zainulabedin949's picture
Update app.py
ae177e0 verified
raw
history blame
7.63 kB
import gradio as gr
import numpy as np
import torch
import librosa
import soundfile as sf
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
import matplotlib.pyplot as plt
import tempfile
import os
# Constants
SAMPLING_RATE = 16000
MODEL_NAME = "MIT/ast-finetuned-audioset-10-10-0.4593"
DEFAULT_THRESHOLD = 0.7
# Load model components
try:
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
except Exception as e:
print(f"Error loading model: {str(e)}")
# Equipment knowledge base
EQUIPMENT_RECOMMENDATIONS = {
"bearing": {
"high_frequency": "• Replace bearings immediately\n• Check lubrication system\n• Monitor vibration levels",
"low_frequency": "• Inspect bearing installation\n• Check for contamination\n• Verify lubrication",
"irregular": "• Perform vibration analysis\n• Schedule bearing replacement\n• Check alignment"
},
"pump": {
"cavitation": "• Check NPSH available\n• Inspect suction strainer\n• Adjust operating speed",
"impeller": "• Inspect impeller for damage\n• Perform dynamic balancing\n• Check wear rings",
"misalignment": "• Perform laser alignment\n• Check coupling condition\n• Verify baseplate level"
},
"motor": {
"electrical": "• Megger test windings\n• Check connections\n• Inspect starter contacts",
"mechanical": "• Perform dynamic balancing\n• Check alignment\n• Inspect cooling fins",
"bearing": "• Replace motor bearings\n• Check lubrication\n• Monitor temperature"
}
}
def analyze_frequency_patterns(audio, sr):
"""Analyze frequency patterns to identify potential issues"""
patterns = []
features = {}
# Spectral analysis
spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)[0]
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)[0]
features['centroid_mean'] = np.mean(spectral_centroid)
features['rolloff_mean'] = np.mean(spectral_rolloff)
if features['centroid_mean'] > 3000:
patterns.append("high_frequency")
elif features['centroid_mean'] < 1000:
patterns.append("low_frequency")
if features['rolloff_mean'] > 8000:
patterns.append("harmonic_rich")
return patterns, features
def generate_recommendation(prediction, confidence, audio, sr):
"""Generate maintenance recommendations based on analysis"""
if prediction == "Normal":
return "✅ No immediate action required. Equipment operating within normal parameters."
patterns, features = analyze_frequency_patterns(audio, sr)
# Equipment classification
spectral_flatness = librosa.feature.spectral_flatness(y=audio)[0]
mean_flatness = np.mean(spectral_flatness)
if mean_flatness < 0.2:
equipment_type = "bearing"
elif 0.2 <= mean_flatness < 0.6:
equipment_type = "pump"
else:
equipment_type = "motor"
# Generate recommendations
recommendations = [
"🔧 MAINTENANCE RECOMMENDATIONS",
f"Equipment Type: {equipment_type.upper()}",
f"Confidence: {confidence:.1%}",
""
]
for pattern in patterns:
if pattern in EQUIPMENT_RECOMMENDATIONS.get(equipment_type, {}):
recommendations.append(EQUIPMENT_RECOMMENDATIONS[equipment_type][pattern])
if prediction == "Anomaly":
recommendations.extend([
"",
"🛠️ GENERAL ACTIONS:",
"1. Isolate equipment if possible",
"2. Perform visual inspection",
"3. Schedule detailed diagnostics",
])
if confidence > 0.8:
recommendations.append("\n🚨 URGENT: High-confidence abnormality detected!")
return "\n".join(recommendations)
def process_audio(file_path):
"""Handle audio file processing"""
try:
audio, sr = librosa.load(file_path, sr=SAMPLING_RATE, mono=True)
return audio, sr
except Exception as e:
raise RuntimeError(f"Audio processing error: {str(e)}")
def analyze_audio(audio_input, threshold=DEFAULT_THRESHOLD):
"""Main analysis function"""
try:
# Handle file upload
if isinstance(audio_input, str):
audio, sr = process_audio(audio_input)
else: # Handle file object
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp:
tmp.write(audio_input.read())
tmp_path = tmp.name
audio, sr = process_audio(tmp_path)
os.unlink(tmp_path)
# Model prediction
inputs = feature_extractor(audio, sampling_rate=SAMPLING_RATE, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
predicted_class = "Normal" if probs[0][0] > threshold else "Anomaly"
confidence = probs[0][0].item() if predicted_class == "Normal" else 1 - probs[0][0].item()
# Generate visualization
plt.figure(figsize=(10, 4))
S = librosa.feature.melspectrogram(y=audio, sr=SAMPLING_RATE, n_mels=64)
S_db = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(S_db, x_axis='time', y_axis='mel', sr=SAMPLING_RATE, fmax=8000)
plt.colorbar(format='%+2.0f dB')
plt.title('Mel Spectrogram')
spec_path = os.path.join(tempfile.gettempdir(), 'spec.png')
plt.savefig(spec_path, bbox_inches='tight')
plt.close()
# Generate recommendations
recommendations = generate_recommendation(predicted_class, confidence, audio, SAMPLING_RATE)
return (
predicted_class,
f"{confidence:.1%}",
spec_path,
recommendations
)
except Exception as e:
return f"Error: {str(e)}", "", None, ""
# Gradio Interface
with gr.Blocks(title="Industrial Audio Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🏭 Industrial Equipment Sound Analyzer
### Acoustic Anomaly Detection & Maintenance Recommendation System
""")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Equipment Audio (.wav)",
type="filepath"
)
threshold = gr.Slider(
minimum=0.5, maximum=0.95, step=0.05, value=DEFAULT_THRESHOLD,
label="Detection Sensitivity"
)
analyze_btn = gr.Button("🔍 Analyze & Diagnose", variant="primary")
with gr.Column():
result_label = gr.Label(label="Diagnosis Result")
confidence = gr.Textbox(label="Confidence Score")
spectrogram = gr.Image(label="Spectrogram Analysis")
recommendations = gr.Textbox(
label="Maintenance Recommendations",
lines=10,
interactive=False
)
analyze_btn.click(
fn=analyze_audio,
inputs=[audio_input, threshold],
outputs=[result_label, confidence, spectrogram, recommendations]
)
gr.Markdown("""
**Instructions:**
- Upload 5-10 second .wav recordings
- Results include:
✓ Anomaly detection
✓ Equipment classification
✓ Maintenance recommendations
✓ Spectrogram visualization
""")
if __name__ == "__main__":
demo.launch()