Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from matplotlib.colors import Normalize
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
SAMPLING_RATE = 16000
|
11 |
+
MODEL_NAME = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
12 |
+
DEFAULT_THRESHOLD = 0.7
|
13 |
+
|
14 |
+
# Load model and feature extractor
|
15 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
16 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
17 |
+
|
18 |
+
def analyze_audio(audio_array, threshold=DEFAULT_THRESHOLD):
|
19 |
+
"""
|
20 |
+
Process audio and detect anomalies
|
21 |
+
Returns:
|
22 |
+
- classification result
|
23 |
+
- confidence score
|
24 |
+
- spectrogram visualization
|
25 |
+
"""
|
26 |
+
try:
|
27 |
+
# Resample if needed and convert to mono
|
28 |
+
if isinstance(audio_array, tuple):
|
29 |
+
sr, audio = audio_array
|
30 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=SAMPLING_RATE)
|
31 |
+
else:
|
32 |
+
audio = audio_array
|
33 |
+
|
34 |
+
if len(audio.shape) > 1:
|
35 |
+
audio = librosa.to_mono(audio)
|
36 |
+
|
37 |
+
# Extract features
|
38 |
+
inputs = feature_extractor(
|
39 |
+
audio,
|
40 |
+
sampling_rate=SAMPLING_RATE,
|
41 |
+
return_tensors="pt",
|
42 |
+
padding=True,
|
43 |
+
return_attention_mask=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Run inference
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model(**inputs)
|
49 |
+
logits = outputs.logits
|
50 |
+
probs = torch.softmax(logits, dim=-1)
|
51 |
+
|
52 |
+
# Get predicted class and confidence
|
53 |
+
predicted_class = "Normal" if probs[0][0] > threshold else "Anomaly"
|
54 |
+
confidence = probs[0][0].item() if predicted_class == "Normal" else 1 - probs[0][0].item()
|
55 |
+
|
56 |
+
# Create spectrogram visualization
|
57 |
+
spectrogram = librosa.feature.melspectrogram(
|
58 |
+
y=audio,
|
59 |
+
sr=SAMPLING_RATE,
|
60 |
+
n_mels=128,
|
61 |
+
fmax=8000
|
62 |
+
)
|
63 |
+
db_spec = librosa.power_to_db(spectrogram, ref=np.max)
|
64 |
+
|
65 |
+
plt.figure(figsize=(10, 4))
|
66 |
+
plt.imshow(db_spec, aspect='auto', origin='lower',
|
67 |
+
norm=Normalize(vmin=-80, vmax=0),
|
68 |
+
cmap='viridis')
|
69 |
+
plt.colorbar(format='%+2.0f dB')
|
70 |
+
plt.title('Mel Spectrogram')
|
71 |
+
plt.tight_layout()
|
72 |
+
plt.savefig('spec.png', bbox_inches='tight')
|
73 |
+
plt.close()
|
74 |
+
|
75 |
+
return (
|
76 |
+
predicted_class,
|
77 |
+
f"{confidence:.1%}",
|
78 |
+
'spec.png',
|
79 |
+
str(probs.tolist()[0])
|
80 |
+
)
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error: {str(e)}", "", "", ""
|
84 |
+
|
85 |
+
# Gradio interface
|
86 |
+
with gr.Blocks(title="Industrial Audio Analyzer", theme=gr.themes.Soft()) as demo:
|
87 |
+
gr.Markdown("""
|
88 |
+
# 🏭 Industrial Equipment Sound Analyzer
|
89 |
+
### Powered by Audio Spectrogram Transformer (AST)
|
90 |
+
""")
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
audio_input = gr.Audio(
|
95 |
+
label="Upload Equipment Audio Recording",
|
96 |
+
type="numpy",
|
97 |
+
source="upload",
|
98 |
+
show_download_button=True
|
99 |
+
)
|
100 |
+
threshold = gr.Slider(
|
101 |
+
minimum=0.5,
|
102 |
+
maximum=0.95,
|
103 |
+
step=0.05,
|
104 |
+
value=DEFAULT_THRESHOLD,
|
105 |
+
label="Anomaly Detection Threshold",
|
106 |
+
info="Higher values reduce false positives but may miss subtle anomalies"
|
107 |
+
)
|
108 |
+
analyze_btn = gr.Button("🔍 Analyze Sound", variant="primary")
|
109 |
+
|
110 |
+
gr.Examples(
|
111 |
+
examples=["examples/normal_machine.wav", "examples/anomalous_machine.wav"],
|
112 |
+
inputs=audio_input,
|
113 |
+
label="Sample Recordings"
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Column():
|
117 |
+
result_label = gr.Label(label="Detection Result")
|
118 |
+
confidence = gr.Textbox(label="Confidence Score")
|
119 |
+
spectrogram = gr.Image(label="Spectrogram Visualization")
|
120 |
+
raw_probs = gr.Textbox(
|
121 |
+
label="Model Output Probabilities",
|
122 |
+
visible=False
|
123 |
+
)
|
124 |
+
|
125 |
+
analyze_btn.click(
|
126 |
+
fn=analyze_audio,
|
127 |
+
inputs=[audio_input, threshold],
|
128 |
+
outputs=[result_label, confidence, spectrogram, raw_probs]
|
129 |
+
)
|
130 |
+
|
131 |
+
gr.Markdown("""
|
132 |
+
## How It Works
|
133 |
+
- Upload audio recordings from industrial equipment
|
134 |
+
- The AI analyzes sound patterns using spectrogram analysis
|
135 |
+
- Detects anomalies indicating potential equipment issues
|
136 |
+
|
137 |
+
**Tip**: For best results, use 5-10 second recordings of steady operation
|
138 |
+
""")
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
demo.launch()
|