id
int64 20
101k
| problem
stringlengths 18
4.16k
| gt_ans
stringlengths 1
191
|
---|---|---|
11,862 | Two circles with radii \(R\) and \(r\) touch each other and the sides of a given angle \(\alpha\). Prove that there is a relationship between the radii of the circles and the given angle given by:
$$
r = R \tan^2\left(45^\circ - \frac{\alpha}{4}\right)
$$ | r = R \tan^2\left(45^\circ - \frac{\alpha}{4}\right) |
11,872 | Given \( x_{i} \in \mathbf{R}, x_{i} \geq 0 \) for \( i=1,2,3,4,5 \), and \( \sum_{i=1}^{5} x_{i} = 1 \), find the minimum value of \(\max \left\{ x_{1} + x_{2}, x_{2} + x_{3}, x_{3} + x_{4}, x_{4} + x_{5} \right\} \). | \dfrac{1}{3} |
11,900 | Determine the largest positive integer $n$ for which there exists a set $S$ with exactly $n$ numbers such that
- each member in $S$ is a positive integer not exceeding $2002$ ,
- if $a,b\in S$ (not necessarily different), then $ab\not\in S$ .
| 1958 |
11,904 | 8. Given the sequence $\left\{a_{n}\right\}$ satisfies $a_{n+1}=\frac{3^{n+1} a_{n}}{a_{n}+3^{n+1}}, a_{1}=3$, then the general term formula of the sequence $\left\{a_{n}\right\}$ is | \dfrac{2 \cdot 3^{n}}{3^{n} - 1} |
11,913 |
Let ellipse $\Gamma: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 (a > b > 0)$ have an eccentricity of $\frac{\sqrt{3}}{2}$. A line with slope $k (k > 0)$ passes through the left focus $F$ and intersects the ellipse $\Gamma$ at points $A$ and $B$. If $\overrightarrow{A F}=3 \overrightarrow{F B}$, find $k$. | \sqrt{2} |
11,923 | ## Task 3 - 230823
Let $k$ be a circle with center $M$. Three points $A, B$, and $C$ on $k$ are positioned such that the point $M$ lies inside the triangle $A B C$. Furthermore, $\overline{\angle C A M}=20^{\circ}$ and $\overline{\angle A M B}=120^{\circ}$.
Determine the size of the angle $\angle C B M$ from these conditions! | 40^{\circ} |
11,934 | 7. The length of the minor axis of the ellipse $\rho=\frac{1}{2-\cos \theta}$ is $\qquad$ | \dfrac{2\sqrt{3}}{3} |
11,935 | 3.341. $\frac{\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}}{\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}}=3$. | 3 |
11,944 | Define $ a \circledast b = a + b-2ab $. Calculate the value of
$$A=\left( ...\left(\left(\frac{1}{2014}\circledast \frac{2}{2014}\right)\circledast\frac{3}{2014}\right)...\right)\circledast\frac{2013}{2014}$$ | \dfrac{1}{2} |
11,971 | 1. Given the sets $A=\{x, x y, x+y\}, B=\{0,|x|, y\}$ and $A=B$, then $x^{2018}+y^{2018}=$ | 2 |
12,022 | Let \( a, b, c, d \) be real numbers defined by
$$
a=\sqrt{4-\sqrt{5-a}}, \quad b=\sqrt{4+\sqrt{5-b}}, \quad c=\sqrt{4-\sqrt{5+c}}, \quad d=\sqrt{4+\sqrt{5+d}}
$$
Calculate their product. | 11 |
12,029 | $$
\begin{array}{l}
\text { 3. Given } \alpha, \beta \in\left(\frac{3 \pi}{4}, \pi\right), \\
\cos (\alpha+\beta)=\frac{4}{5}, \sin \left(\alpha-\frac{\pi}{4}\right)=\frac{12}{13}. \\
\end{array}
$$
Then $\cos \left(\beta+\frac{\pi}{4}\right)=$ $\qquad$ | -\dfrac{56}{65} |
12,030 | There are 128 ones written on the board. In one move, you can replace a pair of numbers $a$ and $b$ with the number $ab+1$. Let $A$ be the maximum number that can result on the board after 127 such operations. What is the last digit of this number? | 2 |
12,040 | ## Subject IV. (10 points)
Calculate the limit of the sequence $\left(x_{n}\right)_{n \geq 0}$ which satisfies the relation $x_{n+1}=\sqrt{x_{n}+45}-\sqrt{x_{n}+5}$, with $x_{0} \geq-5$.
