# app.py import os # ✅ Fix PermissionError on Hugging Face Spaces os.environ["HF_HOME"] = "/tmp" os.environ["HF_DATASETS_CACHE"] = "/tmp" import streamlit as st from datasets import load_dataset import numpy as np import torch import torch.nn as nn import torch.optim as optim from collections import defaultdict, Counter from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier import random st.title("🧠 Language Model Explorer") ################################### # Sidebar configuration ################################### dataset_name = st.sidebar.selectbox( "Choose Dataset", ["squad", "tiny_shakespeare"] ) tokenizer_type = st.sidebar.selectbox( "Choose Tokenizer", ["character", "word"] ) model_type = st.sidebar.selectbox( "Choose Model", ["N-gram", "Feed Forward NN", "Decision Tree", "Gradient Boosted Tree", "RNN"] ) temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0) train_button = st.sidebar.button("Train Model") device = torch.device("cpu") # force CPU usage ################################### # Load dataset ################################### @st.cache_data def load_text(dataset_name): if dataset_name == "squad": data = load_dataset("squad", split="train[:1%]") texts = [x['context'] for x in data] elif dataset_name == "tiny_shakespeare": data = load_dataset("tiny_shakespeare") texts = [data['train'][0]['text']] else: texts = ["hello world"] return " ".join(texts) text_data = load_text(dataset_name) ################################### # Tokenization ################################### def tokenize(text, tokenizer_type): if tokenizer_type == "character": tokens = list(text) elif tokenizer_type == "word": tokens = text.split() return tokens tokens = tokenize(text_data, tokenizer_type) vocab = list(set(tokens)) token_to_idx = {tok: i for i, tok in enumerate(vocab)} idx_to_token = {i: tok for tok, i in token_to_idx.items()} ################################### # Models ################################### class NGramModel: def __init__(self, tokens, n=3): self.n = n self.model = defaultdict(Counter) for i in range(len(tokens) - n): context = tuple(tokens[i:i+n-1]) next_token = tokens[i+n-1] self.model[context][next_token] += 1 def predict(self, context, temperature=1.0): context = tuple(context[-(self.n-1):]) counts = self.model.get(context, None) if counts is None: return random.choice(list(token_to_idx.keys())) items = list(counts.items()) tokens_, freqs = zip(*items) probs = np.array(freqs, dtype=float) probs = probs ** (1.0 / temperature) probs /= probs.sum() return np.random.choice(tokens_, p=probs) ################################### # Feed Forward NN ################################### class FFNN(nn.Module): def __init__(self, vocab_size, context_size, hidden_size=128): super().__init__() self.embed = nn.Embedding(vocab_size, hidden_size) self.fc1 = nn.Linear(hidden_size * context_size, hidden_size) self.fc2 = nn.Linear(hidden_size, vocab_size) def forward(self, x): x = self.embed(x) x = x.view(x.size(0), -1) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x def train_ffnn(tokens, context_size=3, epochs=3): data = [] for i in range(len(tokens) - context_size): context = tokens[i:i+context_size-1] target = tokens[i+context_size-1] data.append(( torch.tensor([token_to_idx[tok] for tok in context], device=device), token_to_idx[target] )) model = FFNN(len(vocab), context_size-1).to(device) optimizer = optim.Adam(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() progress_bar = st.progress(0) total_steps = epochs * len(data) step = 0 for epoch in range(epochs): total_loss = 0 for x, y in data: x = x.unsqueeze(0) y = torch.tensor([y], device=device) out = model(x) loss = criterion(out, y) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() step += 1 progress_bar.progress(step / total_steps) st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}") progress_bar.empty() return model def ffnn_predict(model, context, temperature=1.0): x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0) with torch.no_grad(): logits = model(x).squeeze() probs = torch.softmax(logits / temperature, dim=0).cpu().numpy() return np.random.choice(vocab, p=probs) ################################### # Decision Tree ################################### def train_dt(tokens, context_size=3): X, y = [], [] for i in