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase__ (self : List[str] ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ (self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
lowercase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase__ = init_image.resize((512, 512) )
lowercase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
lowercase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0
lowercase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowercase__ = """A robot, 4k photo"""
lowercase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(_UpperCAmelCase )
lowercase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
lowercase__ = pipeline.to(_UpperCAmelCase )
pipeline.set_progress_bar_config(disable=_UpperCAmelCase )
lowercase__ = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase__ , lowercase__ = pipe_prior(
_UpperCAmelCase , image=_UpperCAmelCase , strength=0.85 , generator=_UpperCAmelCase , negative_prompt="""""" , ).to_tuple()
lowercase__ = pipeline(
image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , )
lowercase__ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 15 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 | 0 |
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = LEDConfig
lowerCamelCase__ = {}
lowerCamelCase__ = "gelu"
def __init__( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : str=7 , __lowerCamelCase : Any=True , __lowerCamelCase : str=False , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=20 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Dict=4 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = seq_length
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = pad_token_id
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
SCREAMING_SNAKE_CASE = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
SCREAMING_SNAKE_CASE = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = tf.concat(
[tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , )
SCREAMING_SNAKE_CASE = global_attention_mask
return config, inputs_dict
def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = TFLEDModel(config=__lowerCamelCase ).get_decoder()
SCREAMING_SNAKE_CASE = inputs_dict["input_ids"]
SCREAMING_SNAKE_CASE = input_ids[:1, :]
SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :]
SCREAMING_SNAKE_CASE = 1
# first forward pass
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size )
SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 )
SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx]
SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 )
def __a ( A__ : int , A__ : Dict , A__ : List[str] , A__ : int=None , A__ : List[Any]=None , A__ : Optional[int]=None , A__ : Dict=None , ):
if attention_mask is None:
SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
lowerCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
lowerCamelCase__ = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCamelCase__ = True
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = TFLEDModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase )
def _snake_case ( self : Tuple ):
self.config_tester.run_common_tests()
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = tf.zeros_like(inputs_dict["attention_mask"] )
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.model_tester.seq_length
SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = outputs.decoder_attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_attentions]
SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_decoder_attentions_output(__lowerCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) )
self.assertEqual(model.config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def _snake_case ( self : List[Any] ):
pass
def _snake_case ( self : List[str] ):
# TODO: Head-masking not yet implement
pass
def __a ( A__ : Any ):
return tf.constant(A__ , dtype=tf.intaa )
__A : Optional[int] = 1e-4
@slow
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
SCREAMING_SNAKE_CASE = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
SCREAMING_SNAKE_CASE = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )[0]
SCREAMING_SNAKE_CASE = (1, 1024, 768)
self.assertEqual(output.shape , __lowerCamelCase )
# change to expected output here
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
SCREAMING_SNAKE_CASE = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
SCREAMING_SNAKE_CASE = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )[0]
SCREAMING_SNAKE_CASE = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __lowerCamelCase )
# change to expected output here
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 , rtol=1e-3 ) | 16 |
'''simple docstring'''
import enum
import shutil
import sys
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size()
__SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class lowerCAmelCase__ ( enum.Enum ):
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 1
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ):
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ):
forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def __a ( ):
forceWrite('''\r''' )
def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def __a ( ):
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def __a ( ):
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 688 | 0 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Tuple , __A : int , __A : int , __A : int , __A : str=0.0 , __A : Optional[int] = None , __A : str = "geglu" , __A : Optional[int] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : str = "layer_norm" , __A : bool = False , ):
super().__init__()
__A : Any = only_cross_attention
__A : Dict = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero"""
__A : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm"""
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"""
F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
__A : str = AdaLayerNorm(__A , __A )
elif self.use_ada_layer_norm_zero:
__A : Dict = AdaLayerNormZero(__A , __A )
else:
__A : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A )
__A : List[str] = Attention(
query_dim=__A , heads=__A , dim_head=__A , dropout=__A , bias=__A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__A , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
__A : Optional[Any] = (
AdaLayerNorm(__A , __A )
if self.use_ada_layer_norm
else nn.LayerNorm(__A , elementwise_affine=__A )
)
__A : Any = Attention(
query_dim=__A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__A , dim_head=__A , dropout=__A , bias=__A , upcast_attention=__A , ) # is self-attn if encoder_hidden_states is none
else:
__A : str = None
__A : int = None
# 3. Feed-forward
__A : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A )
__A : Dict = FeedForward(__A , dropout=__A , activation_fn=__A , final_dropout=__A )
# let chunk size default to None
__A : List[Any] = None
__A : Union[str, Any] = 0
def lowerCAmelCase_ ( self : List[str] , __A : Optional[int] , __A : int ):
# Sets chunk feed-forward
__A : str = chunk_size
__A : List[str] = dim
def lowerCAmelCase_ ( self : Optional[int] , __A : torch.FloatTensor , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.LongTensor] = None , __A : Dict[str, Any] = None , __A : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
__A : Tuple = self.norma(__A , __A )
elif self.use_ada_layer_norm_zero:
__A , __A , __A , __A , __A : Union[str, Any] = self.norma(
__A , __A , __A , hidden_dtype=hidden_states.dtype )
else:
__A : List[str] = self.norma(__A )
__A : Tuple = cross_attention_kwargs if cross_attention_kwargs is not None else {}
__A : Optional[int] = self.attna(
__A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__A , **__A , )
if self.use_ada_layer_norm_zero:
__A : List[Any] = gate_msa.unsqueeze(1 ) * attn_output
__A : Optional[int] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
__A : Union[str, Any] = (
self.norma(__A , __A ) if self.use_ada_layer_norm else self.norma(__A )
)
__A : Tuple = self.attna(
__A , encoder_hidden_states=__A , attention_mask=__A , **__A , )
__A : Union[str, Any] = attn_output + hidden_states
# 3. Feed-forward
__A : Tuple = self.norma(__A )
if self.use_ada_layer_norm_zero:
__A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" )
__A : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
__A : List[str] = torch.cat(
[self.ff(__A ) for hid_slice in norm_hidden_states.chunk(__A , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
__A : List[Any] = self.ff(__A )
if self.use_ada_layer_norm_zero:
__A : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output
__A : Any = ff_output + hidden_states
return hidden_states
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Union[str, Any] , __A : int , __A : Optional[int] = None , __A : int = 4 , __A : float = 0.0 , __A : str = "geglu" , __A : bool = False , ):
super().__init__()
__A : Any = int(dim * mult )
__A : Optional[int] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
__A : Tuple = GELU(__A , __A )
if activation_fn == "gelu-approximate":
__A : int = GELU(__A , __A , approximate="""tanh""" )
elif activation_fn == "geglu":
__A : List[str] = GEGLU(__A , __A )
elif activation_fn == "geglu-approximate":
__A : Any = ApproximateGELU(__A , __A )
__A : Optional[int] = nn.ModuleList([] )
# project in
self.net.append(__A )
# project dropout
self.net.append(nn.Dropout(__A ) )
# project out
self.net.append(nn.Linear(__A , __A ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__A ) )
def lowerCAmelCase_ ( self : Any , __A : Union[str, Any] ):
for module in self.net:
__A : List[Any] = module(__A )
return hidden_states
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Optional[Any] , __A : int , __A : int , __A : str = "none" ):
super().__init__()
__A : Dict = nn.Linear(__A , __A )
__A : List[Any] = approximate
def lowerCAmelCase_ ( self : str , __A : Optional[Any] ):
if gate.device.type != "mps":
return F.gelu(__A , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def lowerCAmelCase_ ( self : List[Any] , __A : Optional[int] ):
__A : Union[str, Any] = self.proj(__A )
__A : Tuple = self.gelu(__A )
return hidden_states
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Union[str, Any] , __A : int , __A : int ):
super().__init__()
__A : Optional[int] = nn.Linear(__A , dim_out * 2 )
def lowerCAmelCase_ ( self : Tuple , __A : Tuple ):
if gate.device.type != "mps":
return F.gelu(__A )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def lowerCAmelCase_ ( self : int , __A : Dict ):
__A , __A : Dict = self.proj(__A ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__A )
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Optional[Any] , __A : int , __A : int ):
super().__init__()
__A : Tuple = nn.Linear(__A , __A )
def lowerCAmelCase_ ( self : int , __A : Tuple ):
__A : List[str] = self.proj(__A )
return x * torch.sigmoid(1.7_0_2 * x )
class lowerCamelCase_ ( nn.Module ):
def __init__( self : int , __A : str , __A : str ):
super().__init__()
__A : Optional[Any] = nn.Embedding(__A , __A )
__A : Any = nn.SiLU()
__A : Optional[Any] = nn.Linear(__A , embedding_dim * 2 )
__A : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A )
def lowerCAmelCase_ ( self : str , __A : Any , __A : Tuple ):
__A : List[Any] = self.linear(self.silu(self.emb(__A ) ) )
__A , __A : Union[str, Any] = torch.chunk(__A , 2 )
__A : str = self.norm(__A ) * (1 + scale) + shift
return x
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Tuple , __A : Union[str, Any] , __A : int ):
super().__init__()
__A : Any = CombinedTimestepLabelEmbeddings(__A , __A )
__A : Any = nn.SiLU()
__A : Tuple = nn.Linear(__A , 6 * embedding_dim , bias=__A )
__A : Union[str, Any] = nn.LayerNorm(__A , elementwise_affine=__A , eps=1e-6 )
def lowerCAmelCase_ ( self : Tuple , __A : Any , __A : Union[str, Any] , __A : Dict , __A : Optional[int]=None ):
__A : Tuple = self.linear(self.silu(self.emb(__A , __A , hidden_dtype=__A ) ) )
__A , __A , __A , __A , __A , __A : List[Any] = emb.chunk(6 , dim=1 )
__A : str = self.norm(__A ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class lowerCamelCase_ ( nn.Module ):
def __init__( self : Dict , __A : int , __A : int , __A : int , __A : Optional[str] = None , __A : float = 1e-5 ):
super().__init__()
__A : Optional[Any] = num_groups
__A : Tuple = eps
if act_fn is None:
__A : Union[str, Any] = None
else:
__A : Tuple = get_activation(__A )
__A : Optional[Any] = nn.Linear(__A , out_dim * 2 )
def lowerCAmelCase_ ( self : List[Any] , __A : List[Any] , __A : Optional[int] ):
if self.act:
__A : Union[str, Any] = self.act(__A )
__A : List[Any] = self.linear(__A )
__A : Dict = emb[:, :, None, None]
__A , __A : str = emb.chunk(2 , dim=1 )
__A : str = F.group_norm(__A , self.num_groups , eps=self.eps )
__A : Any = x * (1 + scale) + shift
return x
| 17 |
'''simple docstring'''
import inspect
import unittest
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
a__ : int = '''k-diffusion'''
elif backend == "invisible_watermark":
a__ : int = '''invisible-watermark'''
assert backend in deps, F'{backend} is not in the deps table!'
| 688 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "swinv2"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = (0, 0, 0, 0)
| 18 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def __a ( lowerCAmelCase__ : Dict ):
a__ , a__ : int = image.size
a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0
a__ : Any = image[None].transpose(0 , 3 , 1 , 2 )
a__ : Dict = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ )
@torch.no_grad()
def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
if isinstance(A__ , PIL.Image.Image ):
a__ : List[Any] = 1
elif isinstance(A__ , torch.Tensor ):
a__ : List[str] = image.shape[0]
else:
raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' )
if isinstance(A__ , PIL.Image.Image ):
a__ : Union[str, Any] = preprocess(A__ )
a__ , a__ : Dict = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width)
a__ : Optional[int] = next(self.unet.parameters() ).dtype
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ )
a__ : Any = image.to(device=self.device , dtype=A__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(A__ , device=self.device )
a__ : int = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
a__ : str = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
a__ : str = {}
if accepts_eta:
a__ : Dict = eta
for t in self.progress_bar(A__ ):
