text
stringlengths 0
4.99k
|
---|
tf.keras.losses.Hinge(reduction="auto", name="hinge") |
Computes the hinge loss between y_true and y_pred. |
loss = maximum(1 - y_true * y_pred, 0) |
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1. |
Standalone usage: |
>>> y_true = [[0., 1.], [0., 0.]] |
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]] |
>>> # Using 'auto'/'sum_over_batch_size' reduction type. |
>>> h = tf.keras.losses.Hinge() |
>>> h(y_true, y_pred).numpy() |
1.3 |
>>> # Calling with 'sample_weight'. |
>>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() |
0.55 |
>>> # Using 'sum' reduction type. |
>>> h = tf.keras.losses.Hinge( |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> h(y_true, y_pred).numpy() |
2.6 |
>>> # Using 'none' reduction type. |
>>> h = tf.keras.losses.Hinge( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> h(y_true, y_pred).numpy() |
array([1.1, 1.5], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', loss=tf.keras.losses.Hinge()) |
SquaredHinge class |
tf.keras.losses.SquaredHinge(reduction="auto", name="squared_hinge") |
Computes the squared hinge loss between y_true and y_pred. |
loss = square(maximum(1 - y_true * y_pred, 0)) |
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1. |
Standalone usage: |
>>> y_true = [[0., 1.], [0., 0.]] |
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]] |
>>> # Using 'auto'/'sum_over_batch_size' reduction type. |
>>> h = tf.keras.losses.SquaredHinge() |
>>> h(y_true, y_pred).numpy() |
1.86 |
>>> # Calling with 'sample_weight'. |
>>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() |
0.73 |
>>> # Using 'sum' reduction type. |
>>> h = tf.keras.losses.SquaredHinge( |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> h(y_true, y_pred).numpy() |
3.72 |
>>> # Using 'none' reduction type. |
>>> h = tf.keras.losses.SquaredHinge( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> h(y_true, y_pred).numpy() |
array([1.46, 2.26], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', loss=tf.keras.losses.SquaredHinge()) |
CategoricalHinge class |
tf.keras.losses.CategoricalHinge(reduction="auto", name="categorical_hinge") |
Computes the categorical hinge loss between y_true and y_pred. |
loss = maximum(neg - pos + 1, 0) where neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred) |
Standalone usage: |
>>> y_true = [[0, 1], [0, 0]] |
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]] |
>>> # Using 'auto'/'sum_over_batch_size' reduction type. |
>>> h = tf.keras.losses.CategoricalHinge() |
>>> h(y_true, y_pred).numpy() |
1.4 |
>>> # Calling with 'sample_weight'. |
>>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() |
0.6 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.