Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import librosa
|
|
5 |
import soundfile as sf
|
6 |
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
7 |
import matplotlib.pyplot as plt
|
8 |
-
from matplotlib.colors import Normalize
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
@@ -14,63 +13,62 @@ SAMPLING_RATE = 16000
|
|
14 |
MODEL_NAME = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
15 |
DEFAULT_THRESHOLD = 0.7
|
16 |
|
17 |
-
# Load model
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
# Equipment knowledge base
|
22 |
EQUIPMENT_RECOMMENDATIONS = {
|
23 |
"bearing": {
|
24 |
-
"high_frequency": "
|
25 |
-
"low_frequency": "
|
26 |
-
"irregular": "
|
27 |
},
|
28 |
"pump": {
|
29 |
-
"cavitation": "
|
30 |
-
"impeller": "
|
31 |
-
"misalignment": "
|
32 |
},
|
33 |
"motor": {
|
34 |
-
"electrical": "
|
35 |
-
"mechanical": "
|
36 |
-
"bearing": "
|
37 |
-
},
|
38 |
-
"compressor": {
|
39 |
-
"valve": "Compressor valve leakage suspected. Perform valve test.",
|
40 |
-
"pulsation": "Pulsation issues detected. Check dampeners and piping.",
|
41 |
-
"surge": "Compressor surge condition. Review control settings."
|
42 |
}
|
43 |
}
|
44 |
|
45 |
def analyze_frequency_patterns(audio, sr):
|
46 |
"""Analyze frequency patterns to identify potential issues"""
|
47 |
patterns = []
|
|
|
48 |
|
49 |
# Spectral analysis
|
50 |
spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)[0]
|
51 |
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)[0]
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
if
|
57 |
patterns.append("high_frequency")
|
58 |
-
elif
|
59 |
patterns.append("low_frequency")
|
60 |
|
61 |
-
if
|
62 |
patterns.append("harmonic_rich")
|
63 |
-
|
64 |
-
return patterns
|
65 |
|
66 |
def generate_recommendation(prediction, confidence, audio, sr):
|
67 |
"""Generate maintenance recommendations based on analysis"""
|
68 |
if prediction == "Normal":
|
69 |
-
return "No immediate action required. Equipment operating within normal parameters."
|
70 |
|
71 |
-
patterns = analyze_frequency_patterns(audio, sr)
|
72 |
|
73 |
-
#
|
74 |
spectral_flatness = librosa.feature.spectral_flatness(y=audio)[0]
|
75 |
mean_flatness = np.mean(spectral_flatness)
|
76 |
|
@@ -79,78 +77,77 @@ def generate_recommendation(prediction, confidence, audio, sr):
|
|
79 |
elif 0.2 <= mean_flatness < 0.6:
|
80 |
equipment_type = "pump"
|
81 |
else:
|
82 |
-
equipment_type = "motor"
|
83 |
|
84 |
-
# Generate
|
85 |
-
recommendations = [
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
for pattern in patterns:
|
89 |
if pattern in EQUIPMENT_RECOMMENDATIONS.get(equipment_type, {}):
|
90 |
-
recommendations.append(
|
91 |
|
92 |
-
# General recommendations
|
93 |
if prediction == "Anomaly":
|
94 |
-
recommendations.