# concat latents and low resolution image in the channel dimension.
a__ : str = torch.cat([latents, image] , dim=1 )
a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
a__ : Union[str, Any] = self.unet(A__ , A__ ).sample
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample
# decode the image latents with the VQVAE
a__ : List[Any] = self.vqvae.decode(A__ ).sample
a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 )
a__ : Optional[Any] = image / 2 + 0.5
a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a__ : Union[str, Any] = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = """▁"""
_a = {"""vocab_file""": """sentencepiece.bpe.model"""}
_a = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
}
}
_a = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
_a = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase( lowerCamelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = ['input_ids', 'attention_mask']
lowercase__ = []
lowercase__ = []
def __init__( self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=None , __a=None , __a=None , __a = None , __a=None , **__a , ) -> Optional[Any]:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a) if isinstance(__a , __a) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , tokenizer_file=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(__a))
_UpperCamelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
_UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_UpperCamelCase = 1
_UpperCamelCase = len(self.sp_model)
_UpperCamelCase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a)
}
_UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()}
_UpperCamelCase = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
_UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
_UpperCamelCase = list(self.lang_code_to_id.keys())
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens])
_UpperCamelCase = src_lang if src_lang is not None else '''en_XX'''
_UpperCamelCase = self.lang_code_to_id[self._src_lang]
_UpperCamelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
def __getstate__( self) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
_UpperCamelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __a) -> int:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def UpperCAmelCase ( self , __a) -> None:
'''simple docstring'''
_UpperCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def UpperCAmelCase ( self , __a , __a = None , __a = False) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a)
_UpperCamelCase = [1] * len(self.prefix_tokens)
_UpperCamelCase = [1] * len(self.suffix_tokens)
if token_ids_a is None:
return prefix_ones + ([0] * len(__a)) + suffix_ones
return prefix_ones + ([0] * len(__a)) + ([0] * len(__a)) + suffix_ones
def UpperCAmelCase ( self , __a , __a = None) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCAmelCase ( self , __a , __a = None) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def UpperCAmelCase ( self , __a , __a , __a , __a , **__a) -> List[Any]:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''')
_UpperCamelCase = src_lang
_UpperCamelCase = self(__a , add_special_tokens=__a , return_tensors=__a , **__a)
_UpperCamelCase = self.convert_tokens_to_ids(__a)
_UpperCamelCase = tgt_lang_id
return inputs
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def UpperCAmelCase ( self , __a) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(__a , out_type=__a)
def UpperCAmelCase ( self , __a) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_UpperCamelCase = self.sp_model.PieceToId(__a)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCAmelCase ( self , __a) -> Union[str, Any]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def UpperCAmelCase ( self , __a) -> int:
'''simple docstring'''
_UpperCamelCase = ''''''.join(__a).replace(__a , ''' ''').strip()
return out_string
def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__a):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''')
return
_UpperCamelCase = os.path.join(
__a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(__a) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , __a)
elif not os.path.isfile(self.vocab_file):
with open(__a , '''wb''') as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(__a)
return (out_vocab_file,)
def UpperCAmelCase ( self , __a , __a = "en_XX" , __a = None , __a = "ro_RO" , **__a , ) -> BatchEncoding:
'''simple docstring'''
_UpperCamelCase = src_lang
_UpperCamelCase = tgt_lang
return super().prepare_seqaseq_batch(__a , __a , **__a)
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang)
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def UpperCAmelCase ( self , __a) -> None:
'''simple docstring'''
_UpperCamelCase = self.lang_code_to_id[src_lang]
_UpperCamelCase = []
_UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
def UpperCAmelCase ( self , __a) -> None:
'''simple docstring'''
_UpperCamelCase = self.lang_code_to_id[lang]
_UpperCamelCase = []
_UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
| 19 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ):
a__ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a__ : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=A__ , scheduler=A__ , movq=A__ , )
a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if latents is None:
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
a__ : int = latents.to(A__ )
a__ : Tuple = latents * scheduler.init_noise_sigma
return latents
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' )
a__ : Union[str, Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A__ , A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
a__ : int = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=A__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a__ : Dict = None
for cpu_offloaded_model in [self.unet, self.movq]:
a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ )
# We'll offload the last model manually.
a__ : Dict = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(A__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A__ )
def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str:
'''simple docstring'''
a__ : Optional[Any] = self._execution_device
a__ : List[str] = guidance_scale > 1.0
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : Optional[int] = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 )
a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
self.scheduler.set_timesteps(A__ , device=A__ )
a__ : int = self.scheduler.timesteps
a__ : str = self.movq.config.latent_channels
a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor )
# create initial latent
a__ : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(A__ ) ):
# expand the latents if we are doing classifier free guidance
a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint}
a__ : Union[str, Any] = self.unet(
sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0]
if do_classifier_free_guidance:
a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
a__ , a__ : Dict = noise_pred.chunk(2 )
a__ , a__ : Optional[Any] = variance_pred.chunk(2 )
a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(
A__ , A__ , A__ , generator=A__ , )[0]
# post-processing
a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a__ : Union[str, Any] = image * 0.5 + 0.5
a__ : str = image.clamp(0 , 1 )
a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a__ : int = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ (lowercase__ ):
snake_case ='ClapFeatureExtractor'
snake_case =('RobertaTokenizer', 'RobertaTokenizerFast')
def __init__( self , lowercase_ , lowercase_) -> List[str]:
super().__init__(lowercase_ , lowercase_)
def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_) -> Optional[Any]:
a__ =kwargs.pop('sampling_rate' , lowercase_)
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.')
if text is not None:
a__ =self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_)
if audios is not None:
a__ =self.feature_extractor(
lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_)
if text is not None and audios is not None:
a__ =audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_)
def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Dict:
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Tuple:
return self.tokenizer.decode(*lowercase_ , **lowercase_)
@property
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =self.tokenizer.model_input_names
a__ =self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
| 20 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__SCREAMING_SNAKE_CASE = {
'facebook/esm2_t6_8M_UR50D': 1_0_2_4,
'facebook/esm2_t12_35M_UR50D': 1_0_2_4,
}
def __a ( lowerCAmelCase__ : Union[str, Any] ):
with open(lowerCAmelCase__ , '''r''' ) as f:
a__ : Optional[int] = f.read().splitlines()
return [l.strip() for l in lines]
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**A__ )
a__ : Union[str, Any] = load_vocab_file(A__ )
a__ : int = dict(enumerate(self.all_tokens ) )
a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
a__ : List[Any] = unk_token
a__ : Any = cls_token
a__ : Any = pad_token
a__ : Any = mask_token
a__ : Any = eos_token
a__ : int = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __lowerCAmelCase ( self : Any , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]:
'''simple docstring'''
return text.split()
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
return len(self._id_to_token )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def __lowerCAmelCase ( self : Any , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Tuple = [self.cls_token_id]
a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
a__ : Any = [1] + ([0] * len(A__ )) + [1]
if token_ids_a is not None:
mask += [0] * len(A__ ) + [1]
return mask
def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __lowerCAmelCase ( self : Any ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int:
'''simple docstring'''
return super()._add_tokens(A__ , special_tokens=A__ )
| 688 | 0 |
from scipy.stats import spearmanr
import datasets
UpperCAmelCase_ : Optional[Any] = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n"
UpperCAmelCase_ : Tuple = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n"
UpperCAmelCase_ : List[Any] = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def A__ ( self :Union[str, Any] , __snake_case :str , __snake_case :Optional[int] , __snake_case :str=False ):
'''simple docstring'''
__magic_name__ : Any =spearmanr(__snake_case , __snake_case )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 21 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str ) -> Dict:
'''simple docstring'''
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]:
'''simple docstring'''
if not self.initialized:
a__ : Optional[Any] = RagRetriever(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : Union[str, Any] = True
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
self.retriever.index.init_index()
def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ )
return doc_ids, retrieved_doc_embeds
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]:
'''simple docstring'''
if index is not None and index.is_initialized() and len(A__ ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : List[str] = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ )
for worker in self.retrieval_workers
] )
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict:
'''simple docstring'''
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) )
else:
a__ , a__ : int = self._main_retrieve(A__ , A__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ )
a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ )
a__ : str = rag_tokenizer.question_encoder
a__ : List[str] = rag_tokenizer.generator
if indexed_dataset is not None:
a__ : List[Any] = '''custom'''
a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ )
else:
a__ : Optional[Any] = cls._build_index(A__ )
return cls(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
| 688 | 0 |
'''simple docstring'''
from jiwer import compute_measures
import datasets
_snake_case : Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
_snake_case : List[str] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n'
_snake_case : List[str] = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=False ) -> str:
"""simple docstring"""
if concatenate_texts:
return compute_measures(lowerCAmelCase_ , lowerCAmelCase_ )["wer"]
else:
_a = 0
_a = 0
for prediction, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = compute_measures(lowerCAmelCase_ , lowerCAmelCase_ )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 22 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
a__ : List[str] = len(lowerCAmelCase__ )
a__ : int = [[0] * n for i in range(lowerCAmelCase__ )]
for i in range(lowerCAmelCase__ ):
a__ : Dict = y_points[i]
for i in range(2 , lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : Any = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Tuple = {
"""configuration_table_transformer""": [
"""TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""TableTransformerConfig""",
"""TableTransformerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TableTransformerForObjectDetection""",
"""TableTransformerModel""",
"""TableTransformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
snake_case__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "swin2sr"
__UpperCamelCase = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**A__ )
a__ : List[str] = image_size
a__ : Optional[Any] = patch_size
a__ : Dict = num_channels
a__ : Optional[int] = embed_dim
a__ : int = depths
a__ : Optional[int] = len(A__ )
a__ : Dict = num_heads
a__ : List[Any] = window_size
a__ : Optional[int] = mlp_ratio
a__ : Optional[int] = qkv_bias
a__ : Union[str, Any] = hidden_dropout_prob
a__ : Dict = attention_probs_dropout_prob
a__ : Union[str, Any] = drop_path_rate
a__ : int = hidden_act
a__ : int = use_absolute_embeddings
a__ : Dict = layer_norm_eps
a__ : List[str] = initializer_range
a__ : List[Any] = upscale
a__ : List[Any] = img_range
a__ : Optional[int] = resi_connection
a__ : int = upsampler
| 688 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
UpperCAmelCase_ : Dict = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class lowerCAmelCase ( __lowerCAmelCase):
__lowercase : Any = '''roberta'''
def __init__( self , __SCREAMING_SNAKE_CASE=5_0265 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Dict:
'''simple docstring'''
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = hidden_act
__snake_case = intermediate_size
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = initializer_range
__snake_case = layer_norm_eps
__snake_case = position_embedding_type
__snake_case = use_cache
__snake_case = classifier_dropout
class lowerCAmelCase ( __lowerCAmelCase):
@property
def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
__snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__snake_case = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 24 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
a__ : int = 0
def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Dict = CLIPConfig()
# Create a dummy config file with image_proceesor_type
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[int] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict()
config_dict.pop('''image_processor_type''' )
a__ : Union[str, Any] = CLIPImageProcessor(**A__ )
# save in new folder
model_config.save_pretrained(A__ )
config.save_pretrained(A__ )
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ )
# make sure private variable is not incorrectly saved
a__ : Optional[Any] = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''clip-base is not a local folder and is not a valid model identifier''' ):
a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' )
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
with self.assertRaises(A__ ):
a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(A__ ):
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(A__ ):
AutoImageProcessor.register(A__ , A__ )
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[str] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = CustomImageProcessor.from_pretrained(A__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
'''simple docstring'''
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = True
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# If remote code is not set, the default is to use local
a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
a__ : Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
a__ : Optional[int] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(A__ , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 688 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor(
[
[
8.222_0991, # 3rd highest value; idx. 0
-0.562_0044,
5.2322_9752,
4.038_6393,
-6.879_8378,
-0.5478_5802,
-3.201_2153,
2.9277_7176,
1.8817_1953,
7.3534_1276, # 5th highest value; idx. 9
8.4320_7833, # 2nd highest value; idx. 10
-9.8571_1836,
-5.9620_9236,
-1.1303_9161,
-7.111_5294,
-0.836_9633,
-5.318_6408,
7.0642_7407,
0.8136_9344,
-0.8202_3817,
-5.917_9796,
0.5881_3443,
-6.9977_8438,
4.7155_1189,
-0.1877_1637,
7.4402_0759, # 4th highest value; idx. 25
9.3845_0987, # 1st highest value; idx. 26
2.1266_2941,
-9.3256_2038,
2.3565_2522,
], # cummulative prob of 5 highest values <= 0.6
[
0.5842_5518,
4.5313_9238,
-5.5751_0464,
-6.2803_0699,
-7.1952_9503,
-4.0212_2551,
1.3933_7037,
-6.0670_7057,
1.5948_0517,
-9.64_3119,
0.0390_7799,
0.6723_1762,
-8.8820_6726,
6.2711_5922, # 4th highest value; idx. 13
2.2852_0723,
4.8276_7506,
4.3042_1368,
8.827_5313, # 2nd highest value; idx. 17
5.4402_9958, # 5th highest value; idx. 18
-4.473_5794,
7.3857_9536, # 3rd highest value; idx. 20
-2.9105_1663,
2.6194_6077,
-2.567_4762,
-9.4895_9302,
-4.0292_2645,
-1.3541_6918,
9.6770_2323, # 1st highest value; idx. 27
-5.8947_8553,
1.8537_0467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor(
[8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above
SCREAMING_SNAKE_CASE : Union[str, Any] = tf_top_k_top_p_filtering(a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
SCREAMING_SNAKE_CASE : List[Any] = output[output != -float("inf" )]
SCREAMING_SNAKE_CASE : Tuple = tf.cast(
tf.where(tf.not_equal(a , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(a , a , rtol=1e-12 )
tf.debugging.assert_equal(a , a )
@require_tf
class _UpperCamelCase ( unittest.TestCase , __A ):
'''simple docstring'''
if is_tf_available():
lowerCamelCase__ ={
'AutoModelForCausalLM': TFAutoModelForCausalLM,
'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq,
'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM,
'AutoModelForVision2Seq': TFAutoModelForVisionaSeq,
'LogitsProcessorList': TFLogitsProcessorList,
'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor,
'create_tensor_fn': tf.convert_to_tensor,
'floats_tensor': floats_tensor,
'return_tensors': 'tf',
}
@slow
def __UpperCamelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = 2
class _UpperCamelCase ( tf.Module ):
'''simple docstring'''
def __init__( self : List[str] , a : Optional[int] ) -> str:
"""simple docstring"""
super(a , self ).__init__()
SCREAMING_SNAKE_CASE : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ),
) , jit_compile=a , )
def __UpperCamelCase ( self : Union[str, Any] , a : List[str] , a : Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.model.generate(
input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , )
return {"sequences": outputs["sequences"]}
SCREAMING_SNAKE_CASE : Dict = [[2, 0], [102, 103]]
SCREAMING_SNAKE_CASE : Optional[int] = [[1, 0], [1, 1]]
SCREAMING_SNAKE_CASE : Any = DummyModel(model=a )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} )
SCREAMING_SNAKE_CASE : Tuple = tf.saved_model.load(a ).signatures["serving_default"]
for batch_size in range(1 , len(a ) + 1 ):
SCREAMING_SNAKE_CASE : Optional[int] = {
"input_ids": tf.constant(dummy_input_ids[:batch_size] ),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size] ),
}
SCREAMING_SNAKE_CASE : Dict = serving_func(**a )["sequences"]
SCREAMING_SNAKE_CASE : Union[str, Any] = test_model.generate(**a , max_new_tokens=a )
tf.debugging.assert_equal(a , a )
@slow
def __UpperCamelCase ( self : Any ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE : int = 1
SCREAMING_SNAKE_CASE : Union[str, Any] = 2
class _UpperCamelCase ( tf.Module ):
'''simple docstring'''
def __init__( self : List[str] , a : List[Any] ) -> Optional[int]:
"""simple docstring"""
super(a , self ).__init__()
SCREAMING_SNAKE_CASE : List[Any] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ),
) , jit_compile=a , )
def __UpperCamelCase ( self : str , a : List[str] , a : str ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.model.generate(
input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , )
return {"sequences": outputs["sequences"]}
SCREAMING_SNAKE_CASE : str = [[2], [102, 103]]
SCREAMING_SNAKE_CASE : str = [[1], [1, 1]]
SCREAMING_SNAKE_CASE : Optional[Any] = DummyModel(model=a )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} )
SCREAMING_SNAKE_CASE : List[Any] = tf.saved_model.load(a ).signatures["serving_default"]
for input_row in range(len(a ) ):
SCREAMING_SNAKE_CASE : List[str] = {
"input_ids": tf.constant([dummy_input_ids[input_row]] ),
"attention_mask": tf.constant([dummy_attention_masks[input_row]] ),
}
SCREAMING_SNAKE_CASE : Union[str, Any] = serving_func(**a )["sequences"]
SCREAMING_SNAKE_CASE : str = test_model.generate(**a , max_new_tokens=a )
tf.debugging.assert_equal(a , a )
@slow
@require_tensorflow_text
def __UpperCamelCase ( self : Tuple ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=a )
class _UpperCamelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(a , "spiece.model" ) , "rb" ).read() )
SCREAMING_SNAKE_CASE : str = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" )
def __UpperCamelCase ( self : Union[str, Any] , a : Optional[Any] , *a : Union[str, Any] , **a : int ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.tokenize(a )
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = text.pad_model_inputs(
a , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
SCREAMING_SNAKE_CASE : str = self.model.generate(input_ids=a , attention_mask=a )
return self.tokenizer.detokenize(a )
SCREAMING_SNAKE_CASE : Union[str, Any] = CompleteSentenceTransformer()
SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" )
SCREAMING_SNAKE_CASE : Dict = complete_model(a )
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.keras.Model(a , a )
keras_model.save(a )
def __UpperCamelCase ( self : int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
SCREAMING_SNAKE_CASE : Dict = 14
SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE : int = "Hello, my dog is cute and"
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(a , return_tensors="tf" )
SCREAMING_SNAKE_CASE : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE : Dict = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(**a , eos_token_id=a , **a )
self.assertTrue(expectation == len(generated_tokens[0] ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = [638, 198]
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(**a , eos_token_id=a , **a )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def __UpperCamelCase ( self : Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" )
SCREAMING_SNAKE_CASE : Optional[int] = "Hugging Face is a technology company based in New York and Paris."
