text
stringlengths 0
4.99k
|
---|
>>> # Using 'sum' reduction type. |
>>> h = tf.keras.losses.CategoricalHinge( |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> h(y_true, y_pred).numpy() |
2.8 |
>>> # Using 'none' reduction type. |
>>> h = tf.keras.losses.CategoricalHinge( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> h(y_true, y_pred).numpy() |
array([1.2, 1.6], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', loss=tf.keras.losses.CategoricalHinge()) |
hinge function |
tf.keras.losses.hinge(y_true, y_pred) |
Computes the hinge loss between y_true and y_pred. |
loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1) |
Standalone usage: |
>>> y_true = np.random.choice([-1, 1], size=(2, 3)) |
>>> y_pred = np.random.random(size=(2, 3)) |
>>> loss = tf.keras.losses.hinge(y_true, y_pred) |
>>> assert loss.shape == (2,) |
>>> assert np.array_equal( |
... loss.numpy(), |
... np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1)) |
Arguments |
y_true: The ground truth values. y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided they will be converted to -1 or 1. shape = [batch_size, d0, .. dN]. |
y_pred: The predicted values. shape = [batch_size, d0, .. dN]. |
Returns |
Hinge loss values. shape = [batch_size, d0, .. dN-1]. |
squared_hinge function |
tf.keras.losses.squared_hinge(y_true, y_pred) |
Computes the squared hinge loss between y_true and y_pred. |
loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1) |
Standalone usage: |
>>> y_true = np.random.choice([-1, 1], size=(2, 3)) |
>>> y_pred = np.random.random(size=(2, 3)) |
>>> loss = tf.keras.losses.squared_hinge(y_true, y_pred) |
>>> assert loss.shape == (2,) |
>>> assert np.array_equal( |
... loss.numpy(), |
... np.mean(np.square(np.maximum(1. - y_true * y_pred, 0.)), axis=-1)) |
Arguments |
y_true: The ground truth values. y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1. shape = [batch_size, d0, .. dN]. |
y_pred: The predicted values. shape = [batch_size, d0, .. dN]. |
Returns |
Squared hinge loss values. shape = [batch_size, d0, .. dN-1]. |
categorical_hinge function |
tf.keras.losses.categorical_hinge(y_true, y_pred) |
Computes the categorical hinge loss between y_true and y_pred. |
loss = maximum(neg - pos + 1, 0) where neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred) |
Standalone usage: |
>>> y_true = np.random.randint(0, 3, size=(2,)) |
>>> y_true = tf.keras.utils.to_categorical(y_true, num_classes=3) |
>>> y_pred = np.random.random(size=(2, 3)) |
>>> loss = tf.keras.losses.categorical_hinge(y_true, y_pred) |
>>> assert loss.shape == (2,) |
>>> pos = np.sum(y_true * y_pred, axis=-1) |
>>> neg = np.amax((1. - y_true) * y_pred, axis=-1) |
>>> assert np.array_equal(loss.numpy(), np.maximum(0., neg - pos + 1.)) |
Arguments |
y_true: The ground truth values. y_true values are expected to be either {-1, +1} or {0, 1} (i.e. a one-hot-encoded tensor). |
y_pred: The predicted values. |
Returns |
Categorical hinge loss values. |
Probabilistic losses |
BinaryCrossentropy class |
tf.keras.losses.BinaryCrossentropy( |
from_logits=False, label_smoothing=0, reduction="auto", name="binary_crossentropy" |
) |
Computes the cross-entropy loss between true labels and predicted labels. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.