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
if confidence > 0.8:
|
101 |
-
recommendations.append("\n🚨
|
102 |
-
|
103 |
return "\n".join(recommendations)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
def analyze_audio(audio_input, threshold=DEFAULT_THRESHOLD):
|
106 |
-
"""
|
107 |
try:
|
108 |
# Handle file upload
|
109 |
if isinstance(audio_input, str):
|
110 |
-
audio, sr =
|
111 |
-
else: #
|
112 |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp:
|
113 |
tmp.write(audio_input.read())
|
114 |
tmp_path = tmp.name
|
115 |
-
audio, sr =
|
116 |
os.unlink(tmp_path)
|
117 |
|
118 |
-
#
|
119 |
-
if len(audio.shape) > 1:
|
120 |
-
audio = np.mean(audio, axis=1)
|
121 |
-
if sr != SAMPLING_RATE:
|
122 |
-
audio = librosa.resample(audio, orig_sr=sr, target_sr=SAMPLING_RATE)
|
123 |
-
|
124 |
-
# Feature extraction and prediction
|
125 |
inputs = feature_extractor(audio, sampling_rate=SAMPLING_RATE, return_tensors="pt")
|
126 |
with torch.no_grad():
|
127 |
outputs = model(**inputs)
|
128 |
probs = torch.softmax(outputs.logits, dim=-1)
|
129 |
|
130 |
-
# Get results
|
131 |
predicted_class = "Normal" if probs[0][0] > threshold else "Anomaly"
|
132 |
confidence = probs[0][0].item() if predicted_class == "Normal" else 1 - probs[0][0].item()
|
133 |
|
134 |
-
# Generate
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
librosa.display.specshow(db_spec, x_axis='time', y_axis='mel', sr=SAMPLING_RATE, fmax=8000, ax=ax)
|
140 |
plt.colorbar(format='%+2.0f dB')
|
141 |
-
plt.title('Mel Spectrogram
|
142 |
-
|
143 |
-
# Mark anomalies on plot
|
144 |
-
if predicted_class == "Anomaly":
|
145 |
-
plt.text(0.5, 0.9, 'ANOMALY DETECTED', color='red',
|
146 |
-
ha='center', va='center', transform=ax.transAxes,
|
147 |
-
fontsize=14, bbox=dict(facecolor='white', alpha=0.8))
|
148 |
|
149 |
spec_path = os.path.join(tempfile.gettempdir(), 'spec.png')
|
150 |
plt.savefig(spec_path, bbox_inches='tight')
|
151 |
plt.close()
|
152 |
|
153 |
-
# Generate
|
154 |
recommendations = generate_recommendation(predicted_class, confidence, audio, SAMPLING_RATE)
|
155 |
|
156 |
return (
|
@@ -159,36 +156,35 @@ def analyze_audio(audio_input, threshold=DEFAULT_THRESHOLD):
|
|
159 |
spec_path,
|
160 |
recommendations
|
161 |
)
|
162 |
-
|
163 |
except Exception as e:
|
164 |
return f"Error: {str(e)}", "", None, ""
|
165 |
|
166 |
# Gradio Interface
|
167 |
-
with gr.Blocks(title="Industrial
|
168 |
gr.Markdown("""
|
169 |
-
# 🏭 Industrial Equipment
|
170 |
-
|
171 |
""")
|
172 |
|
173 |
with gr.Row():
|
174 |
with gr.Column():
|
175 |
audio_input = gr.Audio(
|
176 |
-
label="Upload Equipment
|
177 |
-
type="filepath"
|
178 |
-
source="upload"
|
179 |
)
|
180 |
threshold = gr.Slider(
|
181 |
minimum=0.5, maximum=0.95, step=0.05, value=DEFAULT_THRESHOLD,
|
182 |
-
label="Detection Sensitivity"
|
183 |
)
|
184 |
analyze_btn = gr.Button("🔍 Analyze & Diagnose", variant="primary")
|
185 |
|
186 |
with gr.Column():
|
187 |
result_label = gr.Label(label="Diagnosis Result")
|
188 |
confidence = gr.Textbox(label="Confidence Score")
|
189 |
-
spectrogram = gr.Image(label="
|
190 |
recommendations = gr.Textbox(
|
191 |
-
label="Maintenance Recommendations",
|
192 |
lines=10,
|
193 |
interactive=False
|
194 |
)
|
@@ -200,15 +196,14 @@ with gr.Blocks(title="Industrial Diagnostic Assistant 👨🔧", theme=gr.the
|
|
200 |
)
|
201 |
|
202 |
gr.Markdown("""
|
203 |
-
|
204 |
-
-
|
205 |
-
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
""")
|
211 |
|
212 |
if __name__ == "__main__":
|
213 |
demo.launch()
|
214 |
-
|
|
|
5 |
import soundfile as sf
|
6 |
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
7 |
import matplotlib.pyplot as plt
|
|
|
8 |
import tempfile
|
