diy-language-model / src /streamlit_app.py
zakerytclarke's picture
Update src/streamlit_app.py
ec60e4a verified
raw
history blame
10.4 kB
# app.py
import os
# βœ… Fix PermissionError on Hugging Face Spaces
os.environ["HF_HOME"] = "/tmp"
os.environ["HF_DATASETS_CACHE"] = "/tmp"
import streamlit as st
from datasets import load_dataset
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from collections import defaultdict, Counter
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
import random
st.title("🧠 Language Model Explorer")
###################################
# Sidebar configuration
###################################
dataset_name = st.sidebar.selectbox(
"Choose Dataset",
["squad", "tiny_shakespeare"]
)
tokenizer_type = st.sidebar.selectbox(
"Choose Tokenizer",
["character", "word"]
)
model_type = st.sidebar.selectbox(
"Choose Model",
["N-gram", "Feed Forward NN", "Decision Tree", "Gradient Boosted Tree", "RNN"]
)
temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0)
train_button = st.sidebar.button("Train Model")
device = torch.device("cpu") # force CPU usage
###################################
# Load dataset
###################################
@st.cache_data
def load_text(dataset_name):
if dataset_name == "squad":
data = load_dataset("squad", split="train[:1%]")
texts = [x['context'] for x in data]
elif dataset_name == "tiny_shakespeare":
data = load_dataset("tiny_shakespeare")
texts = [data['train'][0]['text']]
else:
texts = ["hello world"]
return " ".join(texts)
text_data = load_text(dataset_name)
###################################
# Tokenization
###################################
def tokenize(text, tokenizer_type):
if tokenizer_type == "character":
tokens = list(text)
elif tokenizer_type == "word":
tokens = text.split()
return tokens
tokens = tokenize(text_data, tokenizer_type)
vocab = list(set(tokens))
token_to_idx = {tok: i for i, tok in enumerate(vocab)}
idx_to_token = {i: tok for tok, i in token_to_idx.items()}
###################################
# Models
###################################
class NGramModel:
def __init__(self, tokens, n=3):
self.n = n
self.model = defaultdict(Counter)
for i in range(len(tokens) - n):
context = tuple(tokens[i:i+n-1])
next_token = tokens[i+n-1]
self.model[context][next_token] += 1
def predict(self, context, temperature=1.0):
context = tuple(context[-(self.n-1):])
counts = self.model.get(context, None)
if counts is None:
return random.choice(list(token_to_idx.keys()))
items = list(counts.items())
tokens_, freqs = zip(*items)
probs = np.array(freqs, dtype=float)
probs = probs ** (1.0 / temperature)
probs /= probs.sum()
return np.random.choice(tokens_, p=probs)
###################################
# Feed Forward NN
###################################
class FFNN(nn.Module):
def __init__(self, vocab_size, context_size, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.fc1 = nn.Linear(hidden_size * context_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, vocab_size)
def forward(self, x):
x = self.embed(x)
x = x.view(x.size(0), -1)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
def train_ffnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens) - context_size):
context = tokens[i:i+context_size-1]
target = tokens[i+context_size-1]
data.append((
torch.tensor([token_to_idx[tok] for tok in context], device=device),
token_to_idx[target]
))
model = FFNN(len(vocab), context_size-1).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = epochs * len(data)
step = 0
for epoch in range(epochs):
total_loss = 0
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
out = model(x)
loss = criterion(out, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
progress_bar.empty()
return model
def ffnn_predict(model, context, temperature=1.0):
x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0)
with torch.no_grad():
logits = model(x).squeeze()
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Decision Tree
###################################
def train_dt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens) - context_size):
context = tokens[i:i+context_size-1]
target = tokens[i+context_size-1]
X.append([token_to_idx[tok] for tok in context])
y.append(token_to_idx[target])
with st.spinner("Training Decision Tree..."):
model = DecisionTreeClassifier()
model.fit(X, y)
return model
def dt_predict(model, context):
x = [token_to_idx.get(tok, 0) for tok in context[-2:]]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# Gradient Boosted Tree
###################################
def train_gbt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens) - context_size):
context = tokens[i:i+context_size-1]
target = tokens[i+context_size-1]
X.append([token_to_idx[tok] for tok in context])
y.append(token_to_idx[target])
with st.spinner("Training Gradient Boosted Tree..."):
model = GradientBoostingClassifier()
model.fit(X, y)
return model
def gbt_predict(model, context):
x = [token_to_idx.get(tok, 0) for tok in context[-2:]]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# RNN
###################################
class RNNModel(nn.Module):
def __init__(self, vocab_size, embed_size=64, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, h=None):
x = self.embed(x)
out, h = self.rnn(x, h)
out = self.fc(out[:, -1, :])
return out, h
def train_rnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens) - context_size):
context = tokens[i:i+context_size-1]
target = tokens[i+context_size-1]
data.append((
torch.tensor([token_to_idx[tok] for tok in context], device=device),
token_to_idx[target]
))
model = RNNModel(len(vocab)).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = epochs * len(data)
step = 0
for epoch in range(epochs):
total_loss = 0
h = None
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
out, h = model(x, h)
loss = criterion(out, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
progress_bar.empty()
return model
def rnn_predict(model, context, temperature=1.0):
x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0)
with torch.no_grad():
logits, _ = model(x)
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Train and evaluate
###################################
if train_button:
st.write(f"Training **{model_type}** model...")
if model_type == "N-gram":
with st.spinner("Training N-gram model..."):
model = NGramModel(tokens, n=3)
elif model_type == "Feed Forward NN":
model = train_ffnn(tokens)
elif model_type == "Decision Tree":
model = train_dt(tokens)
elif model_type == "Gradient Boosted Tree":
model = train_gbt(tokens)
elif model_type == "RNN":
model = train_rnn(tokens)
st.session_state["model"] = model
st.session_state["model_type"] = model_type
st.success(f"{model_type} model trained.")
###################################
# Chat interface
###################################
st.header("πŸ’¬ Chat with the model")
if "model" in st.session_state:
user_input = st.text_input("Type a prompt:")
if user_input:
context = tokenize(user_input, tokenizer_type)
generated = context.copy()
for _ in range(20):
if st.session_state["model_type"] == "N-gram":
next_tok = st.session_state["model"].predict(generated, temperature)
elif st.session_state["model_type"] == "Feed Forward NN":
next_tok = ffnn_predict(st.session_state["model"], generated, temperature)
elif st.session_state["model_type"] == "Decision Tree":
next_tok = dt_predict(st.session_state["model"], generated)
elif st.session_state["model_type"] == "Gradient Boosted Tree":
next_tok = gbt_predict(st.session_state["model"], generated)
elif st.session_state["model_type"] == "RNN":
next_tok = rnn_predict(st.session_state["model"], generated, temperature)
generated.append(next_tok)
if next_tok == "<END>":
break
if tokenizer_type == "character":
output = "".join(generated)
else:
output = " ".join(generated)
st.write("**Model Output:**")
st.write(output)
else:
st.info("Train a model to begin chatting.")