"""LangGraph Agent""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, HuggingFacePipeline from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} # @tool # def web_search(query: str) -> str: # """Search Tavily for a query and return maximum 3 results. # Args: # query: The search query.""" # search_docs = TavilySearchResults(max_results=3).invoke(query=query) # formatted_search_docs = "\n\n---\n\n".join( # [ # f'\n{doc.page_content}\n' # for doc in search_docs # ]) # return {"web_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" try: # Initialize the tool tavily_tool = TavilySearchResults(max_results=3) # Invoke it correctly search_results = tavily_tool.invoke(input=query) # <--- CORRECTED LINE # The result of TavilySearchResults.invoke is usually a list of strings or a single string. # Let's check its type and format accordingly. # Typically, TavilySearchResults directly returns a list of Document objects # or a list of dictionaries if you've configured it differently. # For the default, it's often a list of strings or a single concatenated string. # If it returns a list of Document objects (which is common for loaders/retrievers): if isinstance(search_results, list) and all(hasattr(doc, 'metadata') and hasattr(doc, 'page_content') for doc in search_results): formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_results ]) # If it returns a list of strings (less likely for Tavily in recent versions, but good to check) elif isinstance(search_results, list) and all(isinstance(item, str) for item in search_results): formatted_search_docs = "\n\n---\n\n".join(search_results) # If it returns a single string elif isinstance(search_results, str): formatted_search_docs = search_results else: # Fallback or handle unexpected format print(f"Unexpected Tavily search result format: {type(search_results)}") formatted_search_docs = str(search_results) return {"web_results": formatted_search_docs} except Exception as e: print(f"Error during Tavily search for query '{query}': {e}") return {"web_results": f"Error performing web search: {e}"} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # build a retriever embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 supabase: Client = create_client( os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")) vector_store = SupabaseVectorStore( client=supabase, embedding= embeddings, table_name="documents", query_name="match_documents_langchain", ) create_retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] hf_token = os.environ.get('HF_TOKEN') if not hf_token: raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.") tavili_key = os.environ.get('TAVILY_API_KEY') if not tavili_key: raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.") # Build graph function def build_graph(provider: str = "huggingface"): """Build the graph""" # Load environment variables from .env file if provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": # Groq https://console.groq.com/docs/models llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it elif provider == "huggingface": repo_id = "togethercomputer/evo-1-131k-base" repo_id="HuggingFaceH4/zephyr-7b-beta", if not hf_token: raise ValueError("HF_TOKEN environment variable not set. It's required for Hugging Face provider.") llm = HuggingFaceEndpoint( repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="auto", task="text-generation", max_new_tokens=1000, do_sample=False, repetition_penalty=1.03, ) llm = ChatHuggingFace(llm=llm) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM """Build the graph""" llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): print("\n--- Assistant Node ---") print("Incoming messages to assistant:") for msg in state["messages"]: msg.pretty_print() # """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search(state["messages"][0].content) example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) print("ex msgs"+[sys_msg] + state["messages"] + [example_msg]) return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph compiled_graph = builder.compile() # This line should already be there or be the next line # --- START: Add this visualization code --- try: print("Attempting to generate graph visualization...") image_filename = "langgraph_state_diagram.png" # Using draw_mermaid_png as it's often more robust image_bytes = compiled_graph.get_graph().draw_mermaid_png() with open(image_filename, "wb") as f: f.write(image_bytes) print(f"SUCCESS: Graph visualization saved to '{image_filename}'") except ImportError as e: print(f"WARNING: Could not generate graph image due to missing package: {e}. " "Ensure 'pygraphviz' and 'graphviz' (system) are installed, or Mermaid components are available.") except Exception as e: print(f"WARNING: An error occurred while generating the graph image: {e}") try: print("\nGraph (DOT format as fallback):\n", compiled_graph.get_graph().to_string()) except Exception as dot_e: print(f"Could not even get DOT string: {dot_e}") # --- END: Visualization code --- return compiled_graph # This should be the last line of the function # test if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" # Build the graph graph = build_graph(provider="huggingface") # Run the graph messages = [HumanMessage(content=question)] print(messages) config = {"recursion_limit": 27} messages = graph.invoke({"messages": messages}, config=config) for m in messages["messages"]: m.pretty_print()