|
--- |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- THUDM/GLM-4.1V-9B-Thinking |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [THUDM/GLM-4.1V-9B-Thinking](https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import os |
|
import re |
|
|
|
import torch |
|
|
|
from transformers import AutoProcessor, Glm4vForConditionalGeneration |
|
|
|
model_id = "tiny-random/glm-4.1v" |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png" |
|
}, |
|
{ |
|
"type": "text", |
|
"text": "describe this image" |
|
} |
|
], |
|
} |
|
] |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
model = Glm4vForConditionalGeneration.from_pretrained( |
|
pretrained_model_name_or_path=model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
inputs = processor.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
generated_ids = model.generate(**inputs, max_new_tokens=16) |
|
output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False) |
|
print(output_text) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
import accelerate |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
from transformers import AutoProcessor, Glm4vForConditionalGeneration |
|
|
|
source_model_id = "THUDM/GLM-4.1V-9B-Thinking" |
|
save_folder = "/tmp/tiny-random/glm-4.1v" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['hidden_size'] = 64 |
|
config_json['intermediate_size'] = 128 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['tie_word_embeddings'] = True |
|
config_json['vision_config']['hidden_size'] = 64 |
|
config_json['vision_config']['depth'] = 2 |
|
config_json['vision_config']['num_heads'] = 2 |
|
config_json['vision_config']['intermediate_size'] = 128 |
|
config_json['vision_config']['out_hidden_size'] = 64 |
|
config_json['rope_scaling']['mrope_section'] = [2, 2, 4] |
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = Glm4vForConditionalGeneration(config) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
print(model) |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
Glm4vForConditionalGeneration( |
|
(model): Glm4vModel( |
|
(visual): Glm4vVisionModel( |
|
(embeddings): Glm4vVisionEmbeddings( |
|
(position_embedding): Embedding(576, 64) |
|
) |
|
(patch_embed): Glm4vVisionPatchEmbed( |
|
(proj): Conv3d(3, 64, kernel_size=(2, 14, 14), stride=(2, 14, 14)) |
|
) |
|
(rotary_pos_emb): Glm4vVisionRotaryEmbedding() |
|
(blocks): ModuleList( |
|
(0-1): 2 x Glm4vVisionBlock( |
|
(norm1): Glm4vRMSNorm((64,), eps=1e-05) |
|
(norm2): Glm4vRMSNorm((64,), eps=1e-05) |
|
(attn): Glm4vVisionAttention( |
|
(qkv): Linear(in_features=64, out_features=192, bias=False) |
|
(proj): Linear(in_features=64, out_features=64, bias=False) |
|
) |
|
(mlp): Glm4VisionMlp( |
|
(gate_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(up_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(down_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
) |
|
) |
|
(merger): Glm4vVisionPatchMerger( |
|
(proj): Linear(in_features=64, out_features=64, bias=False) |
|
(post_projection_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
(gate_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(up_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(down_proj): Linear(in_features=128, out_features=64, bias=False) |
|
(act1): GELU(approximate='none') |
|
(act_fn): SiLU() |
|
) |
|
(post_conv_layernorm): Glm4vRMSNorm((64,), eps=1e-05) |
|
(downsample): Conv2d(64, 64, kernel_size=(2, 2), stride=(2, 2)) |
|
(post_layernorm): Glm4vRMSNorm((64,), eps=1e-05) |
|
) |
|
(language_model): Glm4vTextModel( |
|
(embed_tokens): Embedding(151552, 64, padding_idx=151329) |
|
(layers): ModuleList( |
|
(0-1): 2 x Glm4vTextDecoderLayer( |
|
(self_attn): Glm4vTextAttention( |
|
(q_proj): Linear(in_features=64, out_features=64, bias=True) |
|
(k_proj): Linear(in_features=64, out_features=32, bias=True) |
|
(v_proj): Linear(in_features=64, out_features=32, bias=True) |
|
(o_proj): Linear(in_features=64, out_features=64, bias=False) |
|
) |
|
(mlp): Glm4vTextMLP( |
|
(gate_up_proj): Linear(in_features=64, out_features=256, bias=False) |
|
(down_proj): Linear(in_features=128, out_features=64, bias=False) |
|
(activation_fn): SiLU() |
|
) |
|
(input_layernorm): Glm4vRMSNorm((64,), eps=1e-05) |
|
(post_attention_layernorm): Glm4vRMSNorm((64,), eps=1e-05) |
|
(post_self_attn_layernorm): Glm4vRMSNorm((64,), eps=1e-05) |
|
(post_mlp_layernorm): Glm4vRMSNorm((64,), eps=1e-05) |
|
) |
|
) |
|
(norm): Glm4vRMSNorm((64,), eps=1e-05) |
|
(rotary_emb): Glm4vTextRotaryEmbedding() |
|
) |
|
) |
|
(lm_head): Linear(in_features=64, out_features=151552, bias=False) |
|
) |
|
``` |