File size: 7,627 Bytes
d0cb32e e9b0e37 d0cb32e e9b0e37 d0cb32e ae177e0 d0cb32e 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 e9b0e37 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 e9b0e37 ae177e0 e9b0e37 ae177e0 e9b0e37 65c3f40 ae177e0 65c3f40 ae177e0 65c3f40 e9b0e37 ae177e0 65c3f40 d0cb32e 65c3f40 d0cb32e ae177e0 65c3f40 ae177e0 e9b0e37 d0cb32e ae177e0 65c3f40 d0cb32e e9b0e37 65c3f40 d0cb32e ae177e0 d0cb32e e9b0e37 d0cb32e 65c3f40 ae177e0 d0cb32e ae177e0 d0cb32e ae177e0 d0cb32e 65c3f40 ae177e0 d0cb32e 65c3f40 d0cb32e 65c3f40 d0cb32e ae177e0 65c3f40 ae177e0 65c3f40 d0cb32e 65c3f40 d0cb32e ae177e0 d0cb32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import numpy as np
import torch
import librosa
import soundfile as sf
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
import matplotlib.pyplot as plt
import tempfile
import os
# Constants
SAMPLING_RATE = 16000
MODEL_NAME = "MIT/ast-finetuned-audioset-10-10-0.4593"
DEFAULT_THRESHOLD = 0.7
# Load model components
try:
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
except Exception as e:
print(f"Error loading model: {str(e)}")
# Equipment knowledge base
EQUIPMENT_RECOMMENDATIONS = {
"bearing": {
"high_frequency": "• Replace bearings immediately\n• Check lubrication system\n• Monitor vibration levels",
"low_frequency": "• Inspect bearing installation\n• Check for contamination\n• Verify lubrication",
"irregular": "• Perform vibration analysis\n• Schedule bearing replacement\n• Check alignment"
},
"pump": {
"cavitation": "• Check NPSH available\n• Inspect suction strainer\n• Adjust operating speed",
"impeller": "• Inspect impeller for damage\n• Perform dynamic balancing\n• Check wear rings",
"misalignment": "• Perform laser alignment\n• Check coupling condition\n• Verify baseplate level"
},
"motor": {
"electrical": "• Megger test windings\n• Check connections\n• Inspect starter contacts",
"mechanical": "• Perform dynamic balancing\n• Check alignment\n• Inspect cooling fins",
"bearing": "• Replace motor bearings\n• Check lubrication\n• Monitor temperature"
}
}
def analyze_frequency_patterns(audio, sr):
"""Analyze frequency patterns to identify potential issues"""
patterns = []
features = {}
# Spectral analysis
spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)[0]
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)[0]
features['centroid_mean'] = np.mean(spectral_centroid)
features['rolloff_mean'] = np.mean(spectral_rolloff)
if features['centroid_mean'] > 3000:
patterns.append("high_frequency")
elif features['centroid_mean'] < 1000:
patterns.append("low_frequency")
if features['rolloff_mean'] > 8000:
patterns.append("harmonic_rich")
return patterns, features
def generate_recommendation(prediction, confidence, audio, sr):
"""Generate maintenance recommendations based on analysis"""
if prediction == "Normal":
return "✅ No immediate action required. Equipment operating within normal parameters."
patterns, features = analyze_frequency_patterns(audio, sr)
# Equipment classification
spectral_flatness = librosa.feature.spectral_flatness(y=audio)[0]
mean_flatness = np.mean(spectral_flatness)
if mean_flatness < 0.2:
equipment_type = "bearing"
elif 0.2 <= mean_flatness < 0.6:
equipment_type = "pump"
else:
equipment_type = "motor"
# Generate recommendations
recommendations = [
"🔧 MAINTENANCE RECOMMENDATIONS",
f"Equipment Type: {equipment_type.upper()}",
f"Confidence: {confidence:.1%}",
""
]
for pattern in patterns:
if pattern in EQUIPMENT_RECOMMENDATIONS.get(equipment_type, {}):
recommendations.append(EQUIPMENT_RECOMMENDATIONS[equipment_type][pattern])
if prediction == "Anomaly":
recommendations.extend([
"",
"🛠️ GENERAL ACTIONS:",
"1. Isolate equipment if possible",
"2. Perform visual inspection",
"3. Schedule detailed diagnostics",
])
if confidence > 0.8:
recommendations.append("\n🚨 URGENT: High-confidence abnormality detected!")
return "\n".join(recommendations)
def process_audio(file_path):
"""Handle audio file processing"""
try:
audio, sr = librosa.load(file_path, sr=SAMPLING_RATE, mono=True)
return audio, sr
except Exception as e:
raise RuntimeError(f"Audio processing error: {str(e)}")
def analyze_audio(audio_input, threshold=DEFAULT_THRESHOLD):
"""Main analysis function"""
try:
# Handle file upload
if isinstance(audio_input, str):
audio, sr = process_audio(audio_input)
else: # Handle file object
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp:
tmp.write(audio_input.read())
tmp_path = tmp.name
audio, sr = process_audio(tmp_path)
os.unlink(tmp_path)
# Model prediction
inputs = feature_extractor(audio, sampling_rate=SAMPLING_RATE, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
predicted_class = "Normal" if probs[0][0] > threshold else "Anomaly"
confidence = probs[0][0].item() if predicted_class == "Normal" else 1 - probs[0][0].item()
# Generate visualization
plt.figure(figsize=(10, 4))
S = librosa.feature.melspectrogram(y=audio, sr=SAMPLING_RATE, n_mels=64)
S_db = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(S_db, x_axis='time', y_axis='mel', sr=SAMPLING_RATE, fmax=8000)
plt.colorbar(format='%+2.0f dB')
plt.title('Mel Spectrogram')
spec_path = os.path.join(tempfile.gettempdir(), 'spec.png')
plt.savefig(spec_path, bbox_inches='tight')
plt.close()
# Generate recommendations
recommendations = generate_recommendation(predicted_class, confidence, audio, SAMPLING_RATE)
return (
predicted_class,
f"{confidence:.1%}",
spec_path,
recommendations
)
except Exception as e:
return f"Error: {str(e)}", "", None, ""
# Gradio Interface
with gr.Blocks(title="Industrial Audio Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🏭 Industrial Equipment Sound Analyzer
### Acoustic Anomaly Detection & Maintenance Recommendation System
""")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Equipment Audio (.wav)",
type="filepath"
)
threshold = gr.Slider(
minimum=0.5, maximum=0.95, step=0.05, value=DEFAULT_THRESHOLD,
label="Detection Sensitivity"
)
analyze_btn = gr.Button("🔍 Analyze & Diagnose", variant="primary")
with gr.Column():
result_label = gr.Label(label="Diagnosis Result")
confidence = gr.Textbox(label="Confidence Score")
spectrogram = gr.Image(label="Spectrogram Analysis")
recommendations = gr.Textbox(
label="Maintenance Recommendations",
lines=10,
interactive=False
)
analyze_btn.click(
fn=analyze_audio,
inputs=[audio_input, threshold],
outputs=[result_label, confidence, spectrogram, recommendations]
)
gr.Markdown("""
**Instructions:**
- Upload 5-10 second .wav recordings
- Results include:
✓ Anomaly detection
✓ Equipment classification
✓ Maintenance recommendations
✓ Spectrogram visualization
""")
if __name__ == "__main__":
demo.launch()
|