SCREAMING_SNAKE_CASE : List[Any] = bart_tokenizer(a , return_tensors="tf" ).input_ids
SCREAMING_SNAKE_CASE : Dict = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" )
SCREAMING_SNAKE_CASE : Dict = bart_model.generate(a ).numpy()
class _UpperCamelCase ( __A ):
'''simple docstring'''
def __UpperCamelCase ( self : Optional[int] , a : int , a : List[str]=None , **a : List[str] ) -> Optional[int]:
"""simple docstring"""
return super().call(a , **a )
SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" )
SCREAMING_SNAKE_CASE : Union[str, Any] = bart_model.generate(a , foo="bar" ).numpy()
self.assertTrue(np.array_equal(a , a ) )
class _UpperCamelCase ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def __UpperCamelCase ( self : Tuple , a : Any , **a : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return super().call(a , **a )
SCREAMING_SNAKE_CASE : int = FakeEncoder(bart_model.config , bart_model.model.shared )
SCREAMING_SNAKE_CASE : List[str] = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
SCREAMING_SNAKE_CASE : Union[str, Any] = bart_model.generate(a ).numpy()
with self.assertRaises(a ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(a , foo="bar" ) | 25 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__SCREAMING_SNAKE_CASE = get_logger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = "dummy_data"
__UpperCamelCase = "datasets"
__UpperCamelCase = False
def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int:
'''simple docstring'''
a__ : Tuple = 0
a__ : Any = dataset_name
a__ : int = cache_dir
a__ : str = use_local_dummy_data
a__ : List[str] = config
# download_callbacks take a single url as input
a__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
a__ : str = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
a__ : Optional[Any] = str(A__ )
# to be downloaded
a__ : Tuple = None
a__ : Tuple = None
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if self._dummy_file is None:
a__ : Dict = self.download_dummy_data()
return self._dummy_file
@property
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('''dummy''' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('''dummy''' , self.version_name )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
a__ : str = cached_path(
A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ )
return os.path.join(A__ , self.dummy_file_name )
@property
def __lowerCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if self._bucket_url is None:
a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) )
return self._bucket_url
@property
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]:
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
a__ : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
a__ : Union[str, Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A__ , A__ ):
return self.create_dummy_data_dict(A__ , A__ )
elif isinstance(A__ , (list, tuple) ):
return self.create_dummy_data_list(A__ , A__ )
else:
return self.create_dummy_data_single(A__ , A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]:
'''simple docstring'''
return path
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
return {}
def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any:
'''simple docstring'''
a__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A__ , A__ ):
for single_url in single_urls:
download_callback(A__ )
else:
a__ : Dict = single_urls
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A__ , A__ ):
a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls]
else:
a__ : Optional[Any] = single_urls
a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) )
a__ : List[str] = value
# make sure that values are unique
if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
a__ : str = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url )
a__ : Optional[Any] = all(
url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
a__ : Dict = [data_url[0]] * len(A__ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) )
dummy_data_list.append(A__ )
return dummy_data_list
def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]:
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) )
if os.path.exists(A__ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any:
'''simple docstring'''
def _iter_archive_members(A__ : str ):
# this preserves the order of the members inside the ZIP archive
a__ : Dict = Path(self.dummy_file ).parent
a__ : Tuple = path.relative_to(A__ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
a__ : Optional[Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A__ )
a__ : str = Path(A__ )
a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ):
yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' )
def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple:
'''simple docstring'''
if not isinstance(A__ , A__ ):
a__ : int = [paths]
for path in paths:
if os.path.isfile(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
continue
dirnames.sort()
for filename in sorted(A__ ):
if filename.startswith(('''.''', '''__''') ):
continue
yield os.path.join(A__ , A__ )
| 688 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase = 10 , _lowerCamelCase = 1000 , _lowerCamelCase = True ) -> int:
"""simple docstring"""
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and isinstance(_lowerCamelCase , _lowerCamelCase )
and isinstance(_lowerCamelCase , _lowerCamelCase )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" )
return min_val if option else max_val
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
return int((number_a + number_a) / 2 )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None:
"""simple docstring"""
assert (
isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("""argument value for lower and higher must be(lower > higher)""" )
if not lower < to_guess < higher:
raise ValueError(
"""guess value must be within the range of lower and higher value""" )
def answer(_lowerCamelCase ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("""started...""" )
__snake_case : Any = lower
__snake_case : List[Any] = higher
__snake_case : Tuple = []
while True:
__snake_case : List[str] = get_avg(_lowerCamelCase , _lowerCamelCase )
last_numbers.append(_lowerCamelCase )
if answer(_lowerCamelCase ) == "low":
__snake_case : Union[str, Any] = number
elif answer(_lowerCamelCase ) == "high":
__snake_case : Dict = number
else:
break
print(F'''guess the number : {last_numbers[-1]}''' )
print(F'''details : {last_numbers!s}''' )
def _a ( ) -> None:
"""simple docstring"""
__snake_case : List[Any] = int(input("""Enter lower value : """ ).strip() )
__snake_case : Tuple = int(input("""Enter high value : """ ).strip() )
__snake_case : Tuple = int(input("""Enter value to guess : """ ).strip() )
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
main()
| 26 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = LxmertTokenizer
__UpperCamelCase = LxmertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : str ) -> str:
'''simple docstring'''
super().setUp()
a__ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : int , A__ : int ) -> int:
'''simple docstring'''
a__ : List[Any] = '''UNwant\u00E9d,running'''
a__ : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
a__ : Optional[int] = self.tokenizer_class(self.vocab_file )
a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] )
def __lowerCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__ : Union[str, Any] = self.get_tokenizer()
a__ : Union[str, Any] = self.get_rust_tokenizer()
a__ : str = '''I was born in 92000, and this is falsé.'''