range(len(tokens) - context_size): context = tokens[i:i+context_size-1] target = tokens[i+context_size-1] X.append([token_to_idx[tok] for tok in context]) y.append(token_to_idx[target]) with st.spinner("Training Decision Tree..."): model = DecisionTreeClassifier() model.fit(X, y) return model def dt_predict(model, context): x = [token_to_idx.get(tok, 0) for tok in context[-2:]] pred = model.predict([x])[0] return idx_to_token[pred] ################################### # Gradient Boosted Tree ################################### def train_gbt(tokens, context_size=3): X, y = [], [] for i in range(len(tokens) - context_size): context = tokens[i:i+context_size-1] target = tokens[i+context_size-1] X.append([token_to_idx[tok] for tok in context]) y.append(token_to_idx[target]) with st.spinner("Training Gradient Boosted Tree..."): model = GradientBoostingClassifier() model.fit(X, y) return model def gbt_predict(model, context): x = [token_to_idx.get(tok, 0) for tok in context[-2:]] pred = model.predict([x])[0] return idx_to_token[pred] ################################### # RNN ################################### class RNNModel(nn.Module): def __init__(self, vocab_size, embed_size=64, hidden_size=128): super().__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, vocab_size) def forward(self, x, h=None): x = self.embed(x) out, h = self.rnn(x, h) out = self.fc(out[:, -1, :]) return out, h def train_rnn(tokens, context_size=3, epochs=3): data = [] for i in range(len(tokens) - context_size): context = tokens[i:i+context_size-1] target = tokens[i+context_size-1] data.append(( torch.tensor([token_to_idx[tok] for tok in context], device=device), token_to_idx[target] )) model = RNNModel(len(vocab)).to(device) optimizer = optim.Adam(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() progress_bar = st.progress(0) total_steps = epochs * len(data) step = 0 for epoch in range(epochs): total_loss = 0 h = None for x, y in data: x = x.unsqueeze(0) y = torch.tensor([y], device=device) out, h = model(x, h) loss = criterion(out, y) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() step += 1 progress_bar.progress(step / total_steps) st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}") progress_bar.empty() return model def rnn_predict(model, context, temperature=1.0): x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0) with torch.no_grad(): logits, _ = model(x) probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy() return np.random.choice(vocab, p=probs) ################################### # Train and evaluate ################################### if train_button: st.write(f"Training **{model_type}** model...") if model_type == "N-gram": with st.spinner("Training N-gram model..."): model = NGramModel(tokens, n=3) elif model_type == "Feed Forward NN": model = train_ffnn(tokens) elif model_type == "Decision Tree": model = train_dt(tokens) elif model_type == "Gradient Boosted Tree": model = train_gbt(tokens) elif model_type == "RNN": model = train_rnn(tokens) st.session_state["model"] = model st.session_state["model_type"] = model_type st.success(f"{model_type} model trained.") ################################### # Chat interface ################################### st.header("💬 Chat with the model") if "model" in st.session_state: user_input = st.text_input("Type a prompt:") if user_input: context = tokenize(user_input, tokenizer_type) generated = context.copy() for _ in range(20): if st.session_state["model_type"] == "N-gram": next_tok = st.session_state["model"].predict(generated, temperature) elif st.session_state["model_type"] == "Feed Forward NN": next_tok = ffnn_predict(st.session_state["model"], generated, temperature) elif st.session_state["model_type"] == "Decision Tree": next_tok = dt_predict(st.session_state["model"], generated) elif st.session_state["model_type"] == "Gradient Boosted Tree": next_tok = gbt_predict(st.session_state["model"], generated) elif st.session_state["model_type"] == "RNN": next_tok = rnn_predict(st.session_state["model"], generated, temperature) generated.append(next_tok) if next_tok == "": break if tokenizer_type == "character": output = "".join(generated) else: output = " ".join(generated) st.write("**Model Output:**") st.write(output) else: st.info("Train a model to begin chatting.")