9 |
import os
|
10 |
|
|
|
13 |
MODEL_NAME = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
14 |
DEFAULT_THRESHOLD = 0.7
|
15 |
|
16 |
+
# Load model components
|
17 |
+
try:
|
18 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
19 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading model: {str(e)}")
|
22 |
|
23 |
# Equipment knowledge base
|
24 |
EQUIPMENT_RECOMMENDATIONS = {
|
25 |
"bearing": {
|
26 |
+
"high_frequency": "• Replace bearings immediately\n• Check lubrication system\n• Monitor vibration levels",
|
27 |
+
"low_frequency": "• Inspect bearing installation\n• Check for contamination\n• Verify lubrication",
|
28 |
+
"irregular": "• Perform vibration analysis\n• Schedule bearing replacement\n• Check alignment"
|
29 |
},
|
30 |
"pump": {
|
31 |
+
"cavitation": "• Check NPSH available\n• Inspect suction strainer\n• Adjust operating speed",
|
32 |
+
"impeller": "• Inspect impeller for damage\n• Perform dynamic balancing\n• Check wear rings",
|
33 |
+
"misalignment": "• Perform laser alignment\n• Check coupling condition\n• Verify baseplate level"
|
34 |
},
|
35 |
"motor": {
|
36 |
+
"electrical": "• Megger test windings\n• Check connections\n• Inspect starter contacts",
|
37 |
+
"mechanical": "• Perform dynamic balancing\n• Check alignment\n• Inspect cooling fins",
|
38 |
+
"bearing": "• Replace motor bearings\n• Check lubrication\n• Monitor temperature"
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
}
|
41 |
|
42 |
def analyze_frequency_patterns(audio, sr):
|
43 |
"""Analyze frequency patterns to identify potential issues"""
|
44 |
patterns = []
|
45 |
+
features = {}
|
46 |
|
47 |
# Spectral analysis
|
48 |
spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)[0]
|
49 |
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)[0]
|
50 |
|
51 |
+
features['centroid_mean'] = np.mean(spectral_centroid)
|
52 |
+
features['rolloff_mean'] = np.mean(spectral_rolloff)
|
53 |
|
54 |
+
if features['centroid_mean'] > 3000:
|
55 |
patterns.append("high_frequency")
|
56 |
+
elif features['centroid_mean'] < 1000:
|
57 |
patterns.append("low_frequency")
|
58 |
|
59 |
+
if features['rolloff_mean'] > 8000:
|
60 |
patterns.append("harmonic_rich")
|
61 |
+
|
62 |
+
return patterns, features
|
63 |
|
64 |
def generate_recommendation(prediction, confidence, audio, sr):
|
65 |
"""Generate maintenance recommendations based on analysis"""
|
66 |
if prediction == "Normal":
|
67 |
+
return "✅ No immediate action required. Equipment operating within normal parameters."
|
68 |
|
69 |
+
patterns, features = analyze_frequency_patterns(audio, sr)
|
70 |
|
71 |
+
# Equipment classification
|
72 |
spectral_flatness = librosa.feature.spectral_flatness(y=audio)[0]
|
73 |
mean_flatness = np.mean(spectral_flatness)
|
74 |
|
|
|
77 |
elif 0.2 <= mean_flatness < 0.6:
|
78 |
equipment_type = "pump"
|
79 |
else:
|
80 |
+
equipment_type = "motor"
|
81 |
|
82 |
+
# Generate recommendations
|
83 |
+
recommendations = [
|
84 |
+
"🔧 MAINTENANCE RECOMMENDATIONS",
|
85 |
+
f"Equipment Type: {equipment_type.upper()}",
|
86 |
+
f"Confidence: {confidence:.1%}",
|
87 |
+
""
|
88 |
+
]
|
89 |
|
90 |
for pattern in patterns:
|
91 |
if pattern in EQUIPMENT_RECOMMENDATIONS.get(equipment_type, {}):
|
92 |
+
recommendations.append(EQUIPMENT_RECOMMENDATIONS[equipment_type][pattern])
|
93 |
|
|
|
94 |
if prediction == "Anomaly":
|
95 |
+
recommendations.extend([
|
96 |
+
"",
|
97 |
+
"🛠️ GENERAL ACTIONS:",
|
98 |
+
"1. Isolate equipment if possible",
|
99 |
+
"2. Perform visual inspection",
|
100 |
+
"3. Schedule detailed diagnostics",
|
101 |
+
])
|
102 |
|
103 |
if confidence > 0.8:
|
104 |
+
recommendations.append("\n🚨 URGENT: High-confidence abnormality detected!")