Prof. Eugen Jecan, National College Andrei Mureşanu Dej
All problems are mandatory. 10 points are awarded by default.
SUCCESS!
Effective working time - 3 hours.
## Grading Scale for Grade XI (OLM 2015 - Local Stage)
## Official $10 p$ | 4 |
12,065 | 5.1. Mother gives pocket money to her children: 1 ruble to Anya, 2 rubles to Borya, 3 rubles to Vitya, then 4 rubles to Anya, 5 rubles to Borya and so on until she gives 202 rubles to Anya, and 203 rubles to Borya. By how many rubles will Anya receive more than Vitya? | 68 |
12,074 | On a bench of one magistrate, there are two Englishmen, two Scots, two Welshmen, one Frenchman, one Italian, one Spaniard, and one American sitting. The Englishmen do not want to sit next to each other, the Scots do not want to sit next to each other, and the Welshmen also do not want to sit next to each other.
In how many different ways can these 10 magistrate members sit on the bench so that no two people of the same nationality sit next to each other? | 1895040 |
12,078 | 11.12. Find the relationship between $\arcsin \cos \arcsin x \quad$ and $\quad \arccos \sin \arccos x$.
## 11.3. Equations | \dfrac{\pi}{2} |
12,084 | 2. A school organized three extracurricular activity groups in mathematics, Chinese, and foreign language. Each group meets twice a week, with no overlapping schedules. Each student can freely join one group, or two groups, or all three groups simultaneously. A total of 1200 students participate in the extracurricular groups, with 550 students joining the mathematics group, 460 students joining the Chinese group, and 350 students joining the foreign language group. Among them, 100 students participate in both the mathematics and foreign language groups, 120 students participate in both the mathematics and Chinese groups, and 140 students participate in all three groups. How many students participate in both the Chinese and foreign language groups? | 80 |
12,098 | Six standard fair six-sided dice are rolled and arranged in a row at random. Compute the expected number of dice showing the same number as the sixth die in the row. | \dfrac{11}{6} |
12,105 | 4. Find the positive integer solutions for
$$\left\{\begin{array}{l}
5 x+7 y+2 z=24 \\
3 x-y-4 z=4
\end{array}\right.$$ | (3, 1, 1) |
12,174 | 11.4. Nyusha has 2022 coins, and Barash has 2023. Nyusha and Barash toss all their coins simultaneously and count how many heads each of them gets. The one who gets more heads wins, and in case of a tie, Nyusha wins. $C$ What is the probability that Nyusha wins? | \dfrac{1}{2} |
12,219 | Find the number of eight-digit numbers whose digits product is 700. The answer should be presented as an integer. | 2520 |
12,227 | Find the number of ways to partition a set of $10$ elements, $S = \{1, 2, 3, . . . , 10\}$ into two parts; that is, the number of unordered pairs $\{P, Q\}$ such that $P \cup Q = S$ and $P \cap Q = \emptyset$. | 511 |
12,257 | Let the functions \( f(x) \) and \( g(x) \) be defined on the set of real numbers \(\mathbf{R}\) such that:
(1) \( f(0)=0 \);
(2) For any real numbers \( x \) and \( y \), \( g(x-y) \geqslant f(x)f(y) + g(x)g(y) \).