a__ : Tuple = tokenizer.tokenize(A__ )
a__ : Tuple = rust_tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ )
a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : str = tokenizer.encode(A__ )
a__ : int = rust_tokenizer.encode(A__ )
self.assertListEqual(A__ , A__ )
| 688 | 0 |
from collections import defaultdict
class lowerCamelCase:
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ ):
_A = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
_A = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) )
]
_A = defaultdict(snake_case_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
_A = (1 << len(snake_case_ )) - 1
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ):
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
_A = self.count_ways_until(snake_case_ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
_A = total_ways_util
return self.dp[mask][task_no]
def lowerCAmelCase__ ( self , snake_case_ ):
# Store the list of persons for each task
for i in range(len(snake_case_ ) ):
for j in task_performed[i]:
self.task[j].append(snake_case_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
__A : Optional[int] = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
__A : Any = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 27 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
'''simple docstring'''
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=64, A=3, A=3, A=2, A=1, A=16, A=[128, 256, 384], A=[4, 6, 8], A=[2, 3, 4], A=[16, 16, 16], A=0, A=[2, 2, 2], A=[2, 2, 2], A=0.02, A=True, A=True, A=2, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE : List[Any] = kernel_size
SCREAMING_SNAKE_CASE : Tuple = stride
SCREAMING_SNAKE_CASE : Optional[int] = padding
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Tuple = key_dim
SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate
SCREAMING_SNAKE_CASE : Any = patch_size
SCREAMING_SNAKE_CASE : Any = attention_ratio
SCREAMING_SNAKE_CASE : List[str] = mlp_ratio
SCREAMING_SNAKE_CASE : int = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = [
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE : str = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_labels
SCREAMING_SNAKE_CASE : Optional[Any] = num_labels
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : str = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return LevitConfig(
image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = LevitModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A )
SCREAMING_SNAKE_CASE : int = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.num_labels
SCREAMING_SNAKE_CASE : Optional[int] = LevitForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Dict = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
A : Optional[int] = (
{
'''feature-extraction''': LevitModel,
'''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
A : Optional[Any] = False
A : List[Any] = False
A : str = False
A : Dict = False
A : Dict = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = LevitModelTester(self )
SCREAMING_SNAKE_CASE : Dict = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
'''simple docstring'''
return
@unittest.skip(reason='Levit does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='Levit does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='Levit does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Optional[int] = outputs.hidden_states
SCREAMING_SNAKE_CASE : Dict = len(self.model_tester.depths ) + 1
self.assertEqual(len(A ), A )
SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE : List[str] = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE : str = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [
height * width,
self.model_tester.hidden_sizes[0],
], )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self, A, A, A=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = super()._prepare_for_class(A, A, return_labels=A )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Dict = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(A )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(A, A, return_labels=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE : Tuple = False
SCREAMING_SNAKE_CASE : Union[str, Any] = True
for model_class in self.all_model_classes:
if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
model.gradient_checkpointing_enable()
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(A, A, return_labels=A )
SCREAMING_SNAKE_CASE : Any = model(**A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Optional[Any] = [
{'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float},
{'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long},
{'title': 'regression', 'num_labels': 1, 'dtype': torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(A ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE : List[str] = problem_type['title']
SCREAMING_SNAKE_CASE : Tuple = problem_type['num_labels']
SCREAMING_SNAKE_CASE : Tuple = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(A, A, return_labels=A )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] )
SCREAMING_SNAKE_CASE : Optional[int] = inputs['labels'].to(problem_type['dtype'] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=A ) as warning_list:
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : List[str] = LevitModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
A )
SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : int = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
| 28 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
__SCREAMING_SNAKE_CASE = {
'google/fnet-base': 5_1_2,
'google/fnet-large': 5_1_2,
}
__SCREAMING_SNAKE_CASE = '▁'
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "token_type_ids"]
__UpperCamelCase = FNetTokenizer
def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]:
'''simple docstring'''
a__ : Optional[int] = (
AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ )
if isinstance(A__ , A__ )
else mask_token
)
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , )
a__ : Optional[Any] = do_lower_case
a__ : Dict = remove_space
a__ : List[Any] = keep_accents
a__ : Optional[Any] = vocab_file
a__ : Any = False if not self.vocab_file else True
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Optional[int] = [self.sep_token_id]
a__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Dict = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : Union[str, Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ):
copyfile(self.vocab_file , A__ )
return (out_vocab_file,)
| 688 | 0 |
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
A_ = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class __lowerCamelCase :
def __init__( self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ):
lowerCamelCase_ = d_model
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = prediction_length
lowerCamelCase_ = context_length
lowerCamelCase_ = cardinality
lowerCamelCase_ = num_time_features
lowerCamelCase_ = lags_sequence
lowerCamelCase_ = embedding_dimension
lowerCamelCase_ = is_training
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = context_length
lowerCamelCase_ = prediction_length + label_length
lowerCamelCase_ = label_length
lowerCamelCase_ = moving_average
lowerCamelCase_ = autocorrelation_factor
def UpperCAmelCase__ ( self ):
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = config.context_length + max(config.lags_sequence )
lowerCamelCase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
lowerCamelCase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
lowerCamelCase_ = floats_tensor([self.batch_size, _past_length] )
lowerCamelCase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
lowerCamelCase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
lowerCamelCase_ = floats_tensor([self.batch_size, config.prediction_length] )
lowerCamelCase_ = {
'''past_values''': past_values,
'''static_categorical_features''': static_categorical_features,
'''past_time_features''': past_time_features,
'''past_observed_mask''': past_observed_mask,
'''future_time_features''': future_time_features,
'''future_values''': future_values,
}
return inputs_dict
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_config()
lowerCamelCase_ = self.prepare_autoformer_inputs_dict(UpperCAmelCase )
return config, inputs_dict
def UpperCAmelCase__ ( self ):
lowerCamelCase_ , lowerCamelCase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval()
lowerCamelCase_ = model(**UpperCAmelCase )
lowerCamelCase_ = outputs.encoder_last_hidden_state
lowerCamelCase_ = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase_ = model.get_encoder()
encoder.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model.create_network_inputs(**UpperCAmelCase )
lowerCamelCase_ , lowerCamelCase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
lowerCamelCase_ = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
lowerCamelCase_ = encoder(inputs_embeds=UpperCAmelCase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
lowerCamelCase_ = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
lowerCamelCase_ = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
lowerCamelCase_ = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
lowerCamelCase_ = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase_ = model.get_decoder()
decoder.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
lowerCamelCase_ = decoder(
trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
a__: Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else ()
a__: List[Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {}
a__: str = False
a__: int = False
a__: Dict = False
a__: List[str] = False
a__: Optional[int] = False
a__: Optional[Any] = False
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoformerModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase )
lowerCamelCase_ , lowerCamelCase_ = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertEqual(info['''missing_keys'''] , [] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase )
@unittest.skip(reason='''Model has no tokens embeddings''' )
def UpperCAmelCase__ ( self ):
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = inspect.signature(getattr(UpperCAmelCase , '''forward''' ) )
# The main input is the name of the argument after `self`
lowerCamelCase_ = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(UpperCAmelCase )
lowerCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ = [*signature.parameters.keys()]
lowerCamelCase_ = [
'''past_values''',
'''past_time_features''',
'''past_observed_mask''',
'''static_categorical_features''',
'''static_real_features''',
'''future_values''',
'''future_time_features''',
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append('''future_observed_mask''' )
expected_arg_names.extend(
[
'''decoder_attention_mask''',
'''head_mask''',
'''decoder_head_mask''',
'''cross_attn_head_mask''',
'''encoder_outputs''',
'''past_key_values''',
'''output_hidden_states''',
'''output_attentions''',
'''use_cache''',
'''return_dict''',
] )
self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ = True
lowerCamelCase_ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase )
lowerCamelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase )
lowerCamelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase )
lowerCamelCase_ = getattr(self.model_tester , '''d_model''' , UpperCAmelCase )
lowerCamelCase_ = getattr(self.model_tester , '''num_attention_heads''' , UpperCAmelCase )
lowerCamelCase_ = d_model // num_attention_heads
for model_class in self.all_model_classes:
lowerCamelCase_ = True
lowerCamelCase_ = False
lowerCamelCase_ = True
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCamelCase_ = True
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCamelCase_ = outputs.encoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# decoder attentions
lowerCamelCase_ = outputs.decoder_attentions
self.assertIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
lowerCamelCase_ = outputs.cross_attentions
self.assertIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
lowerCamelCase_ = True
lowerCamelCase_ = True
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + 2 , len(UpperCAmelCase ) )
lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def UpperCAmelCase__ ( self ):
super().test_retain_grad_hidden_states_attentions()
def lowercase ( lowerCAmelCase__="train-batch.pt" ):
lowerCamelCase_ = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' ,filename=lowerCAmelCase__ ,repo_type='''dataset''' )
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location=lowerCAmelCase__ )
return batch
@require_torch
@slow
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCAmelCase )
lowerCamelCase_ = prepare_batch()
with torch.no_grad():
lowerCamelCase_ = model(
past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0]
lowerCamelCase_ = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , UpperCAmelCase )
lowerCamelCase_ = torch.tensor(
[[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCAmelCase )
lowerCamelCase_ = prepare_batch('''val-batch.pt''' )
with torch.no_grad():
lowerCamelCase_ = model(
past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state
lowerCamelCase_ = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , UpperCAmelCase )
lowerCamelCase_ = torch.tensor(
[[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCAmelCase )
lowerCamelCase_ = prepare_batch('''val-batch.pt''' )
with torch.no_grad():
lowerCamelCase_ = model.generate(
static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , )
lowerCamelCase_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , UpperCAmelCase )
lowerCamelCase_ = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=UpperCAmelCase )
lowerCamelCase_ = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
| 29 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': 5_1_2,
'distilbert-base-uncased-distilled-squad': 5_1_2,
'distilbert-base-cased': 5_1_2,
'distilbert-base-cased-distilled-squad': 5_1_2,
'distilbert-base-german-cased': 5_1_2,
'distilbert-base-multilingual-cased': 5_1_2,
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = ["input_ids", "attention_mask"]
__UpperCamelCase = DistilBertTokenizer
def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str:
'''simple docstring'''
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , )
a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , A__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars
):
a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) )
a__ : List[Any] = do_lower_case
a__ : str = strip_accents
a__ : List[str] = tokenize_chinese_chars
a__ : Dict = normalizer_class(**A__ )
a__ : List[Any] = do_lower_case
def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]:
'''simple docstring'''
a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : List[str] = [self.sep_token_id]
a__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
a__ : int = self._tokenizer.model.save(A__ , name=A__ )
return tuple(A__ )
| 688 | 0 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
return "".join(sorted(_lowercase ) )
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
return word_by_signature[signature(_lowercase )]
__a = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8')
__a = sorted({word.strip().lower() for word in data.splitlines()})
__a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
__a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('anagrams.txt', 'w') as file:
file.write('all_anagrams = \n ')
file.write(pprint.pformat(all_anagrams)) | 30 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__SCREAMING_SNAKE_CASE = tuple[int, int]
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None:
'''simple docstring'''
a__ : Optional[int] = pos_x
a__ : str = pos_y
a__ : Optional[int] = (pos_y, pos_x)
a__ : List[str] = goal_x
a__ : Any = goal_y
a__ : Any = g_cost
a__ : Optional[int] = parent
a__ : Union[str, Any] = self.calculate_heuristic()
a__ : List[Any] = self.g_cost + self.h_cost
def __lowerCAmelCase ( self : Union[str, Any] ) -> float:
'''simple docstring'''
a__ : List[str] = self.pos_x - self.goal_x
a__ : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A__ ) + abs(A__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[Any] , A__ : Node ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]:
'''simple docstring'''
a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ )
a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ )
a__ : Dict = [self.start]
a__ : list[Node] = []
a__ : str = False
def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a__ : Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A__ )
self.closed_nodes.append(A__ )
a__ : List[Any] = self.get_successors(A__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A__ )
else:
self.open_nodes.append(A__ )
return [self.start.pos]
def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]:
'''simple docstring'''
a__ : Optional[int] = []
for action in delta:
a__ : List[Any] = parent.pos_x + action[1]
a__ : Tuple = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) )
return successors
def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]:
'''simple docstring'''
a__ : Union[str, Any] = node
a__ : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a__ : Any = current_node.parent
path.reverse()
return path
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None:
'''simple docstring'''
a__ : str = AStar(A__ , A__ )
a__ : Optional[int] = AStar(A__ , A__ )
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
a__ : int = self.fwd_astar.open_nodes.pop(0 )
a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A__ , A__ )
self.fwd_astar.closed_nodes.append(A__ )
self.bwd_astar.closed_nodes.append(A__ )
a__ : Tuple = current_bwd_node
a__ : Optional[int] = current_fwd_node
a__ : Optional[int] = {
self.fwd_astar: self.fwd_astar.get_successors(A__ ),
self.bwd_astar: self.bwd_astar.get_successors(A__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A__ )
else:
astar.open_nodes.append(A__ )
return [self.fwd_astar.start.pos]
def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]:
'''simple docstring'''
a__ : str = self.fwd_astar.retrace_path(A__ )
a__ : List[str] = self.bwd_astar.retrace_path(A__ )
bwd_path.pop()
bwd_path.reverse()
a__ : Optional[int] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE = (0, 0)
__SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = AStar(init, goal)
__SCREAMING_SNAKE_CASE = a_star.search()
__SCREAMING_SNAKE_CASE = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal)
__SCREAMING_SNAKE_CASE = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 688 | 0 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ):
SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = length
SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[int] ):
return self.length
def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ):
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a + self.b
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' )
SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )}
def tokenize_function(__UpperCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' )
if "label" in examples:
SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(__UpperCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader | 31 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ):
# Construct model
if gpta_config_file == "":
a__ : Union[str, Any] = GPTaConfig()
else:
a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ )
a__ : Optional[int] = GPTaModel(lowerCAmelCase__ )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
"configuration_table_transformer": [
"TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TableTransformerConfig",
"TableTransformerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TableTransformerForObjectDetection",
"TableTransformerModel",
"TableTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
'''simple docstring'''
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
