wishwakankanamg's picture
ert
4e1775f
raw
history blame
10.8 kB
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, HuggingFacePipeline
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
# @tool
# def web_search(query: str) -> str:
# """Search Tavily for a query and return maximum 3 results.
# Args:
# query: The search query."""
# search_docs = TavilySearchResults(max_results=3).invoke(query=query)
# formatted_search_docs = "\n\n---\n\n".join(
# [
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
# for doc in search_docs
# ])
# return {"web_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
try:
# Initialize the tool
tavily_tool = TavilySearchResults(max_results=3)
# Invoke it correctly
search_results = tavily_tool.invoke(input=query) # <--- CORRECTED LINE
# The result of TavilySearchResults.invoke is usually a list of strings or a single string.
# Let's check its type and format accordingly.
# Typically, TavilySearchResults directly returns a list of Document objects
# or a list of dictionaries if you've configured it differently.
# For the default, it's often a list of strings or a single concatenated string.
# If it returns a list of Document objects (which is common for loaders/retrievers):
if isinstance(search_results, list) and all(hasattr(doc, 'metadata') and hasattr(doc, 'page_content') for doc in search_results):
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata.get("source", "N/A")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_results
])
# If it returns a list of strings (less likely for Tavily in recent versions, but good to check)
elif isinstance(search_results, list) and all(isinstance(item, str) for item in search_results):
formatted_search_docs = "\n\n---\n\n".join(search_results)
# If it returns a single string
elif isinstance(search_results, str):
formatted_search_docs = search_results
else:
# Fallback or handle unexpected format
print(f"Unexpected Tavily search result format: {type(search_results)}")
formatted_search_docs = str(search_results)
return {"web_results": formatted_search_docs}
except Exception as e:
print(f"Error during Tavily search for query '{query}': {e}")
return {"web_results": f"Error performing web search: {e}"}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
hf_token = os.environ.get('HF_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
tavili_key = os.environ.get('TAVILY_API_KEY')
if not tavili_key:
raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
repo_id = "togethercomputer/evo-1-131k-base"
repo_id="HuggingFaceH4/zephyr-7b-beta",
if not hf_token:
raise ValueError("HF_TOKEN environment variable not set. It's required for Hugging Face provider.")
llm = HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
provider="auto",
task="text-generation",
max_new_tokens=1000,
do_sample=False,
repetition_penalty=1.03,
)
llm = ChatHuggingFace(llm=llm)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
"""Build the graph"""
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
print("\n--- Assistant Node ---")
print("Incoming messages to assistant:")
for msg in state["messages"]:
msg.pretty_print() #
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
print("ex msgs"+[sys_msg] + state["messages"] + [example_msg])
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
compiled_graph = builder.compile() # This line should already be there or be the next line
# --- START: Add this visualization code ---
try:
print("Attempting to generate graph visualization...")
image_filename = "langgraph_state_diagram.png"
# Using draw_mermaid_png as it's often more robust
image_bytes = compiled_graph.get_graph().draw_mermaid_png()
with open(image_filename, "wb") as f:
f.write(image_bytes)
print(f"SUCCESS: Graph visualization saved to '{image_filename}'")
except ImportError as e:
print(f"WARNING: Could not generate graph image due to missing package: {e}. "
"Ensure 'pygraphviz' and 'graphviz' (system) are installed, or Mermaid components are available.")
except Exception as e:
print(f"WARNING: An error occurred while generating the graph image: {e}")
try:
print("\nGraph (DOT format as fallback):\n", compiled_graph.get_graph().to_string())
except Exception as dot_e:
print(f"Could not even get DOT string: {dot_e}")
# --- END: Visualization code ---
return compiled_graph # This should be the last line of the function
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="huggingface")
# Run the graph
messages = [HumanMessage(content=question)]
print(messages)
config = {"recursion_limit": 27}
messages = graph.invoke({"messages": messages}, config=config)
for m in messages["messages"]:
m.pretty_print()