Prove that \( f^{2008}(x) + g^{2008}(x) \leqslant 1 \). | f^{2008}(x) + g^{2008}(x) \leqslant 1 |
12,258 | 2. In a square table $11 \times 11$, we have written the natural numbers $1,2, \ldots, 121$ sequentially from left to right and from top to bottom. Using a square tile $4 \times 4$, we covered exactly 16 cells in all possible ways. How many times was the sum of the 16 covered numbers a perfect square? | 5 |
12,265 | Example 6 If numbers $a_{1}, a_{2}, a_{3}$ are taken in ascending order from the set $1,2, \cdots, 14$, such that both $a_{2}-a_{1} \geqslant 3$ and $a_{3}-a_{2} \geqslant 3$ are satisfied. Then, the number of all different ways to select the numbers is $\qquad$ kinds. | 120 |
12,272 | There are an odd number of soldiers on an exercise. The distance between every pair of soldiers is different. Each soldier watches his nearest neighbor. Prove that at least one soldier is not being watched. | \text{At least one soldier is not being watched.} |
12,284 | 18. Given $\sin \left(x+20^{\circ}\right)=\cos \left(x+10^{\circ}\right)+\cos \left(x-10^{\circ}\right)$, find the value of $\tan x$. | \sqrt{3} |
12,296 | 11.1. Two runners, starting simultaneously at constant speeds, run on a circular track in opposite directions. One of them runs the loop in 5 minutes, while the other takes 8 minutes. Find the number of different meeting points of the runners on the track, if they ran for at least an hour.
# | 13 |
12,312 | Let \( f(x) = \frac{x + a}{x^2 + \frac{1}{2}} \), where \( x \) is a real number and the maximum value of \( f(x) \) is \( \frac{1}{2} \) and the minimum value of \( f(x) \) is \( -1 \). If \( t = f(0) \), find the value of \( t \). | -\dfrac{1}{2} |
12,326 | 3. The sledge run consists of a straight slope $AB$ and a horizontal section $BC$. Point $A$ is 5 m away from the nearest point $H$ on the horizontal ground surface. The distance $HC$ is 3 m, and point $B$ lies on the segment $HC$. Find the distance from point $H$ to point $B$ so that the time of the sledge's motion from rest along the broken line $ABC$ is minimized. Assume a uniform gravitational field, neglect friction, air resistance, and any change in the magnitude of the sledge's velocity vector at the junction point $B$. The acceleration due to gravity is considered to be $10 \mathrm{m} / \mathrm{c}^{2}$. | \dfrac{5\sqrt{3}}{3} |
12,350 | Construct a square \( A B C D \) with a side length of \( 6 \text{ cm} \) and label the intersection of its diagonals as \( S \). Construct a point \( K \) such that together with points \( S, B, \) and \( C \), they form a square \( B K C S \). Construct a point \( L \) such that together with points \( S, A, \) and \( D \), they form a square \( A S D L \). Construct the segment \( K L \), mark the intersection of segments \( K L \) and \( A D \) as \( X \), and mark the intersection of segments \( K L \) and \( B C \) as \( Y \).
Using the given data, calculate the length of the broken line \( K Y B A X L \). | 18 |
12,356 | Let the ellipse be given by \(\frac{x^{2}}{5}+\frac{y^{2}}{4}=1\). The locus of the intersection points of two mutually perpendicular tangents to the ellipse is \(C\). Tangents \(PA\) and \(PB\) to the curve \(C\) intersect at point \(P\), touching the curve at points \(A\) and \(B\) respectively. Find the minimum value of \(\overrightarrow{PA} \cdot \overrightarrow{PB}\). | 18\sqrt{2} - 27 |
12,360 | Problem 9.7. Given a quadratic trinomial $P(x)$, whose leading coefficient is 1. On the graph of $y=P(x)$, two points with abscissas 10 and 30 are marked. It turns out that the bisector of the first quadrant of the coordinate plane intersects the segment between them at its midpoint. Find $P(20)$. | -80 |
12,364 | 7. $[20]$ Three positive reals $x, y$, and $z$ are such that
$$
\begin{array}{l}
x^{2}+2(y-1)(z-1)=85 \\
y^{2}+2(z-1)(x-1)=84 \\
z^{2}+2(x-1)(y-1)=89 .
\end{array}
$$
Compute $x+y+z$. | 18 |
12,367 | 3B. We will say that a number is "fancy" if it is written with an equal number of even and odd digits. Determine the number of all four-digit "fancy" numbers written with different digits? | 2160 |
12,376 | From a square with a side length of $6 \text{ cm}$, identical isosceles right triangles are cut off from each corner so that the area of the square is reduced by $32\%$. What is the length of the legs of these triangles? | 2.4 |
12,378 | A cat broke into a wine store at night. It jumped onto a shelf where bottles of wine were lined up in a long row - the first third of the bottles at the edge cost 160 Kč each, the next third cost 130 Kč each, and the last third cost 100 Kč each. First, the cat knocked over a 160 Kč bottle at the very beginning of the row, and then continued to knock over one bottle after another without skipping any. Before it got bored, it had knocked over 25 bottles, all of which broke. In the morning, the owner regretted that the cat had not started its mischief at the other end of the shelf. Even if it had broken the same number of bottles, the loss would have been 660 Kč less. How many bottles were originally on the shelf?