__SCREAMING_SNAKE_CASE = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
__SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
__SCREAMING_SNAKE_CASE = reader.read()
__SCREAMING_SNAKE_CASE = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
__SCREAMING_SNAKE_CASE = UNetaDModel(**config)
else:
__SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
__SCREAMING_SNAKE_CASE = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__SCREAMING_SNAKE_CASE = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__SCREAMING_SNAKE_CASE = config[key]
del config[key]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
__SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
__SCREAMING_SNAKE_CASE = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
__SCREAMING_SNAKE_CASE = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
__SCREAMING_SNAKE_CASE = param_value
__SCREAMING_SNAKE_CASE = True
if not has_changed:
__SCREAMING_SNAKE_CASE = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 688 | 0 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = StableUnCLIPPipeline
__lowercase : Any = TEXT_TO_IMAGE_PARAMS
__lowercase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
__lowercase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
__lowercase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__lowercase : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 32
snake_case__ = embedder_hidden_size
# prior components
torch.manual_seed(0 )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
snake_case__ = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=_a , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
snake_case__ = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_a , num_layers=1 , )
torch.manual_seed(0 )
snake_case__ = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_a , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
snake_case__ = StableUnCLIPImageNormalizer(embedding_dim=_a )
snake_case__ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
snake_case__ = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_a , layers_per_block=1 , upcast_attention=_a , use_linear_projection=_a , )
torch.manual_seed(0 )
snake_case__ = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_a , steps_offset=1 , )
torch.manual_seed(0 )
snake_case__ = AutoencoderKL()
snake_case__ = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:Any=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_a )
@slow
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
snake_case__ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
snake_case__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case__ = pipe('''anime turle''' , generator=_a , output_type='''np''' )
snake_case__ = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case__ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
snake_case__ = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
snake_case__ = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
snake_case__ = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 33 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = (KDPMaDiscreteScheduler,)
__UpperCamelCase = 10
def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int:
'''simple docstring'''
a__ : Optional[int] = {
'''num_train_timesteps''': 1_1_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**A__ )
return config
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=A__ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=A__ , beta_end=A__ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A__ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
a__ : Any = self.scheduler_classes[0]
a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
a__ : Dict = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : Tuple = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Dict = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ )
a__ : Union[str, Any] = model(A__ , A__ )
a__ : List[str] = scheduler.step(A__ , A__ , A__ )
a__ : Optional[Any] = output.prev_sample
a__ : Tuple = torch.sum(torch.abs(A__ ) )
a__ : Optional[int] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
a__ : List[Any] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : Tuple = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : List[Any] = self.dummy_model()
a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Any = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : str = scheduler.scale_model_input(A__ , A__ )
a__ : List[str] = model(A__ , A__ )
a__ : str = scheduler.step(A__ , A__ , A__ )
a__ : List[Any] = output.prev_sample
a__ : Dict = torch.sum(torch.abs(A__ ) )
a__ : Optional[Any] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
a__ : Optional[int] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : List[Any] = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps , device=A__ )
a__ : Union[str, Any] = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ )
a__ : List[Any] = model(A__ , A__ )
a__ : Any = scheduler.step(A__ , A__ , A__ )
a__ : List[str] = output.prev_sample
a__ : Any = torch.sum(torch.abs(A__ ) )
a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) )
if str(A__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 688 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
SCREAMING_SNAKE_CASE_ = [
'EAGER',
'AOT_EAGER',
'INDUCTOR',
'NVFUSER',
'AOT_NVFUSER',
'AOT_CUDAGRAPHS',
'OFI',
'FX2TRT',
'ONNXRT',
'IPEX',
]
def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ):
"""simple docstring"""
UpperCamelCase = True
while ask_again:
UpperCamelCase = input(_lowercase )
try:
if default is not None and len(_lowercase ) == 0:
return default
return convert_value(_lowercase ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_lowercase )
def __snake_case ( _lowercase ,_lowercase=[] ,_lowercase=None ,_lowercase=0 ):
"""simple docstring"""
UpperCamelCase = BulletMenu(_lowercase ,_lowercase )
UpperCamelCase = menu.run(default_choice=_lowercase )
return convert_value(_lowercase ) if convert_value is not None else result
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = int(_lowercase )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = int(_lowercase )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = int(_lowercase )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = int(_lowercase )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = int(_lowercase )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def __snake_case ( _lowercase ):
"""simple docstring"""
return {"yes": True, "no": False}[value.lower()]
class snake_case_ ( argparse.RawDescriptionHelpFormatter ):
"""simple docstring"""
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any:
UpperCamelCase = super()._format_usage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase = usage.replace('''<command> [<args>] ''' , '''''')
return usage | 34 |
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
a__ : str = ['''a''', '''b''', '''c''']
# Defaults to last layer if both are None
a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ )
self.assertEqual(A__ , ['''c'''] )
self.assertEqual(A__ , [2] )
# Out indices set to match out features
a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features set to match out indices
a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features selected from negative indices
a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [-3, -1] )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ )
# Out features must be a list
with self.assertRaises(A__ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
a__ : Optional[Any] = BackboneMixin()
a__ : int = ['''a''', '''b''', '''c''']
a__ : List[Any] = ['''a''', '''c''']
a__ : Tuple = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
a__ : Dict = ['''a''', '''b''']
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
a__ : int = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 688 | 0 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def a ( A__ ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def a ( A__ ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = emb.weight.shape
SCREAMING_SNAKE_CASE__ : List[Any] = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE__ : Tuple = emb.weight.data
return lin_layer
def a ( A__ ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = torch.load(A__ , map_location='''cpu''' )
SCREAMING_SNAKE_CASE__ : Tuple = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model''']
SCREAMING_SNAKE_CASE__ : Any = mam_aaa['''model''']
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict['''encoder.embed_tokens.weight'''].shape[0]
SCREAMING_SNAKE_CASE__ : Any = MaMaaaConfig(
vocab_size=A__ , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , )
SCREAMING_SNAKE_CASE__ : List[str] = state_dict['''decoder.embed_tokens.weight''']
SCREAMING_SNAKE_CASE__ : Dict = MaMaaaForConditionalGeneration(A__ )
model.model.load_state_dict(A__ , strict=A__ )
SCREAMING_SNAKE_CASE__ : int = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
a_ :Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ :Any = parser.parse_args()
a_ :int = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 35 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __a ( lowerCAmelCase__ : List[Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
a__ : Dict = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' )
a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' )
a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' )
a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' )
a__ : Any = value.float()
for key, value in codebook_state_dict.items():
a__ : List[str] = value
return upgrade
@torch.no_grad()
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ):
if config_path is not None:
a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ )
else:
a__ : Optional[int] = FlavaConfig()
a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval()
a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
else:
a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )
a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
a__ : Any = hf_model.state_dict()
a__ : Optional[Any] = count_parameters(lowerCAmelCase__ )
a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowercase : Union[str, Any] = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Tuple = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
__lowercase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 36 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__SCREAMING_SNAKE_CASE = 4
__SCREAMING_SNAKE_CASE = 3
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
def __a ( lowerCAmelCase__ : List[str] ):
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def __a ( ):
a__ : str = int(os.environ['''RANK'''] )
a__ : int = int(os.environ['''WORLD_SIZE'''] )
a__ : str = ArgumentParser()
parser.add_argument('''--streaming''' , type=lowerCAmelCase__ )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ )
parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 )
a__ : int = parser.parse_args()
a__ : List[str] = args.streaming
a__ : Dict = args.num_workers
a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) )
a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a__ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 688 | 0 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ):
a__ : str = parent
a__ : Any = batch_size
a__ : Dict = patch_size
a__ : List[Any] = max_length
a__ : str = num_mel_bins
a__ : Optional[Any] = is_training
a__ : Optional[int] = use_labels
a__ : List[Any] = hidden_size
a__ : str = num_hidden_layers
a__ : Any = num_attention_heads
a__ : Union[str, Any] = intermediate_size
a__ : List[str] = hidden_act
a__ : str = hidden_dropout_prob
a__ : Tuple = attention_probs_dropout_prob
a__ : List[Any] = type_sequence_label_size
a__ : Any = initializer_range
a__ : str = scope
a__ : List[str] = frequency_stride
a__ : Union[str, Any] = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1
a__ : Tuple = frequency_out_dimension * time_out_dimension
a__ : List[str] = num_patches + 2
def _UpperCamelCase( self : List[str] ):
a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
a__ : List[Any] = None
if self.use_labels:
a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a__ : List[str] = self.get_config()
return config, input_values, labels
def _UpperCamelCase( self : Optional[int] ):
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ):
a__ : List[Any] = ASTModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : Dict = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase( self : str ):
a__ : Dict = self.prepare_config_and_inputs()
(
(
a__
), (
a__
), (
a__
),
) : Optional[int] = config_and_inputs
a__ : List[Any] = {"input_values": input_values}
return config, inputs_dict
@require_torch
class A__ ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
_lowercase = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
_lowercase = (
{'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel}
if is_torch_available()
else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
_lowercase = False
def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def _UpperCamelCase( self : str ):
a__ : str = ASTModelTester(self )
a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 )
def _UpperCamelCase( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="AST does not use inputs_embeds" )
def _UpperCamelCase( self : List[str] ):
pass
def _UpperCamelCase( self : Optional[int] ):
a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : Any = model_class(lowerCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
a__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) )
def _UpperCamelCase( self : Tuple ):
a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : Dict = model_class(lowerCamelCase__ )
a__ : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ : Optional[int] = [*signature.parameters.keys()]
a__ : Optional[Any] = ["input_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] ):
a__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
@slow
def _UpperCamelCase( self : int ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def UpperCamelCase_ ( ) -> Any:
a__ : Optional[int] = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" )
a__, a__ : List[str] = torchaudio.load(__a )
return audio, sampling_rate
@require_torch
@require_torchaudio
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCamelCase( self : List[str] ):
return (
ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" )
if is_torchaudio_available()
else None
)
@slow
def _UpperCamelCase( self : Optional[int] ):
a__ : int = self.default_feature_extractor
a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ )
a__ : Any = self.default_feature_extractor
a__, a__ : Dict = prepare_audio()
a__ : str = audio.squeeze().numpy()
a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : Any = model(**lowerCamelCase__ )
# verify the logits
a__ : Union[str, Any] = torch.Size((1, 527) )
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
| 37 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 | 0 |
'''simple docstring'''
from __future__ import annotations
A_ : Tuple = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = graph
# mapping node to its parent in resulting breadth first tree
snake_case__ : dict[str, str | None] = {}
snake_case__ : Dict = source_vertex
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = {self.source_vertex}
snake_case__ : int = None
snake_case__ : Any = [self.source_vertex] # first in first out queue
while queue:
snake_case__ : List[Any] = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = vertex
queue.append(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
if target_vertex == self.source_vertex:
return self.source_vertex
snake_case__ : Union[str, Any] = self.parent.get(__SCREAMING_SNAKE_CASE )
if target_vertex_parent is None:
snake_case__ : Optional[Any] = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__SCREAMING_SNAKE_CASE )
return self.shortest_path(__SCREAMING_SNAKE_CASE ) + f"->{target_vertex}"
if __name__ == "__main__":
A_ : Optional[int] = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 38 |
'''simple docstring'''
import enum
import shutil
import sys
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size()
__SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class lowerCAmelCase__ ( enum.Enum ):
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 1
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ):
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ):
forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def __a ( ):
forceWrite('''\r''' )
def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def __a ( ):
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def __a ( ):
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 688 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = "sew-d"
def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=3_2 , _UpperCamelCase : Dict=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : int=1_2 , _UpperCamelCase : Tuple=3_0_7_2 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : int=5_1_2 , _UpperCamelCase : Any=2_5_6 , _UpperCamelCase : List[str]=True , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=("p2c", "c2p") , _UpperCamelCase : Any="layer_norm" , _UpperCamelCase : str="gelu_python" , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Dict=0.02 , _UpperCamelCase : List[str]=1e-7 , _UpperCamelCase : Dict=1e-5 , _UpperCamelCase : str="group" , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : List[str]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _UpperCamelCase : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCamelCase : Any=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCamelCase : Tuple=False , _UpperCamelCase : Optional[Any]=1_2_8 , _UpperCamelCase : List[str]=1_6 , _UpperCamelCase : Any=True , _UpperCamelCase : Union[str, Any]=0.05 , _UpperCamelCase : List[str]=1_0 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : int=0.0 , _UpperCamelCase : Dict=1_0 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : str="mean" , _UpperCamelCase : Dict=False , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[Any]=2_5_6 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : Optional[Any]=1 , _UpperCamelCase : Tuple=2 , **_UpperCamelCase : Any , ) ->Tuple:
super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = feat_extract_norm
snake_case_ = feat_extract_activation
snake_case_ = list(_UpperCamelCase )
snake_case_ = list(_UpperCamelCase )
snake_case_ = list(_UpperCamelCase )
snake_case_ = conv_bias
snake_case_ = num_conv_pos_embeddings
snake_case_ = num_conv_pos_embedding_groups
snake_case_ = len(self.conv_dim )
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = squeeze_factor
snake_case_ = max_position_embeddings
snake_case_ = position_buckets
snake_case_ = share_att_key
snake_case_ = relative_attention
snake_case_ = norm_rel_ebd
snake_case_ = list(_UpperCamelCase )
snake_case_ = hidden_act
snake_case_ = num_attention_heads
snake_case_ = hidden_dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = feat_proj_dropout
snake_case_ = final_dropout
snake_case_ = layer_norm_eps
snake_case_ = feature_layer_norm_eps
snake_case_ = initializer_range
snake_case_ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case_ = apply_spec_augment
snake_case_ = mask_time_prob
snake_case_ = mask_time_length
snake_case_ = mask_time_min_masks
snake_case_ = mask_feature_prob
snake_case_ = mask_feature_length
snake_case_ = mask_feature_min_masks
# ctc loss
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# sequence classification
snake_case_ = use_weighted_layer_sum
snake_case_ = classifier_proj_size
@property
def snake_case__( self : Dict ) ->Optional[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 39 |
'''simple docstring'''
import inspect
import unittest
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
a__ : int = '''k-diffusion'''
elif backend == "invisible_watermark":
a__ : int = '''invisible-watermark'''
assert backend in deps, F'{backend} is not in the deps table!'
