Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +174 -0
src/streamlit_app.py
CHANGED
@@ -159,3 +159,177 @@ def train_ffnn(tokens, context_size=3, epochs=3):
|
|
159 |
return model
|
160 |
|
161 |
def ffnn_predict(model, context, temperature=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
return model
|
160 |
|
161 |
def ffnn_predict(model, context, temperature=1.0):
|
162 |
+
x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0)
|
163 |
+
with torch.no_grad():
|
164 |
+
logits = model(x).squeeze()
|
165 |
+
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
|
166 |
+
return np.random.choice(vocab, p=probs)
|
167 |
+
|
168 |
+
###################################
|
169 |
+
# Decision Tree
|
170 |
+
###################################
|
171 |
+
|
172 |
+
def train_dt(tokens, context_size=3):
|
173 |
+
X, y = [], []
|
174 |
+
for i in range(len(tokens) - context_size):
|
175 |
+
context = tokens[i:i+context_size-1]
|
176 |
+
target = tokens[i+context_size-1]
|
177 |
+
X.append([token_to_idx[tok] for tok in context])
|
178 |
+
y.append(token_to_idx[target])
|
179 |
+
|
180 |
+
with st.spinner("Training Decision Tree..."):
|
181 |
+
model = DecisionTreeClassifier()
|
182 |
+
model.fit(X, y)
|
183 |
+
return model
|
184 |
+
|
185 |
+
def dt_predict(model, context):
|
186 |
+
x = [token_to_idx.get(tok, 0) for tok in context[-2:]]
|
187 |
+
pred = model.predict([x])[0]
|
188 |
+
return idx_to_token[pred]
|
189 |
+
|
190 |
+
###################################
|
191 |
+
# Gradient Boosted Tree
|
192 |
+
###################################
|
193 |
+
|
194 |
+
def train_gbt(tokens, context_size=3):
|
195 |
+
X, y = [], []
|
196 |
+
for i in range(len(tokens) - context_size):
|
197 |
+
context = tokens[i:i+context_size-1]
|
198 |
+
target = tokens[i+context_size-1]
|
199 |
+
X.append([token_to_idx[tok] for tok in context])
|
200 |
+
y.append(token_to_idx[target])
|
201 |
+
|
202 |
+
with st.spinner("Training Gradient Boosted Tree..."):
|
203 |
+
model = GradientBoostingClassifier()
|
204 |
+
model.fit(X, y)
|
205 |
+
return model
|
206 |
+
|
207 |
+
def gbt_predict(model, context):
|
208 |
+
x = [token_to_idx.get(tok, 0) for tok in context[-2:]]
|
209 |
+
pred = model.predict([x])[0]
|
210 |
+
return idx_to_token[pred]
|
211 |
+
|
212 |
+
###################################
|
213 |
+
# RNN
|
214 |
+
###################################
|
215 |
+
|
216 |
+
class RNNModel(nn.Module):
|
217 |
+
def __init__(self, vocab_size, embed_size=64, hidden_size=128):
|
218 |
+
super().__init__()
|
219 |
+
self.embed = nn.Embedding(vocab_size, embed_size)
|
220 |
+
self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True)
|
221 |
+
self.fc = nn.Linear(hidden_size, vocab_size)
|
222 |
+
|
223 |
+
def forward(self, x, h=None):
|
224 |
+
x = self.embed(x)
|
225 |
+
out, h = self.rnn(x, h)
|
226 |
+
out = self.fc(out[:, -1, :])
|
227 |
+
return out, h
|
228 |
+
|
229 |
+
def train_rnn(tokens, context_size=3, epochs=3):
|
230 |
+
data = []
|
231 |
+
for i in range(len(tokens) - context_size):
|
232 |
+
context = tokens[i:i+context_size-1]
|
233 |
+
target = tokens[i+context_size-1]
|
234 |
+
data.append((
|
235 |
+
torch.tensor([token_to_idx[tok] for tok in context], device=device),
|
236 |
+
token_to_idx[target]
|
237 |
+
))
|
238 |
+
|
239 |
+
model = RNNModel(len(vocab)).to(device)
|
240 |
+
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
241 |
+
criterion = nn.CrossEntropyLoss()
|
242 |
