text
stringlengths 0
4.99k
|
---|
Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs: |
y_true (true label): This is either 0 or 1. |
y_pred (predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] when from_logits=True) or a probability (i.e, value in [0., 1.] when from_logits=False). |
Recommended Usage: (set from_logits=True) |
With tf.keras API: |
model.compile( |
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), |
.... |
) |
As a standalone function: |
>>> # Example 1: (batch_size = 1, number of samples = 4) |
>>> y_true = [0, 1, 0, 0] |
>>> y_pred = [-18.6, 0.51, 2.94, -12.8] |
>>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True) |
>>> bce(y_true, y_pred).numpy() |
0.865 |
>>> # Example 2: (batch_size = 2, number of samples = 4) |
>>> y_true = [[0, 1], [0, 0]] |
>>> y_pred = [[-18.6, 0.51], [2.94, -12.8]] |
>>> # Using default 'auto'/'sum_over_batch_size' reduction type. |
>>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True) |
>>> bce(y_true, y_pred).numpy() |
0.865 |
>>> # Using 'sample_weight' attribute |
>>> bce(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() |
0.243 |
>>> # Using 'sum' reduction` type. |
>>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True, |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> bce(y_true, y_pred).numpy() |
1.730 |
>>> # Using 'none' reduction type. |
>>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True, |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> bce(y_true, y_pred).numpy() |
array([0.235, 1.496], dtype=float32) |
Default Usage: (set from_logits=False) |
>>> # Make the following updates to the above "Recommended Usage" section |
>>> # 1. Set `from_logits=False` |
>>> tf.keras.losses.BinaryCrossentropy() # OR ...('from_logits=False') |
>>> # 2. Update `y_pred` to use probabilities instead of logits |
>>> y_pred = [0.6, 0.3, 0.2, 0.8] # OR [[0.6, 0.3], [0.2, 0.8]] |
CategoricalCrossentropy class |
tf.keras.losses.CategoricalCrossentropy( |
from_logits=False, |
label_smoothing=0, |
reduction="auto", |
name="categorical_crossentropy", |
) |
Computes the crossentropy loss between the labels and predictions. |
Use this crossentropy loss function when there are two or more label classes. We expect labels to be provided in a one_hot representation. If you want to provide labels as integers, please use SparseCategoricalCrossentropy loss. There should be # classes floating point values per feature. |
In the snippet below, there is # classes floating pointing values per example. The shape of both y_pred and y_true are [batch_size, num_classes]. |
Standalone usage: |
>>> y_true = [[0, 1, 0], [0, 0, 1]] |
>>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] |
>>> # Using 'auto'/'sum_over_batch_size' reduction type. |
>>> cce = tf.keras.losses.CategoricalCrossentropy() |
>>> cce(y_true, y_pred).numpy() |
1.177 |
>>> # Calling with 'sample_weight'. |
>>> cce(y_true, y_pred, sample_weight=tf.constant([0.3, 0.7])).numpy() |
0.814 |
>>> # Using 'sum' reduction type. |
>>> cce = tf.keras.losses.CategoricalCrossentropy( |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> cce(y_true, y_pred).numpy() |
2.354 |
>>> # Using 'none' reduction type. |
>>> cce = tf.keras.losses.CategoricalCrossentropy( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> cce(y_true, y_pred).numpy() |
array([0.0513, 2.303], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', loss=tf.keras.losses.CategoricalCrossentropy()) |
SparseCategoricalCrossentropy class |
tf.keras.losses.SparseCategoricalCrossentropy( |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.