| 688 | 0 |
def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : list[int] ) -> None:
UpperCamelCase : int = len(snake_case__ )
print('The following activities are selected:' )
# The first activity is always selected
UpperCamelCase : List[Any] = 0
print(snake_case__ , end=',' )
# Consider rest of the activities
for j in range(snake_case__ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case__ , end=',' )
UpperCamelCase : Tuple = j
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = [1, 3, 0, 5, 8, 5]
__UpperCAmelCase = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 40 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def __a ( lowerCAmelCase__ : Dict ):
a__ , a__ : int = image.size
a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0
a__ : Any = image[None].transpose(0 , 3 , 1 , 2 )
a__ : Dict = torch.from_numpy(lowerCAmelCase__ )
return 2.0 * image - 1.0
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ )
@torch.no_grad()
def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
if isinstance(A__ , PIL.Image.Image ):
a__ : List[Any] = 1
elif isinstance(A__ , torch.Tensor ):
a__ : List[str] = image.shape[0]
else:
raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' )
if isinstance(A__ , PIL.Image.Image ):
a__ : Union[str, Any] = preprocess(A__ )
a__ , a__ : Dict = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width)
a__ : Optional[int] = next(self.unet.parameters() ).dtype
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ )
a__ : Any = image.to(device=self.device , dtype=A__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(A__ , device=self.device )
a__ : int = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
a__ : str = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
a__ : str = {}
if accepts_eta:
a__ : Dict = eta
for t in self.progress_bar(A__ ):
# concat latents and low resolution image in the channel dimension.
a__ : str = torch.cat([latents, image] , dim=1 )
a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
a__ : Union[str, Any] = self.unet(A__ , A__ ).sample
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample
# decode the image latents with the VQVAE
a__ : List[Any] = self.vqvae.decode(A__ ).sample
a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 )
a__ : Optional[Any] = image / 2 + 0.5
a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a__ : Union[str, Any] = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 0 |
'''simple docstring'''
import numpy as np
import qiskit
def _A ( A__ = 8 , A__ = None ):
"""simple docstring"""
__lowercase = np.random.default_rng(seed=A__ )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
__lowercase = 6 * key_len
# Measurement basis for Alice's qubits.
__lowercase = rng.integers(2 , size=A__ )
# The set of states Alice will prepare.
__lowercase = rng.integers(2 , size=A__ )
# Measurement basis for Bob's qubits.
__lowercase = rng.integers(2 , size=A__ )
# Quantum Circuit to simulate BB84
__lowercase = qiskit.QuantumCircuit(A__ , name='''BB84''' )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(A__ ):
if alice_state[index] == 1:
bbaa_circ.x(A__ )
if alice_basis[index] == 1:
bbaa_circ.h(A__ )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(A__ ):
if bob_basis[index] == 1:
bbaa_circ.h(A__ )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
__lowercase = qiskit.Aer.get_backend('''aer_simulator''' )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
__lowercase = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ )
# Returns the result of measurement.
__lowercase = job.result().get_counts(A__ ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
__lowercase = ''''''.join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
A__ , A__ , A__ )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
__lowercase = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '''0''' )
return key
if __name__ == "__main__":
print(f'The generated key is : {bbaa(8, seed=0)}')
from doctest import testmod
testmod()
| 41 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ):
a__ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a__ : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=A__ , scheduler=A__ , movq=A__ , )
a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if latents is None:
a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
a__ : int = latents.to(A__ )
a__ : Tuple = latents * scheduler.init_noise_sigma
return latents
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' )
a__ : Union[str, Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A__ , A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
a__ : int = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=A__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a__ : Dict = None
for cpu_offloaded_model in [self.unet, self.movq]:
a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ )
# We'll offload the last model manually.
a__ : Dict = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(A__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A__ )
def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str:
'''simple docstring'''
a__ : Optional[Any] = self._execution_device
a__ : List[str] = guidance_scale > 1.0
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : Optional[int] = torch.cat(A__ , dim=0 )
if isinstance(A__ , A__ ):
a__ : int = torch.cat(A__ , dim=0 )
a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 )
a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 )
a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ )
self.scheduler.set_timesteps(A__ , device=A__ )
a__ : int = self.scheduler.timesteps
a__ : str = self.movq.config.latent_channels
a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor )
# create initial latent
a__ : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(A__ ) ):
# expand the latents if we are doing classifier free guidance
a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint}
a__ : Union[str, Any] = self.unet(
sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0]
if do_classifier_free_guidance:
a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
a__ , a__ : Dict = noise_pred.chunk(2 )
a__ , a__ : Optional[Any] = variance_pred.chunk(2 )
a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a__ : Union[str, Any] = self.scheduler.step(
A__ , A__ , A__ , generator=A__ , )[0]
# post-processing
a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a__ : Union[str, Any] = image * 0.5 + 0.5
a__ : str = image.clamp(0 , 1 )
a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a__ : int = self.numpy_to_pil(A__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A__ )
| 688 | 0 |
'''simple docstring'''
import os
import string
import sys
A_ = 1 << 8
A_ = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
A_ = KEYMAP["up"]
A_ = KEYMAP["left"]
if sys.platform == "win32":
A_ = []
A_ = {
B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
A_ = ord(str(i))
def _UpperCamelCase ( ) -> int:
if os.name == "nt":
import msvcrt
lowerCamelCase_ = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__UpperCamelCase ) == 0:
# Read the keystroke
lowerCamelCase_ = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCamelCase_ = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCamelCase_ = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(__UpperCamelCase )
if ord(__UpperCamelCase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_26 ) )
lowerCamelCase_ = chr(KEYMAP['esc'] )
except KeyError:
lowerCamelCase_ = cha[1]
else:
lowerCamelCase_ = ch.decode(__UpperCamelCase )
else:
lowerCamelCase_ = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCamelCase_ = sys.stdin.fileno()
lowerCamelCase_ = termios.tcgetattr(__UpperCamelCase )
try:
tty.setraw(__UpperCamelCase )
lowerCamelCase_ = sys.stdin.read(1 )
finally:
termios.tcsetattr(__UpperCamelCase ,termios.TCSADRAIN ,__UpperCamelCase )
return ch
def _UpperCamelCase ( ) -> str:
lowerCamelCase_ = get_raw_chars()
if ord(__UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__UpperCamelCase ) == KEYMAP["esc"]:
lowerCamelCase_ = get_raw_chars()
if ord(__UpperCamelCase ) == KEYMAP["mod_int"]:
lowerCamelCase_ = get_raw_chars()
if ord(__UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__UpperCamelCase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 42 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__SCREAMING_SNAKE_CASE = {
'facebook/esm2_t6_8M_UR50D': 1_0_2_4,
'facebook/esm2_t12_35M_UR50D': 1_0_2_4,
}
def __a ( lowerCAmelCase__ : Union[str, Any] ):
with open(lowerCAmelCase__ , '''r''' ) as f:
a__ : Optional[int] = f.read().splitlines()
return [l.strip() for l in lines]
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**A__ )
a__ : Union[str, Any] = load_vocab_file(A__ )
a__ : int = dict(enumerate(self.all_tokens ) )
a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
a__ : List[Any] = unk_token
a__ : Any = cls_token
a__ : Any = pad_token
a__ : Any = mask_token
a__ : Any = eos_token
a__ : int = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __lowerCAmelCase ( self : Any , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]:
'''simple docstring'''
return text.split()
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
return len(self._id_to_token )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def __lowerCAmelCase ( self : Any , A__ : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) )
def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(A__ , self.unk_token )
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Tuple = [self.cls_token_id]
a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
a__ : Any = [1] + ([0] * len(A__ )) + [1]
if token_ids_a is not None:
mask += [0] * len(A__ ) + [1]
return mask
def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __lowerCAmelCase ( self : Any ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int:
'''simple docstring'''
return super()._add_tokens(A__ , special_tokens=A__ )
| 688 | 0 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class _a ( UpperCamelCase__ ):
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: float ) -> float:
"""simple docstring"""
return 0.0
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
lowercase__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = 5_12
lowercase__ = [1] + [0] * (size - 1)
lowercase__ = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs]
lowercase__ = [0] * (samplerate - size) # zero-padding
outputs += filler
lowercase__ = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE ) )
lowercase__ = 20 * np.logaa(SCREAMING_SNAKE_CASE )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
# Display within reasonable bounds
lowercase__ = get_bounds(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel('''Gain (dB)''' )
plt.plot(SCREAMING_SNAKE_CASE )
plt.show()
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = 5_12
lowercase__ = [1] + [0] * (size - 1)
lowercase__ = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs]
lowercase__ = [0] * (samplerate - size) # zero-padding
outputs += filler
lowercase__ = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('''Phase shift (Radians)''' )
plt.plot(np.unwrap(SCREAMING_SNAKE_CASE , -2 * pi ) )
plt.show()
| 43 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str ) -> Dict:
'''simple docstring'''
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]:
'''simple docstring'''
if not self.initialized:
a__ : Optional[Any] = RagRetriever(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : Union[str, Any] = True
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
self.retriever.index.init_index()
def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ )
return doc_ids, retrieved_doc_embeds
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]:
'''simple docstring'''
if index is not None and index.is_initialized() and len(A__ ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , )
a__ : List[str] = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ )
for worker in self.retrieval_workers
] )
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict:
'''simple docstring'''
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) )
else:
a__ , a__ : int = self._main_retrieve(A__ , A__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ )
@classmethod
def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]:
'''simple docstring'''
a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ )
a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ )
a__ : str = rag_tokenizer.question_encoder
a__ : List[str] = rag_tokenizer.generator
if indexed_dataset is not None:
a__ : List[Any] = '''custom'''
a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ )
else:
a__ : Optional[Any] = cls._build_index(A__ )
return cls(
A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
| 688 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase_ : Optional[int] = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 44 |
'''simple docstring'''
def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ):
a__ : List[str] = len(lowerCAmelCase__ )
a__ : int = [[0] * n for i in range(lowerCAmelCase__ )]
for i in range(lowerCAmelCase__ ):
a__ : Dict = y_points[i]
for i in range(2 , lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ , lowerCAmelCase__ ):
a__ : Any = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 0 |
UpperCamelCase = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCamelCase = {value: key for key, value in MORSE_CODE_DICT.items()}
def A ( lowercase__ : str ) -> str:
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A ( lowercase__ : str ) -> str:
return "".join(REVERSE_DICT[char] for char in message.split() )
def A ( ) -> None:
UpperCamelCase__ :Union[str, Any] = """Morse code here!"""
print(lowercase__ )
UpperCamelCase__ :Dict = encrypt(lowercase__ )
print(lowercase__ )
UpperCamelCase__ :Optional[Any] = decrypt(lowercase__ )
print(lowercase__ )
if __name__ == "__main__":
main() | 45 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = "swin2sr"
__UpperCamelCase = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**A__ )
a__ : List[str] = image_size
a__ : Optional[Any] = patch_size
a__ : Dict = num_channels
a__ : Optional[int] = embed_dim
a__ : int = depths
a__ : Optional[int] = len(A__ )
a__ : Dict = num_heads
a__ : List[Any] = window_size
a__ : Optional[int] = mlp_ratio
a__ : Optional[int] = qkv_bias
a__ : Union[str, Any] = hidden_dropout_prob
a__ : Dict = attention_probs_dropout_prob
a__ : Union[str, Any] = drop_path_rate
a__ : int = hidden_act
a__ : int = use_absolute_embeddings
a__ : Dict = layer_norm_eps
a__ : List[str] = initializer_range
a__ : List[Any] = upscale
a__ : List[Any] = img_range
a__ : Optional[int] = resi_connection
a__ : int = upsampler
| 688 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : int = LxmertConfig.from_json_file(_lowerCamelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
_lowerCamelCase : int = LxmertForPreTraining(_lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 46 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
a__ : int = 0
def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[Any] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Dict = CLIPConfig()
# Create a dummy config file with image_proceesor_type
a__ : int = Path(A__ ) / '''preprocessor_config.json'''
a__ : Optional[int] = Path(A__ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict()
config_dict.pop('''image_processor_type''' )
a__ : Union[str, Any] = CLIPImageProcessor(**A__ )
# save in new folder
model_config.save_pretrained(A__ )
config.save_pretrained(A__ )
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ )
# make sure private variable is not incorrectly saved
a__ : Optional[Any] = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
a__ : Any = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''clip-base is not a local folder and is not a valid model identifier''' ):
a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' )
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
with self.assertRaises(A__ ):
a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(A__ ):
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(A__ ):
AutoImageProcessor.register(A__ , A__ )
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json'''
a__ : List[str] = Path(A__ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) )
a__ : Tuple = CustomImageProcessor.from_pretrained(A__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(A__ )
a__ : Tuple = AutoImageProcessor.from_pretrained(A__ )
self.assertIsInstance(A__ , A__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
'''simple docstring'''
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = True
try:
AutoConfig.register('''custom''' , A__ )
AutoImageProcessor.register(A__ , A__ )
# If remote code is not set, the default is to use local
a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
a__ : Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
a__ : Optional[int] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(A__ , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 688 | 0 |
import math
from numpy import inf
from scipy.integrate import quad
def UpperCAmelCase__ ( lowerCamelCase_ : float ):
if num <= 0:
raise ValueError('math domain error' )
return quad(lowerCamelCase_ , 0 , lowerCamelCase_ , args=(lowerCamelCase_) )[0]
def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float ):
return math.pow(lowerCamelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__SCREAMING_SNAKE_CASE = get_logger(__name__)
class lowerCAmelCase__ :
"""simple docstring"""
__UpperCamelCase = "dummy_data"
__UpperCamelCase = "datasets"
__UpperCamelCase = False
def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int:
'''simple docstring'''
a__ : Tuple = 0
a__ : Any = dataset_name
a__ : int = cache_dir
a__ : str = use_local_dummy_data
a__ : List[str] = config
# download_callbacks take a single url as input
a__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
a__ : str = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
a__ : Optional[Any] = str(A__ )
# to be downloaded
a__ : Tuple = None
a__ : Tuple = None
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if self._dummy_file is None:
a__ : Dict = self.download_dummy_data()
return self._dummy_file
@property
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('''dummy''' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('''dummy''' , self.version_name )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
a__ : str = cached_path(
A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ )
return os.path.join(A__ , self.dummy_file_name )
@property
def __lowerCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if self._bucket_url is None:
a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) )
return self._bucket_url
@property
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]:
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
a__ : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
a__ : Union[str, Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A__ , A__ ):
return self.create_dummy_data_dict(A__ , A__ )
elif isinstance(A__ , (list, tuple) ):
return self.create_dummy_data_list(A__ , A__ )
else:
return self.create_dummy_data_single(A__ , A__ )
def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int:
'''simple docstring'''
return self.download_and_extract(A__ )
def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]:
'''simple docstring'''
return path
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
return {}
def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any:
'''simple docstring'''
a__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A__ , A__ ):
for single_url in single_urls:
download_callback(A__ )
else:
a__ : Dict = single_urls
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A__ , A__ ):
a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls]
else:
a__ : Optional[Any] = single_urls
a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) )
a__ : List[str] = value
# make sure that values are unique
if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
a__ : str = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url )
a__ : Optional[Any] = all(
url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
a__ : Dict = [data_url[0]] * len(A__ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) )
dummy_data_list.append(A__ )
return dummy_data_list
def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]:
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(A__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) )
if os.path.exists(A__ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __lowerCAmelCase ( self : int ) -> str:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
pass
def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any:
'''simple docstring'''
def _iter_archive_members(A__ : str ):
# this preserves the order of the members inside the ZIP archive
a__ : Dict = Path(self.dummy_file ).parent
a__ : Tuple = path.relative_to(A__ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
a__ : Optional[Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A__ )
a__ : str = Path(A__ )
a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ):
yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' )
def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple:
'''simple docstring'''
if not isinstance(A__ , A__ ):
a__ : int = [paths]
for path in paths:
if os.path.isfile(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A__ ):
if os.path.basename(A__ ).startswith(('''.''', '''__''') ):
continue
dirnames.sort()
for filename in sorted(A__ ):
if filename.startswith(('''.''', '''__''') ):
continue
yield os.path.join(A__ , A__ )
| 688 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : Optional[Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = LxmertTokenizer
__UpperCamelCase = LxmertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def __lowerCAmelCase ( self : str ) -> str:
'''simple docstring'''
super().setUp()
a__ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : int , A__ : int ) -> int:
'''simple docstring'''
a__ : List[Any] = '''UNwant\u00E9d,running'''
a__ : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
a__ : Optional[int] = self.tokenizer_class(self.vocab_file )
a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] )
def __lowerCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__ : Union[str, Any] = self.get_tokenizer()
a__ : Union[str, Any] = self.get_rust_tokenizer()
a__ : str = '''I was born in 92000, and this is falsé.'''