(L. Šimůnek) | 36 |
12,383 | 88. Form the equation of the line passing through the point $A(3, -2)$ and having the direction vector $\vec{n}=(-5, 3)$. | 3x + 5y + 1 = 0 |
12,387 | 1. In 1978, "August 1st" was a Tuesday, August 1978 had 31 days, and September 1978 had 30 days. What day of the week was National Day in 1978? | Sunday |
12,404 | Given \( a_{i}, b_{i} \in \mathbf{R}^{+} \) and \( \sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} b_{i} \), prove that \( \sum_{i=1}^{n} \frac{a_{i}^{2}}{a_{i} + b_{i}} \geq \frac{1}{2} \sum_{i=1}^{n} a_{i} \). | \sum_{i=1}^{n} \frac{a_{i}^{2}}{a_{i} + b_{i}} \geq \frac{1}{2} \sum_{i=1}^{n} a_{i} |
12,430 | Which is the six-digit number (abcdef) in the decimal system, whose 2, 3, 4, 5, 6 times multiples are also six-digit and their digits are formed by cyclic permutations of the digits of the above number and start with $c, b, e, f, d$ respectively? | 142857 |
12,436 | An ant starts at the point \((1,0)\). Each minute, it walks from its current position to one of the four adjacent lattice points until it reaches a point \((x, y)\) with \(|x|+|y| \geq 2\). What is the probability that the ant ends at the point \((1,1)\)? | \dfrac{7}{24} |
12,439 | 4. In the game "clock", at the beginning, the arrow points to one of the numbers from 1 to 7 (drawing on the right). In each step, the arrow moves in the direction of the clock hands by as many fields as the number written in the field before the start of the step. For example, in the drawing, the arrow points to the number 4, which

means that it needs to move 4 fields and will point to the field with the number 1, and in the next step, it moves 1 field and will point to the field with the number 2, etc. After 21 moves, the arrow points to the field with the number 6. On which field did the arrow point after the first move? | 5 |
12,444 | Example 7. Solve the inequality
$$
\frac{1}{5} \cdot 5^{2 x} 7^{3 x+2} \leq \frac{25}{7} \cdot 7^{2 x} 5^{3 x}
$$ | (-\infty, -3] |
12,452 | The side \( AB \) of a regular hexagon \( ABCDEF \) is equal to \( \sqrt{3} \) and serves as a chord of a certain circle, while the other sides of the hexagon lie outside this circle. The length of the tangent \( CM \), drawn to the same circle from vertex \( C \), is 3. Find the diameter of the circle. | 2\sqrt{3} |
12,483 | How many positive integers $n$ exist such that the quotient $\frac{2 n^{2}+4 n+18}{3 n+3}$ is an integer? | 4 |
12,492 | ## Task 5 - 271245
Let $\left(x_{n}\right)$ be the sequence defined by
$$
x_{1}=1, \quad x_{2}=1, \quad x_{n+1}=\frac{x_{n}+1}{x_{n-1}+4}
$$
$(n=2,3,4, \ldots)$.
Determine whether this sequence is convergent, and if so, find its limit. | \dfrac{-3 + \sqrt{13}}{2} |
12,499 | A5. Dani wrote the integers from 1 to $N$. She used the digit 1 fifteen times. She used the digit 2 fourteen times.
What is $N$ ? | 41 |
12,501 | Two spheres of one radius and two of another are arranged so that each sphere touches three others and one plane. Find the ratio of the radius of the larger sphere to the radius of the smaller one.