|
105 |
+
|
106 |
return "\n".join(recommendations)
|
107 |
|
108 |
+
def process_audio(file_path):
|
109 |
+
"""Handle audio file processing"""
|
110 |
+
try:
|
111 |
+
audio, sr = librosa.load(file_path, sr=SAMPLING_RATE, mono=True)
|
112 |
+
return audio, sr
|
113 |
+
except Exception as e:
|
114 |
+
raise RuntimeError(f"Audio processing error: {str(e)}")
|
115 |
+
|
116 |
def analyze_audio(audio_input, threshold=DEFAULT_THRESHOLD):
|
117 |
+
"""Main analysis function"""
|
118 |
try:
|
119 |
# Handle file upload
|
120 |
if isinstance(audio_input, str):
|
121 |
+
audio, sr = process_audio(audio_input)
|
122 |
+
else: # Handle file object
|
123 |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp:
|
124 |
tmp.write(audio_input.read())
|
125 |
tmp_path = tmp.name
|
126 |
+
audio, sr = process_audio(tmp_path)
|
127 |
os.unlink(tmp_path)
|
128 |
|
129 |
+
# Model prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
inputs = feature_extractor(audio, sampling_rate=SAMPLING_RATE, return_tensors="pt")
|
131 |
with torch.no_grad():
|
132 |
outputs = model(**inputs)
|
133 |
probs = torch.softmax(outputs.logits, dim=-1)
|
134 |
|
|
|
135 |
predicted_class = "Normal" if probs[0][0] > threshold else "Anomaly"
|
136 |
confidence = probs[0][0].item() if predicted_class == "Normal" else 1 - probs[0][0].item()
|
137 |
|
138 |
+
# Generate visualization
|
139 |
+
plt.figure(figsize=(10, 4))
|
140 |
+
S = librosa.feature.melspectrogram(y=audio, sr=SAMPLING_RATE, n_mels=64)
|
141 |
+
S_db = librosa.power_to_db(S, ref=np.max)
|
142 |
+
librosa.display.specshow(S_db, x_axis='time', y_axis='mel', sr=SAMPLING_RATE, fmax=8000)
|
|
|
143 |
plt.colorbar(format='%+2.0f dB')
|
144 |
+
plt.title('Mel Spectrogram')
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
spec_path = os.path.join(tempfile.gettempdir(), 'spec.png')
|
147 |
plt.savefig(spec_path, bbox_inches='tight')
|
148 |
plt.close()
|
149 |
|
150 |
+
# Generate recommendations
|
151 |
recommendations = generate_recommendation(predicted_class, confidence, audio, SAMPLING_RATE)
|
152 |
|
153 |
return (
|
|
|
156 |
spec_path,
|
157 |
recommendations
|
158 |
)
|
159 |
+
|
160 |
except Exception as e:
|
161 |
return f"Error: {str(e)}", "", None, ""
|
162 |
|
163 |
# Gradio Interface
|
164 |
+
with gr.Blocks(title="Industrial Audio Analyzer", theme=gr.themes.Soft()) as demo:
|
165 |
gr.Markdown("""
|
166 |
+
# 🏭 Industrial Equipment Sound Analyzer
|
167 |
+
### Acoustic Anomaly Detection & Maintenance Recommendation System
|
168 |
""")
|
169 |
|
170 |
with gr.Row():
|
171 |
with gr.Column():
|
172 |
audio_input = gr.Audio(
|
173 |
+
label="Upload Equipment Audio (.wav)",
|
174 |
+
type="filepath"
|
|
|
175 |
)
|
176 |
threshold = gr.Slider(
|
177 |
minimum=0.5, maximum=0.95, step=0.05, value=DEFAULT_THRESHOLD,
|
178 |
+
label="Detection Sensitivity"
|
179 |
)
|
180 |
analyze_btn = gr.Button("🔍 Analyze & Diagnose", variant="primary")
|
181 |
|
182 |
with gr.Column():
|
183 |
result_label = gr.Label(label="Diagnosis Result")
|
184 |
confidence = gr.Textbox(label="Confidence Score")
|
185 |
+
spectrogram = gr.Image(label="Spectrogram Analysis")
|
186 |
recommendations = gr.Textbox(
|
187 |
+
label="Maintenance Recommendations",
|
188 |
lines=10,
|
189 |
interactive=False
|
190 |
)
|
|
|
196 |
)
|
197 |
|
198 |
gr.Markdown("""
|
199 |
+
**Instructions:**
|
200 |
+
- Upload 5-10 second .wav recordings
|
201 |
+
- Results include:
|
202 |
+
✓ Anomaly detection
|
203 |
+
✓ Equipment classification
|
204 |
+
✓ Maintenance recommendations
|
205 |
+
✓ Spectrogram visualization
|
206 |
""")
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
demo.launch()
|
|