a__ : Tuple = tokenizer.tokenize(A__ )
a__ : Tuple = rust_tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ )
a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : str = tokenizer.encode(A__ )
a__ : int = rust_tokenizer.encode(A__ )
self.assertListEqual(A__ , A__ )
| 688 | 0 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int , snake_case_ :int ):
return base * power(snake_case_ , (exponent - 1) ) if exponent else 1
if __name__ == "__main__":
print('Raise base to the power of exponent using recursion...')
_lowercase : Dict = int(input('Enter the base: ').strip())
_lowercase : Optional[Any] = int(input('Enter the exponent: ').strip())
_lowercase : List[str] = power(base, abs(exponent))
if exponent < 0: # power() does not properly deal w/ negative exponents
_lowercase : List[str] = 1 / result
print(f"""{base} to the power of {exponent} is {result}""")
| 49 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase : Any = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Union[str, Any] = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
__SCREAMING_SNAKE_CASE = {
'google/fnet-base': 5_1_2,
'google/fnet-large': 5_1_2,
}
__SCREAMING_SNAKE_CASE = '▁'
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "token_type_ids"]
__UpperCamelCase = FNetTokenizer
def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]:
'''simple docstring'''
a__ : Optional[int] = (
AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ )
if isinstance(A__ , A__ )
else mask_token
)
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , )
a__ : Optional[Any] = do_lower_case
a__ : Dict = remove_space
a__ : List[Any] = keep_accents
a__ : Optional[Any] = vocab_file
a__ : Any = False if not self.vocab_file else True
def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Optional[int] = [self.sep_token_id]
a__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : Dict = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a__ : Union[str, Any] = os.path.join(
A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ):
copyfile(self.vocab_file , A__ )
return (out_vocab_file,)
| 688 | 0 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': 5_1_2,
'distilbert-base-uncased-distilled-squad': 5_1_2,
'distilbert-base-cased': 5_1_2,
'distilbert-base-cased-distilled-squad': 5_1_2,
'distilbert-base-german-cased': 5_1_2,
'distilbert-base-multilingual-cased': 5_1_2,
}
__SCREAMING_SNAKE_CASE = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = ["input_ids", "attention_mask"]
__UpperCamelCase = DistilBertTokenizer
def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str:
'''simple docstring'''
super().__init__(
A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , )
a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , A__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars
):
a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) )
a__ : List[Any] = do_lower_case
a__ : str = strip_accents
a__ : List[str] = tokenize_chinese_chars
a__ : Dict = normalizer_class(**A__ )
a__ : List[Any] = do_lower_case
def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]:
'''simple docstring'''
a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
a__ : List[str] = [self.sep_token_id]
a__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
a__ : int = self._tokenizer.model.save(A__ , name=A__ )
return tuple(A__ )
| 688 | 0 |
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
A = '''bart'''
A = True
@st.cache(allow_output_mutation=a_)
def __A ( ) -> Dict:
if LOAD_DENSE_INDEX:
__a : Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''')
__a : Dict = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''').to('''cuda:0''')
__a : Union[str, Any] = qar_model.eval()
else:
__a , __a : Optional[int] = (None, None)
if MODEL_TYPE == "bart":
__a : List[Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''')
__a : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''').to('''cuda:0''')
__a : Optional[int] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''')
sas_model.load_state_dict(save_dict['''model'''])
__a : List[Any] = sas_model.eval()
else:
__a , __a : List[str] = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''')
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=a_)
def __A ( ) -> Optional[Any]:
if LOAD_DENSE_INDEX:
__a : str = faiss.StandardGpuResources()
__a : Tuple = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''')['''train''']
__a : Dict = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , )
__a : Dict = faiss.IndexFlatIP(1_28)
__a : Optional[int] = faiss.index_cpu_to_gpu(a_ , 1 , a_)
wikiaab_gpu_index_flat.add(a_) # TODO fix for larger GPU
else:
__a , __a : List[str] = (None, None)
__a : int = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}])
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=a_)
def __A ( ) -> Union[str, Any]:
__a : Union[str, Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''')
__a : List[str] = elia['''train_eli5''']
__a : Tuple = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28))
__a : Any = faiss.IndexFlatIP(1_28)
eli5_train_q_index.add(a_)
return (elia_train, eli5_train_q_index)
A , A , A = load_indexes()
A , A , A , A = load_models()
A , A = load_train_data()
def __A ( a_ :str , a_ :str=10) -> Dict:
__a : List[Any] = embed_questions_for_retrieval([question] , a_ , a_)
__a , __a : Tuple = eli5_train_q_index.search(a_ , a_)
__a : Union[str, Any] = [elia_train[int(a_)] for i in I[0]]
return nn_examples
def __A ( a_ :List[Any] , a_ :int="wiki40b" , a_ :Any="dense" , a_ :Dict=10) -> Any:
if source == "none":
__a , __a : Any = (''' <P> '''.join(['''''' for _ in range(11)]).strip(), [])
else:
if method == "dense":
__a , __a : Optional[Any] = query_qa_dense_index(
a_ , a_ , a_ , a_ , a_ , a_)
else:
__a , __a : int = query_es_index(
a_ , a_ , index_name='''english_wiki40b_snippets_100w''' , n_results=a_ , )
__a : Any = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__a : Any = '''question: {} context: {}'''.format(a_ , a_)
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda a_: None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a_: None),
})
def __A ( a_ :Tuple , a_ :Any , a_ :Tuple , a_ :List[Any]=64 , a_ :int=2_56 , a_ :Any=False , a_ :Dict=2 , a_ :Dict=0.9_5 , a_ :List[Any]=0.8) -> List[Any]:
with torch.no_grad():
__a : str = qa_sas_generate(
a_ , a_ , a_ , num_answers=1 , num_beams=a_ , min_len=a_ , max_len=a_ , do_sample=a_ , temp=a_ , top_p=a_ , top_k=a_ , max_input_length=10_24 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
A = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
A = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
A = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
A = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
A = st.sidebar.checkbox('''Demo options''')
if demo_options:
A = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
A = action_list.index(action_st)
A = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
A = show_type == '''Show full text of passages'''
else:
A = 3
A = True
A = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
A = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
A = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
A = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
A = '''wiki40b'''
A = '''dense'''
A = '''beam'''
A = 2
A = 64
A = 256
A = None
A = None
A = st.sidebar.checkbox('''Generation options''')
if generate_options:
A = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
A = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
A = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
A = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
A = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
A = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
A = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
A = None
# start main text
A = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
A = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
A = st.text_input('''Enter your question here:''', '''''')
else:
A = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
A , A = make_support(question, source=wiki_source, method='''dense''', n_results=10)
A , A = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
A = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
A = support_list[:10]
A = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
A , A = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
A , A = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
A = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
A = res[1].strip()
if sec_titles == "":
A = '''[{}]({})'''.format(res[0], wiki_url)
else:
A = sec_titles.split(''' & ''')
A = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
A = find_nearest_training(question)
A = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
A = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
A = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True) | 52 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__SCREAMING_SNAKE_CASE = tuple[int, int]
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None:
'''simple docstring'''
a__ : Optional[int] = pos_x
a__ : str = pos_y
a__ : Optional[int] = (pos_y, pos_x)
a__ : List[str] = goal_x
a__ : Any = goal_y
a__ : Any = g_cost
a__ : Optional[int] = parent
a__ : Union[str, Any] = self.calculate_heuristic()
a__ : List[Any] = self.g_cost + self.h_cost
def __lowerCAmelCase ( self : Union[str, Any] ) -> float:
'''simple docstring'''
a__ : List[str] = self.pos_x - self.goal_x
a__ : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A__ ) + abs(A__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[Any] , A__ : Node ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]:
'''simple docstring'''
a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ )
a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ )
a__ : Dict = [self.start]
a__ : list[Node] = []
a__ : str = False
def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a__ : Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A__ )
self.closed_nodes.append(A__ )
a__ : List[Any] = self.get_successors(A__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A__ )
else:
self.open_nodes.append(A__ )
return [self.start.pos]
def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]:
'''simple docstring'''
a__ : Optional[int] = []
for action in delta:
a__ : List[Any] = parent.pos_x + action[1]
a__ : Tuple = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) )
return successors
def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]:
'''simple docstring'''
a__ : Union[str, Any] = node
a__ : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a__ : Any = current_node.parent
path.reverse()
return path
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None:
'''simple docstring'''
a__ : str = AStar(A__ , A__ )
a__ : Optional[int] = AStar(A__ , A__ )
a__ : List[str] = False
def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
a__ : int = self.fwd_astar.open_nodes.pop(0 )
a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A__ , A__ )
self.fwd_astar.closed_nodes.append(A__ )
self.bwd_astar.closed_nodes.append(A__ )
a__ : Tuple = current_bwd_node
a__ : Optional[int] = current_fwd_node
a__ : Optional[int] = {
self.fwd_astar: self.fwd_astar.get_successors(A__ ),
self.bwd_astar: self.bwd_astar.get_successors(A__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A__ )
else:
# retrieve the best current path
a__ : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(A__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A__ )
else:
astar.open_nodes.append(A__ )
return [self.fwd_astar.start.pos]
def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]:
'''simple docstring'''
a__ : str = self.fwd_astar.retrace_path(A__ )
a__ : List[str] = self.bwd_astar.retrace_path(A__ )
bwd_path.pop()
bwd_path.reverse()
a__ : Optional[int] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE = (0, 0)
__SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = AStar(init, goal)
__SCREAMING_SNAKE_CASE = a_star.search()
__SCREAMING_SNAKE_CASE = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal)
__SCREAMING_SNAKE_CASE = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 688 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case : Optional[Any] = logging.get_logger(__name__)
_snake_case : Dict = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = """vivit"""
def __init__( self : Union[str, Any] , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Dict=[2, 1_6, 1_6] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Union[str, Any]=7_6_8 , lowerCAmelCase_ : str=1_2 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : int=3_0_7_2 , lowerCAmelCase_ : Dict="gelu_fast" , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : int=1e-06 , lowerCAmelCase_ : Optional[int]=True , **lowerCAmelCase_ : Any , ) -> str:
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = image_size
__lowerCAmelCase = num_frames
__lowerCAmelCase = tubelet_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = qkv_bias
super().__init__(**lowerCAmelCase_ )
| 53 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ):
# Construct model
if gpta_config_file == "":
a__ : Union[str, Any] = GPTaConfig()
else:
a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ )
a__ : Optional[int] = GPTaModel(lowerCAmelCase__ )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 688 | 0 |
import collections
import os
import re
from pathlib import Path
__lowercase : Tuple ="""src/transformers"""
# Matches is_xxx_available()
__lowercase : Union[str, Any] =re.compile(R"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
__lowercase : List[str] =re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__lowercase : Optional[int] =re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
__lowercase : Any =re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
__lowercase : Optional[Any] =re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__lowercase : Optional[int] =re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
__lowercase : List[Any] =re.compile(R"""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
__lowercase : Optional[int] =re.compile(R"""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
__lowercase : Union[str, Any] =re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
__lowercase : Optional[int] =re.compile(R"""^\s*try:""")
# Catches a line with else:
__lowercase : Union[str, Any] =re.compile(R"""^\s*else:""")
def a__ ( lowercase__ ):
'''simple docstring'''
if _re_test_backend.search(lowercase__ ) is None:
return None
UpperCAmelCase_ =[b[0] for b in _re_backend.findall(lowercase__ )]
backends.sort()
return "_and_".join(lowercase__ )
def a__ ( lowercase__ ):
'''simple docstring'''
with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase_ =f.readlines()
UpperCAmelCase_ =0
while line_index < len(lowercase__ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase__ ):
return None
# First grab the objects without a specific backend in _import_structure
UpperCAmelCase_ =[]
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
UpperCAmelCase_ =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase__ ):
UpperCAmelCase_ =_re_one_line_import_struct.search(lowercase__ ).groups()[0]
UpperCAmelCase_ =re.findall(R"\[([^\]]+)\]" , lowercase__ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
UpperCAmelCase_ =_re_import_struct_key_value.search(lowercase__ )
if single_line_import_search is not None:
UpperCAmelCase_ =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowercase__ ) > 0]
objects.extend(lowercase__ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
UpperCAmelCase_ ={"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
UpperCAmelCase_ =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase_ =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase_ =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
UpperCAmelCase_ =lines[line_index]
if _re_import_struct_add_one.search(lowercase__ ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase__ ) is not None:
UpperCAmelCase_ =_re_import_struct_add_many.search(lowercase__ ).groups()[0].split(", " )
UpperCAmelCase_ =[obj[1:-1] for obj in imports if len(lowercase__ ) > 0]
objects.extend(lowercase__ )
elif _re_between_brackets.search(lowercase__ ) is not None:
UpperCAmelCase_ =_re_between_brackets.search(lowercase__ ).groups()[0].split(", " )
UpperCAmelCase_ =[obj[1:-1] for obj in imports if len(lowercase__ ) > 0]
objects.extend(lowercase__ )
elif _re_quote_object.search(lowercase__ ) is not None:
objects.append(_re_quote_object.search(lowercase__ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 1_2 + "\"" ):
objects.append(line[1_3:-3] )
line_index += 1
UpperCAmelCase_ =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
UpperCAmelCase_ =[]
while (
line_index < len(lowercase__ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
UpperCAmelCase_ =lines[line_index]
UpperCAmelCase_ =_re_import.search(lowercase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
UpperCAmelCase_ ={"none": objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase__ ):