# | 2 + \sqrt{3} |
12,540 | A ball is propelled from corner \( A \) of a square snooker table of side 2 metres. After bouncing off three cushions as shown, the ball goes into a pocket at \( B \). The total distance travelled by the ball is \( \sqrt{k} \) metres. What is the value of \( k \)? (Note that when the ball bounces off a cushion, the angle its path makes with the cushion as it approaches the point of impact is equal to the angle its path makes with the cushion as it moves away from the point of impact.) | 52 |
12,566 | A natural number is called lucky if all its digits are equal to 7. For example, 7 and 7777 are lucky, but 767 is not. João wrote down the first twenty lucky numbers starting from 7, and then added them. What is the remainder of that sum when divided by 1000? | 70 |
12,575 | In a round-robin tournament with 6 teams, each team plays one game against each other team, and each game results in one team winning and one team losing. At the end of the tournament, the teams are ranked by the number of games won. What is the maximum number of teams that could be tied for the most wins at the end of the tournament? | 5 |
12,580 | 72. The kindergarten teacher distributed 270 apples, 180 pears, and 235 oranges evenly among the children in the senior class, with the remaining apples, pears, and oranges in the ratio of 3:2:1. The senior class has $\qquad$ children. | 29 |
12,583 | How many times does the digit 0 appear in the integer equal to $20^{10}$ ? | 11 |
12,591 | 4. Given the sequence $\left\{a_{n}\right\}(n>0)$ satisfies:
$$
a_{1}=1, a_{n+1}=\sqrt{2+a_{n}} \text {. }
$$
then the general term formula of $\left\{a_{n}\right\}$ is | 2 \cos \left( \dfrac{\pi}{3 \cdot 2^{n-1}} \right) |
12,594 |
Tetrahedron \(ABCD\) has base \( \triangle ABC \). Point \( E \) is the midpoint of \( AB \). Point \( F \) is on \( AD \) so that \( FD = 2AF \), point \( G \) is on \( BD \) so that \( GD = 2BG \), and point \( H \) is on \( CD \) so that \( HD = 2CH \). Point \( M \) is the midpoint of \( FG \) and point \( P \) is the point of intersection of the line segments \( EH \) and \( CM \). What is the ratio of the volume of tetrahedron \( EBCP \) to the volume of tetrahedron \( ABCD \)? | \dfrac{1}{10} |
12,607 | 6. (20 points) Divide 23 cards, each with a number from 1 to 23, into three piles. It is known that the average numbers of the three piles are 13, 4, and 17, respectively. How many cards are there at least in the pile with an average of 13?
【Analysis】According to the problem, let the piles with averages of $13$, $4$, and $17$ have $a$, $b$, and $c$ cards, respectively, then: $a+b+c=23$, | 6 |
12,622 | The sequence \(\left\{a_{n}\right\}_{n \geq 1}\) is defined by \(a_{n+2}=7 a_{n+1}-a_{n}\) for positive integers \(n\) with initial values \(a_{1}=1\) and \(a_{2}=8\). Another sequence, \(\left\{b_{n}\right\}\), is defined by the rule \(b_{n+2}=3 b_{n+1}-b_{n}\) for positive integers \(n\) together with the values \(b_{1}=1\) and \(b_{2}=2\). Find \(\operatorname{gcd}\left(a_{5000}, b_{501}\right)\). | 89 |
12,634 | 2. To stack rectangular building blocks with lengths, widths, and heights of 3 cm, 4 cm, and 5 cm respectively, into the smallest cube, the minimum number of blocks required is $\qquad$ | 3600 |
12,636 | Let $ABC$ be a triangle with side lengths $AB=6, AC=7,$ and $BC=8.$ Let $H$ be the orthocenter of $\triangle ABC$ and $H'$ be the reflection of $H$ across the midpoint $M$ of $BC.$ $\tfrac{[ABH']}{[ACH']}$ can be expressed as $\frac{p}{q}$ . Find $p+q$ .
*2022 CCA Math Bonanza Individual Round #14* | 251 |
12,642 | A magpie cooked porridge and fed her chicks. The third chick received as much porridge as the first two combined. The fourth one received as much as the second and third. The fifth one received as much as the third and fourth. The sixth one received as much as the fourth and fifth. The seventh one did not get any - the porridge ran out! It is known that the fifth chick received 10 grams of porridge. How much porridge did the magpie cook?
