--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - THUDM/GLM-4.1V-9B-Thinking --- This tiny model is for debugging. It is randomly initialized with the config adapted from [THUDM/GLM-4.1V-9B-Thinking](https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking). ### Example usage: ```python import os import re import torch from transformers import AutoProcessor, Glm4vForConditionalGeneration model_id = "tiny-random/glm-4.1v" messages = [ { "role": "user", "content": [ { "type": "image", "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png" }, { "type": "text", "text": "describe this image" } ], } ] processor = AutoProcessor.from_pretrained(model_id) model = Glm4vForConditionalGeneration.from_pretrained( pretrained_model_name_or_path=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=16) output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import torch import accelerate from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) from transformers import AutoProcessor, Glm4vForConditionalGeneration source_model_id = "THUDM/GLM-4.1V-9B-Thinking" save_folder = "/tmp/tiny-random/glm-4.1v" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 64 config_json['intermediate_size'] = 128 config_json['num_attention_heads'] = 2 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 1 config_json['tie_word_embeddings'] = True config_json['vision_config']['hidden_size'] = 64 config_json['vision_config']['depth'] = 2 config_json['vision_config']['num_heads'] = 2 config_json['vision_config']['intermediate_size'] = 128 config_json['vision_config']['out_hidden_size'] = 64 config_json['rope_scaling']['mrope_section'] = [2, 2, 4] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = Glm4vForConditionalGeneration(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text Glm4vForConditionalGeneration( (model): Glm4vModel( (visual): Glm4vVisionModel( (embeddings): Glm4vVisionEmbeddings( (position_embedding): Embedding(576, 64) ) (patch_embed): Glm4vVisionPatchEmbed( (proj): Conv3d(3, 64, kernel_size=(2, 14, 14), stride=(2, 14, 14)) ) (rotary_pos_emb): Glm4vVisionRotaryEmbedding() (blocks): ModuleList( (0-1): 2 x Glm4vVisionBlock( (norm1): Glm4vRMSNorm((64,), eps=1e-05) (norm2): Glm4vRMSNorm((64,), eps=1e-05) (attn): Glm4vVisionAttention( (qkv): Linear(in_features=64, out_features=192, bias=False) (proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): Glm4VisionMlp( (gate_proj): Linear(in_features=64, out_features=64, bias=False) (up_proj): Linear(in_features=64, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=64, bias=False) (act_fn): SiLU() ) ) ) (merger): Glm4vVisionPatchMerger( (proj): Linear(in_features=64, out_features=64, bias=False) (post_projection_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (gate_proj): Linear(in_features=64, out_features=128, bias=False) (up_proj): Linear(in_features=64, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (act1): GELU(approximate='none') (act_fn): SiLU() ) (post_conv_layernorm): Glm4vRMSNorm((64,), eps=1e-05) (downsample): Conv2d(64, 64, kernel_size=(2, 2), stride=(2, 2)) (post_layernorm): Glm4vRMSNorm((64,), eps=1e-05) ) (language_model): Glm4vTextModel( (embed_tokens): Embedding(151552, 64, padding_idx=151329) (layers): ModuleList( (0-1): 2 x Glm4vTextDecoderLayer( (self_attn): Glm4vTextAttention( (q_proj): Linear(in_features=64, out_features=64, bias=True) (k_proj): Linear(in_features=64, out_features=32, bias=True) (v_proj): Linear(in_features=64, out_features=32, bias=True) (o_proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): Glm4vTextMLP( (gate_up_proj): Linear(in_features=64, out_features=256, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (activation_fn): SiLU() ) (input_layernorm): Glm4vRMSNorm((64,), eps=1e-05) (post_attention_layernorm): Glm4vRMSNorm((64,), eps=1e-05) (post_self_attn_layernorm): Glm4vRMSNorm((64,), eps=1e-05) (post_mlp_layernorm): Glm4vRMSNorm((64,), eps=1e-05) ) ) (norm): Glm4vRMSNorm((64,), eps=1e-05) (rotary_emb): Glm4vTextRotaryEmbedding() ) ) (lm_head): Linear(in_features=64, out_features=151552, bias=False) ) ```