# If the line is an if is_backend_available, we grab all objects associated.
UpperCAmelCase_ =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase_ =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase_ =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
UpperCAmelCase_ =lines[line_index]
UpperCAmelCase_ =_re_import.search(lowercase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
UpperCAmelCase_ =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
def find_duplicates(lowercase__ ):
return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
UpperCAmelCase_ =[]
for key in import_dict_objects.keys():
UpperCAmelCase_ =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
UpperCAmelCase_ =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
UpperCAmelCase_ ="base imports" if key == "none" else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[]
for root, _, files in os.walk(lowercase__ ):
if "__init__.py" in files:
UpperCAmelCase_ =os.path.join(lowercase__ , "__init__.py" )
UpperCAmelCase_ =parse_init(lowercase__ )
if objects is not None:
UpperCAmelCase_ =analyze_results(*lowercase__ )
if len(lowercase__ ) > 0:
UpperCAmelCase_ =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append("\n".join(lowercase__ ) )
if len(lowercase__ ) > 0:
raise ValueError("\n\n".join(lowercase__ ) )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[]
for path, directories, files in os.walk(lowercase__ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(lowercase__ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase__ ) / folder).glob("*.py" ) ) ) == 0:
continue
UpperCAmelCase_ =str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) )
UpperCAmelCase_ =short_path.replace(os.path.sep , "." )
submodules.append(lowercase__ )
for fname in files:
if fname == "__init__.py":
continue
UpperCAmelCase_ =str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) )
UpperCAmelCase_ =short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(lowercase__ )
return submodules
__lowercase : Optional[Any] =[
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
"""models.esm.openfold_utils""",
]
def a__ ( ):
'''simple docstring'''
from transformers.utils import direct_transformers_import
UpperCAmelCase_ =direct_transformers_import(lowercase__ )
UpperCAmelCase_ =set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowercase__ , "__init__.py" ) , "r" ) as f:
UpperCAmelCase_ =f.read()
import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]" , lowercase__ ) ) )
UpperCAmelCase_ =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowercase__ ) > 0:
UpperCAmelCase_ ="\n".join(F'- {module}' for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registed in the main init of Transformers:\n"
F'{list_of_modules}\n'
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 54 |
'''simple docstring'''
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
__SCREAMING_SNAKE_CASE = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
__SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
__SCREAMING_SNAKE_CASE = reader.read()
__SCREAMING_SNAKE_CASE = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
__SCREAMING_SNAKE_CASE = UNetaDModel(**config)
else:
__SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
__SCREAMING_SNAKE_CASE = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__SCREAMING_SNAKE_CASE = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__SCREAMING_SNAKE_CASE = config[key]
del config[key]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']]
__SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
__SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
__SCREAMING_SNAKE_CASE = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
__SCREAMING_SNAKE_CASE = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
__SCREAMING_SNAKE_CASE = param_value
__SCREAMING_SNAKE_CASE = True
if not has_changed:
__SCREAMING_SNAKE_CASE = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :Tuple = {
'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'],
'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :str = ['BertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BertForMaskedLM',
'BertForMultipleChoice',
'BertForNextSentencePrediction',
'BertForPreTraining',
'BertForQuestionAnswering',
'BertForSequenceClassification',
'BertForTokenClassification',
'BertLayer',
'BertLMHeadModel',
'BertModel',
'BertPreTrainedModel',
'load_tf_weights_in_bert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Tuple = [
'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBertEmbeddings',
'TFBertForMaskedLM',
'TFBertForMultipleChoice',
'TFBertForNextSentencePrediction',
'TFBertForPreTraining',
'TFBertForQuestionAnswering',
'TFBertForSequenceClassification',
'TFBertForTokenClassification',
'TFBertLMHeadModel',
'TFBertMainLayer',
'TFBertModel',
'TFBertPreTrainedModel',
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['TFBertTokenizer']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = [
'FlaxBertForCausalLM',
'FlaxBertForMaskedLM',
'FlaxBertForMultipleChoice',
'FlaxBertForNextSentencePrediction',
'FlaxBertForPreTraining',
'FlaxBertForQuestionAnswering',
'FlaxBertForSequenceClassification',
'FlaxBertForTokenClassification',
'FlaxBertModel',
'FlaxBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
__UpperCamelCase = (KDPMaDiscreteScheduler,)
__UpperCamelCase = 10
def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int:
'''simple docstring'''
a__ : Optional[int] = {
'''num_train_timesteps''': 1_1_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**A__ )
return config
def __lowerCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=A__ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=A__ , beta_end=A__ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A__ )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A__ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
a__ : Any = self.scheduler_classes[0]
a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
a__ : Dict = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : Tuple = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Dict = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ )
a__ : Union[str, Any] = model(A__ , A__ )
a__ : List[str] = scheduler.step(A__ , A__ , A__ )
a__ : Optional[Any] = output.prev_sample
a__ : Tuple = torch.sum(torch.abs(A__ ) )
a__ : Optional[int] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
a__ : List[Any] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : Tuple = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps )
a__ : List[Any] = self.dummy_model()
a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
a__ : Any = sample.to(A__ )
for i, t in enumerate(scheduler.timesteps ):
a__ : str = scheduler.scale_model_input(A__ , A__ )
a__ : List[str] = model(A__ , A__ )
a__ : str = scheduler.step(A__ , A__ , A__ )
a__ : List[Any] = output.prev_sample
a__ : Dict = torch.sum(torch.abs(A__ ) )
a__ : Optional[Any] = torch.mean(torch.abs(A__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def __lowerCAmelCase ( self : str ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
a__ : Optional[int] = self.scheduler_classes[0]
a__ : Tuple = self.get_scheduler_config()
a__ : List[Any] = scheduler_class(**A__ )
scheduler.set_timesteps(self.num_inference_steps , device=A__ )
a__ : Union[str, Any] = self.dummy_model()
a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ )
a__ : List[Any] = model(A__ , A__ )
a__ : Any = scheduler.step(A__ , A__ , A__ )
a__ : List[str] = output.prev_sample
a__ : Any = torch.sum(torch.abs(A__ ) )
a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) )
if str(A__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 688 | 0 |
'''simple docstring'''
from __future__ import annotations
def _a (lowercase__ : int , lowercase__ : int ) -> tuple[int, int]:
"""simple docstring"""
if b == 0:
return (1, 0)
((__snake_case) , (__snake_case)) = extended_euclid(lowercase__ , a % b )
__snake_case = a // b
return (y, x - k * y)
def _a (lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int:
"""simple docstring"""
((__snake_case) , (__snake_case)) = extended_euclid(lowercase__ , lowercase__ )
__snake_case = na * na
__snake_case = ra * x * na + ra * y * na
return (n % m + m) % m
def _a (lowercase__ : int , lowercase__ : int ) -> int:
"""simple docstring"""
((__snake_case) , (__snake_case)) = extended_euclid(lowercase__ , lowercase__ )
if b < 0:
__snake_case = (b % n + n) % n
return b
def _a (lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int:
"""simple docstring"""
__snake_case , __snake_case = invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ )
__snake_case = na * na
__snake_case = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 56 |
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
a__ : str = ['''a''', '''b''', '''c''']
# Defaults to last layer if both are None
a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ )
self.assertEqual(A__ , ['''c'''] )
self.assertEqual(A__ , [2] )
# Out indices set to match out features
a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features set to match out indices
a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [0, 2] )
# Out features selected from negative indices
a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ )
self.assertEqual(A__ , ['''a''', '''c'''] )
self.assertEqual(A__ , [-3, -1] )
def __lowerCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ )
# Out features must be a list
with self.assertRaises(A__ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(A__ ):
verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(A__ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def __lowerCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
a__ : Optional[Any] = BackboneMixin()
a__ : int = ['''a''', '''b''', '''c''']
a__ : List[Any] = ['''a''', '''c''']
a__ : Tuple = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
a__ : Dict = ['''a''', '''b''']
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
a__ : int = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 688 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : List[str] = logging.get_logger(__name__)
A_ : Optional[int] = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Any ='''vivit'''
def __init__( self , _lowerCamelCase=2_2_4 , _lowerCamelCase=3_2 , _lowerCamelCase=[2, 1_6, 1_6] , _lowerCamelCase=3 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu_fast" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-06 , _lowerCamelCase=True , **_lowerCamelCase , ):
UpperCamelCase_: Optional[Any] = hidden_size
UpperCamelCase_: Dict = num_hidden_layers
UpperCamelCase_: Any = num_attention_heads
UpperCamelCase_: Optional[Any] = intermediate_size
UpperCamelCase_: List[Any] = hidden_act
UpperCamelCase_: List[str] = hidden_dropout_prob
UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob
UpperCamelCase_: Dict = initializer_range
UpperCamelCase_: Tuple = layer_norm_eps
UpperCamelCase_: List[str] = image_size
UpperCamelCase_: Tuple = num_frames
UpperCamelCase_: str = tubelet_size
UpperCamelCase_: str = num_channels
UpperCamelCase_: List[str] = qkv_bias
super().__init__(**_lowerCamelCase ) | 57 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __a ( lowerCAmelCase__ : List[Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
a__ : Dict = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' )
a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' )
a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' )
a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' )
a__ : Any = value.float()
for key, value in codebook_state_dict.items():
a__ : List[str] = value
return upgrade
@torch.no_grad()
def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ):
if config_path is not None:
a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ )
else:
a__ : Optional[int] = FlavaConfig()
a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval()
a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
else:
a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )
a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
a__ : Any = hf_model.state_dict()
a__ : Optional[Any] = count_parameters(lowerCAmelCase__ )
a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 688 | 0 |
"""simple docstring"""
import datasets
from .evaluate import evaluate
__lowerCAmelCase : Tuple = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
__lowerCAmelCase : Union[str, Any] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
__lowerCAmelCase : Optional[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {
"""id""": datasets.Value("""string""" ),
"""prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ),
},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , )
def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Union[str, Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
snake_case_ : Union[str, Any] = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
snake_case_ : int = evaluate(dataset=_lowercase , predictions=_lowercase )
return score
| 58 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__SCREAMING_SNAKE_CASE = 4
__SCREAMING_SNAKE_CASE = 3
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
def __a ( lowerCAmelCase__ : List[str] ):
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def __a ( ):
a__ : str = int(os.environ['''RANK'''] )
a__ : int = int(os.environ['''WORLD_SIZE'''] )
a__ : str = ArgumentParser()
parser.add_argument('''--streaming''' , type=lowerCAmelCase__ )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ )
parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 )
a__ : int = parser.parse_args()
a__ : List[str] = args.streaming
a__ : Dict = args.num_workers
a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) )
a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a__ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 688 | 0 |
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
__A = {
"susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json",
"susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json",
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "ernie_m"
lowercase_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__(self : Any , UpperCAmelCase_ : int = 250_002 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 3_072 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 514 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1E-0_5 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=0.0 , **UpperCAmelCase_ : str , ) ->List[str]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: List[Any] =vocab_size
lowerCamelCase__: Tuple =hidden_size
lowerCamelCase__: Optional[Any] =num_hidden_layers
lowerCamelCase__: Optional[Any] =num_attention_heads
lowerCamelCase__: List[str] =intermediate_size
lowerCamelCase__: Optional[int] =hidden_act
lowerCamelCase__: Optional[Any] =hidden_dropout_prob
lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob
lowerCamelCase__: Optional[Any] =max_position_embeddings
lowerCamelCase__: Union[str, Any] =initializer_range
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: List[str] =classifier_dropout
lowerCamelCase__: Union[str, Any] =is_decoder
lowerCamelCase__: str =act_dropout
| 59 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.