# | 40 |
12,655 | A piece of platinum, which has a density of $2.15 \cdot 10^{4} \mathrm{kg} / \mathrm{m}^{3}$, is connected to a piece of cork wood (density $2.4 \cdot 10^{2} \mathrm{kg} / \mathrm{m}^{3}$). The density of the combined system is $4.8 \cdot 10^{2} \mathrm{kg} / \mathrm{m}^{3}$. What is the mass of the piece of wood, if the mass of the piece of platinum is $86.94 \mathrm{kg}$? | 85 |
12,657 | At the vertices of a regular 2018-sided polygon, there are numbers: 2017 zeros and 1 one. In one move, it is allowed to add or subtract one from the numbers at the ends of any side of the polygon. Is it possible to make all the numbers divisible by 3? | \text{No} |
12,680 | Determine the digits $a, b, c, d, e$ such that the two five-digit numbers written with them satisfy the equation $\overline{a b c d e} \cdot 9=$ $\overline{e d c b a}$. | 10989 |
12,713 | For any set \( S \), let \( |S| \) denote the number of elements in the set, and let \( n(S) \) denote the number of subsets of the set \( S \). If \( A, B, C \) are three sets satisfying the following conditions:
(1) \( n(A) + n(B) + n(C) = n(A \cup B \cup C) \);
(2) \( |A| = |B| = 100 \),
Find the minimum value of \( |A \cap B \cap C| \). | 97 |
12,731 | 7.261. $\left\{\begin{array}{l}\left(0,48^{x^{2}+2}\right)^{2 x-y}=1, \\ \lg (x+y)-1=\lg 6-\lg (x+2 y) .\end{array}\right.$
7.261. $\left\{\begin{array}{l}\left(0.48^{x^{2}+2}\right)^{2 x-y}=1, \\ \log (x+y)-1=\log 6-\log (x+2 y) .\end{array}\right.$ | (2, 4) |
12,787 | 2、The solution set of the equation $16 \sin \pi x \cos \pi x=16 x+\frac{1}{x}$ is | \left\{ -\dfrac{1}{4}, \dfrac{1}{4} \right\} |
12,789 | 4.4. To the fraction $\frac{1}{6}$, some fraction was added, and the result turned out to be a proper fraction with a denominator less than 8. What is the largest fraction that could have been added? | \dfrac{29}{42} |
12,807 | 【Question 2】 7 consecutive natural numbers, each of which is a composite number, the minimum sum of these 7 consecutive natural numbers is | 651 |
12,814 | Find the smallest positive integer whose [cube](https://artofproblemsolving.com/wiki/index.php/Perfect_cube) ends in $888$. | 192 |
12,829 | Two friends agree to meet at a specific place between 12:00 PM and 12:30 PM. The first one to arrive waits for the other for 20 minutes before leaving. Find the probability that the friends will meet, assuming each chooses their arrival time randomly (between 12:00 PM and 12:30 PM) and independently. | \dfrac{8}{9} |
12,835 | 3.081. $\sin ^{2}\left(\alpha-\frac{3 \pi}{2}\right)\left(1-\operatorname{tg}^{2} \alpha\right) \operatorname{tg}\left(\frac{\pi}{4}+\alpha\right) \cos ^{-2}\left(\frac{\pi}{4}-\alpha\right)$. | 2 |
12,843 | 3. Linglong Tower has 7 floors, and there is a direct elevator in the tower. Qisi and Wangwang go sightseeing from the 1st floor to the 7th floor. Qisi chooses to wait in line for the elevator, while Wangwang chooses to climb the stairs. When Wangwang reaches the 5th floor, Qisi finally gets on the elevator. In the end, both arrive at the 7th floor at the same time. The upward speed of the elevator is $\qquad$ times the speed of Wangwang climbing the stairs. | 3 |
12,884 | Given \(5n\) real numbers \(r_i, s_i, t_i, u_i, v_i > 1 \ (1 \leq i \leq n)\), define
\[ R = \frac{1}{n} \sum_{i=1}^{n} r_i, \quad S = \frac{1}{n} \sum_{i=1}^{n} s_i, \quad T = \frac{1}{n} \sum_{i=1}^{n} t_i, \quad U = \frac{1}{n} \sum_{i=1}^{n} u_i, \quad V = \frac{1}{n} \sum_{i=1}^{n} v_i. \]
Prove:
\[ \prod_{i=1}^{n} \left( \frac{r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \right) \geq \left( \frac{R S T U V + 1}{R S T U V - 1} \right)^n. \] | \prod_{i=1}^{n} \left( \frac{r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \right) \geq \left( \frac{R S T U V + 1}{R S T U V - 1} \right)^n |
12,890 | The following system of inequalities must be satisfied:
\[
\left\{\begin{array}{l}
18 p < 10, \\
p > 0.5
\end{array}\right.