+
|
243 |
+
progress_bar = st.progress(0)
|
244 |
+
total_steps = epochs * len(data)
|
245 |
+
step = 0
|
246 |
+
|
247 |
+
for epoch in range(epochs):
|
248 |
+
total_loss = 0
|
249 |
+
h = None
|
250 |
+
for x, y in data:
|
251 |
+
x = x.unsqueeze(0)
|
252 |
+
y = torch.tensor([y], device=device)
|
253 |
+
out, h = model(x, h)
|
254 |
+
loss = criterion(out, y)
|
255 |
+
optimizer.zero_grad()
|
256 |
+
loss.backward()
|
257 |
+
optimizer.step()
|
258 |
+
total_loss += loss.item()
|
259 |
+
|
260 |
+
step += 1
|
261 |
+
progress_bar.progress(step / total_steps)
|
262 |
+
|
263 |
+
st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
|
264 |
+
|
265 |
+
progress_bar.empty()
|
266 |
+
return model
|
267 |
+
|
268 |
+
def rnn_predict(model, context, temperature=1.0):
|
269 |
+
x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0)
|
270 |
+
with torch.no_grad():
|
271 |
+
logits, _ = model(x)
|
272 |
+
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
|
273 |
+
return np.random.choice(vocab, p=probs)
|
274 |
+
|
275 |
+
###################################
|
276 |
+
# Train and evaluate
|
277 |
+
###################################
|
278 |
+
|
279 |
+
if train_button:
|
280 |
+
st.write(f"Training **{model_type}** model...")
|
281 |
+
|
282 |
+
if model_type == "N-gram":
|
283 |
+
with st.spinner("Training N-gram model..."):
|
284 |
+
model = NGramModel(tokens, n=3)
|
285 |
+
elif model_type == "Feed Forward NN":
|
286 |
+
model = train_ffnn(tokens)
|
287 |
+
elif model_type == "Decision Tree":
|
288 |
+
model = train_dt(tokens)
|
289 |
+
elif model_type == "Gradient Boosted Tree":
|
290 |
+
model = train_gbt(tokens)
|
291 |
+
elif model_type == "RNN":
|
292 |
+
model = train_rnn(tokens)
|
293 |
+
|
294 |
+
st.session_state["model"] = model
|
295 |
+
st.session_state["model_type"] = model_type
|
296 |
+
st.success(f"{model_type} model trained.")
|
297 |
+
|
298 |
+
###################################
|
299 |
+
# Chat interface
|
300 |
+
###################################
|
301 |
+
|
302 |
+
st.header("💬 Chat with the model")
|
303 |
+
|
304 |
+
if "model" in st.session_state:
|
305 |
+
user_input = st.text_input("Type a prompt:")
|
306 |
+
|
307 |
+
if user_input:
|
308 |
+
context = tokenize(user_input, tokenizer_type)
|
309 |
+
generated = context.copy()
|
310 |
+
|
311 |
+
for _ in range(20):
|
312 |
+
if st.session_state["model_type"] == "N-gram":
|
313 |
+
next_tok = st.session_state["model"].predict(generated, temperature)
|
314 |
+
elif st.session_state["model_type"] == "Feed Forward NN":
|
315 |
+
next_tok = ffnn_predict(st.session_state["model"], generated, temperature)
|
316 |
+
elif st.session_state["model_type"] == "Decision Tree":
|
317 |
+
next_tok = dt_predict(st.session_state["model"], generated)
|
318 |
+
elif st.session_state["model_type"] == "Gradient Boosted Tree":
|
319 |
+
next_tok = gbt_predict(st.session_state["model"], generated)
|
320 |
+
elif st.session_state["model_type"] == "RNN":
|
321 |
+
next_tok = rnn_predict(st.session_state["model"], generated, temperature)
|
322 |
+
|
323 |
+
generated.append(next_tok)
|
324 |
+
if next_tok == "<END>":
|
325 |
+
break
|
326 |
+
|
327 |
+
if tokenizer_type == "character":
|
328 |
+
output = "".join(generated)
|
329 |
+
else:
|
330 |
+
output = " ".join(generated)
|
331 |
+
|
332 |
+
st.write("**Model Output:**")
|
333 |
+
st.write(output)
|
334 |
+
else:
|
335 |
+
st.info("Train a model to begin chatting.")
|