\]
Hence, \(0.5 < p < \frac{5}{9}\). | \left( \frac{1}{2}, \frac{5}{9} \right) |
12,891 | 10. (5 points) A basket of apples is divided into two portions, A and B. The ratio of the number of apples in A to the number of apples in B is $27: 25$, with A having more apples than B. If at least 4 apples are taken from A and added to B, then B will have more apples than A. How many apples are there in the basket? | 156 |
12,899 | 5. On a straight line, three points $A$, $B$, and $C$ are arranged in sequence, and $A B=6, A C=24, D$ is a point outside the line, and $D A$ $\perp A B$. When $\angle B D C$ takes the maximum value, $A D=$ $\qquad$ . | 12 |
12,948 | Solve the equation \(2xy \ln y \, dx + \left(x^2 + y^2 \sqrt{y^2 + 1}\right) dy = 0\). | x^2 \ln y + \frac{1}{3} (y^2 + 1)^{3/2} = C |
12,956 | In a school, there are $m$ teachers and $n$ students. We assume that each teacher has exactly $k$ students, and each student has exactly $\ell$ teachers. Determine a relation between $m, n, k, \ell$. | mk = n\ell |
12,984 | Determine with proof a simple closed form expression for
$$
\sum_{d \mid n} \phi(d) \tau\left(\frac{n}{d}\right).
$$ | \sigma(n) |
13,002 | Let \( f: \mathbf{R}_{+} \rightarrow \mathbf{R} \) satisfy, for any \( x, y \in \mathbf{R}_{+} \):
\[ \frac{f(\sqrt{x})+f(\sqrt{y})}{2}=f\left(\sqrt{\frac{x+y}{2}}\right) \]
Then, for any \( x_{1}, x_{2}, \cdots, x_{n} \in \mathbf{R}_{+} \), we have:
\[ \frac{1}{n} \sum_{k=1}^{n} f\left(\sqrt{x_{k}}\right)=f\left(\sqrt{\frac{1}{n} \sum_{k=1}^{n} x_{k}}\right) \] | \frac{1}{n} \sum_{k=1}^{n} f\left(\sqrt{x_{k}}\right)=f\left(\sqrt{\frac{1}{n} \sum_{k=1}^{n} x_{k}}\right) |
13,014 | 2. For real numbers $x$ and $y$, where $x \neq 0, y \notin\{-2,0,2\}$ and $x+y \neq 0$, simplify the expression:
$$
\frac{x y^{2018}+2 x y^{2017}}{y^{2016}-4 y^{2014}} \cdot\left(\left(\frac{x^{2}}{y^{3}}+x^{-1}\right):\left(x y^{-2}-\frac{1}{y}+x^{-1}\right)\right): \frac{(x-y)^{2}+4 x y}{1+\frac{y}{x}}-\frac{y^{2}+2 y}{y+2}
$$
Time for solving: 45 minutes. | \dfrac{2y}{y - 2} |
13,020 | ## Problem Statement
Find the derivative.
$y=\frac{1}{2} \cdot \ln \frac{1+\sqrt{\tanh x}}{1-\sqrt{\tanh x}}-\arctan \sqrt{\tanh x}$ | \sqrt{\tanh x} |
13,028 | 1. Buses from Moscow to Oryol depart at the beginning of each hour (at 00 minutes). Buses from Oryol to Moscow depart in the middle of each hour (at 30 minutes). The journey between the cities takes 5 hours. How many buses from Oryol will the bus that left from Moscow meet on its way? | 10 |
13,039 | Given the function \( f(x) = \ln{x} \) with its domain as \( (m, +\infty) \) where \( M > 0 \), ensure that for any \( a, b, c \in (M, +\infty) \) forming the sides of a right-angled triangle, \( f(a), f(b), \) and \( f(c) \) also form the sides of a triangle. Find the minimum value of \( M \). | \sqrt{2} |
13,044 | A trapezoid $ABCD$ lies on the $xy$ -plane. The slopes of lines $BC$ and $AD$ are both $\frac 13$ , and the slope of line $AB$ is $-\frac 23$ . Given that $AB=CD$ and $BC< AD$ , the absolute value of the slope of line $CD$ can be expressed as $\frac mn$ , where $m,n$ are two relatively prime positive integers. Find $100m+n$ .
*Proposed by Yannick Yao* | 1706 |
13,061 | 7. Let $M \Theta N$ denote the remainder of the division of the larger number by the smaller number among $M$ and $N$. For example, $3 \Theta 10=1$. For a non-zero natural number $A$ less than 40, given that $20 \Theta(A \bigodot 20)=7$, then $A=$ $\qquad$ | 33 |
13,071 | Let $ABC$ be a triangle. Denote by $A'$, $B'$, and $C'$ the feet of the altitudes from $A$, $B$, and $C$, respectively. Let $H$ be the orthocenter of $ABC$, and $O$ be the circumcenter of $ABC$. Show that $(OA) \perp (B'C')$. | (OA) \perp (B'C') |
13,076 | A regular 12-sided polygon is inscribed in a circle of radius 1. How many chords of the circle that join two of the vertices of the 12-gon have lengths whose squares are rational? | 42 |
13,111 | ## Task A-4.1.
Girls Maria and Magdalena are playing a chess match consisting of three games. The probabilities that Maria will win, lose, or draw in a single game are equal. The overall winner of the match is the girl who wins more games (out of three), and if they have an equal number of wins, the match ends in a tie.
What is the probability that Maria will be the overall winner of the match? | \dfrac{10}{27} |
13,134 | 10,11
Three spheres of radius $R$ touch each other and a certain plane. Find the radius of the sphere that touches the given spheres and the same plane. | \dfrac{R}{3} |
13,160 | 49. At a class reunion, a total of 43 students and 4 teachers attended. Each student has to shake hands with the teachers and other students. The total number of handshakes at this reunion is $\qquad$ times. | 1075 |
13,170 | Given that the circumradius of the acute triangle \(ABC\) is \(R\), and the points \(D, E, F\) lie on the sides \(BC, CA,\) and \(AB\) respectively, prove that the necessary and sufficient condition for \(AD, BE,\) and \(CF\) to be the altitudes of \(\triangle ABC\) is that \(S = \frac{R}{2}(EF + FD + DE)\), where \(S\) is the area of the triangle \(ABC\). | S = \dfrac{R}{2}(EF + FD + DE) |
13,209 | Example 2.8 In the integers from 1 to 100, how many integers can be divided by exactly two of the four integers 2, $3, 5, 7$? | 27 |
13,217 | ## Task Condition
Find the derivative.
$y=\operatorname{arctg} \frac{\sqrt{1+x^{2}}-1}{x}$ | \dfrac{1}{2(1 + x^{2})} |
13,231 | We flip a fair coin 12 times in a row and record the results of the flips. What is the probability that no three heads follow each other? | \dfrac{1705}{4096} |
13,236 | 4. From the 11 natural numbers $1,2,3, \cdots, 11$, choose 3 different numbers such that their product is divisible by 4. There are $\qquad$ different ways to do this. | 100 |
13,253 | 9. Grandma Wang lives on the 6th floor. One day, the elevator broke down, so Grandma Wang had to climb the stairs from the 1st floor to her home. It takes her 3 minutes to climb each floor, and then she rests for a while. The first rest takes 1 minute, and each subsequent rest is 1 minute longer than the previous one. Grandma Wang took $\qquad$ minutes in total to climb from the 1st floor to the 6th floor. | 25 |
13,261 | Compute the line integral of the vector field given in spherical coordinates:
\[ 2 = e^{r} \sin \theta \mathbf{e}_{r} + 3 \theta^{2} \sin \varphi \mathbf{e}_{\theta} + \tau \varphi \theta \mathbf{e}_{\varphi} \]
along the line \( L: \left\{ r=1, \varphi=\frac{\pi}{2}, 0 \leqslant 0 \leqslant \frac{\pi}{2} \right\} \) in the direction from point \( M_{0}\left(1,0, \frac{\pi}{2}\right) \) to point \( M_{1}\left(1, \frac{\pi}{2}, \frac{\pi}{2}\right) \). | \dfrac{\pi^3}{8} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.