File size: 10,842 Bytes
3b22917 5ebf2af 3b22917 7ecee44 767d298 7ecee44 767d298 7ecee44 767d298 7ecee44 3b22917 767d298 4e1775f 3b22917 767d298 4e1775f 767d298 4e1775f 767d298 4e1775f 767d298 3b22917 81027bf 3b22917 3b91398 767d298 3b22917 54868b2 b478018 42c164c 31030d9 42c164c 00255ab 6c789a5 4e3212e 36f7b8e 00255ab 3b22917 13cd04c 42c164c b478018 3b22917 f3ac4ce 3b22917 81027bf 4e1775f 81027bf 3b22917 81027bf 3b22917 4e1775f 81027bf 3b22917 596e446 3b22917 5a0e318 3b22917 5a0e318 4e1775f 3b22917 a8f5726 3b22917 ffa0300 116874e 2dcb2bc 69d9615 ffa0300 3b22917 596e446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, HuggingFacePipeline
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
# @tool
# def web_search(query: str) -> str:
# """Search Tavily for a query and return maximum 3 results.
# Args:
# query: The search query."""
# search_docs = TavilySearchResults(max_results=3).invoke(query=query)
# formatted_search_docs = "\n\n---\n\n".join(
# [
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
# for doc in search_docs
# ])
# return {"web_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
try:
# Initialize the tool
tavily_tool = TavilySearchResults(max_results=3)
# Invoke it correctly
search_results = tavily_tool.invoke(input=query) # <--- CORRECTED LINE
# The result of TavilySearchResults.invoke is usually a list of strings or a single string.
# Let's check its type and format accordingly.
# Typically, TavilySearchResults directly returns a list of Document objects
# or a list of dictionaries if you've configured it differently.
# For the default, it's often a list of strings or a single concatenated string.
# If it returns a list of Document objects (which is common for loaders/retrievers):
if isinstance(search_results, list) and all(hasattr(doc, 'metadata') and hasattr(doc, 'page_content') for doc in search_results):
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata.get("source", "N/A")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_results
])
# If it returns a list of strings (less likely for Tavily in recent versions, but good to check)
elif isinstance(search_results, list) and all(isinstance(item, str) for item in search_results):
formatted_search_docs = "\n\n---\n\n".join(search_results)
# If it returns a single string
elif isinstance(search_results, str):
formatted_search_docs = search_results
else:
# Fallback or handle unexpected format
print(f"Unexpected Tavily search result format: {type(search_results)}")
formatted_search_docs = str(search_results)
return {"web_results": formatted_search_docs}
except Exception as e:
print(f"Error during Tavily search for query '{query}': {e}")
return {"web_results": f"Error performing web search: {e}"}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
hf_token = os.environ.get('HF_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
tavili_key = os.environ.get('TAVILY_API_KEY')
if not tavili_key:
raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
repo_id = "togethercomputer/evo-1-131k-base"
repo_id="HuggingFaceH4/zephyr-7b-beta",
if not hf_token:
raise ValueError("HF_TOKEN environment variable not set. It's required for Hugging Face provider.")
llm = HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
provider="auto",
task="text-generation",
max_new_tokens=1000,
do_sample=False,
repetition_penalty=1.03,
)
llm = ChatHuggingFace(llm=llm)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
"""Build the graph"""
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
print("\n--- Assistant Node ---")
print("Incoming messages to assistant:")
for msg in state["messages"]:
msg.pretty_print() #
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
print("ex msgs"+[sys_msg] + state["messages"] + [example_msg])
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
compiled_graph = builder.compile() # This line should already be there or be the next line
# --- START: Add this visualization code ---
try:
print("Attempting to generate graph visualization...")
image_filename = "langgraph_state_diagram.png"
# Using draw_mermaid_png as it's often more robust
image_bytes = compiled_graph.get_graph().draw_mermaid_png()
with open(image_filename, "wb") as f:
f.write(image_bytes)
print(f"SUCCESS: Graph visualization saved to '{image_filename}'")
except ImportError as e:
print(f"WARNING: Could not generate graph image due to missing package: {e}. "
"Ensure 'pygraphviz' and 'graphviz' (system) are installed, or Mermaid components are available.")
except Exception as e:
print(f"WARNING: An error occurred while generating the graph image: {e}")
try:
print("\nGraph (DOT format as fallback):\n", compiled_graph.get_graph().to_string())
except Exception as dot_e:
print(f"Could not even get DOT string: {dot_e}")
# --- END: Visualization code ---
return compiled_graph # This should be the last line of the function
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="huggingface")
# Run the graph
messages = [HumanMessage(content=question)]
print(messages)
config = {"recursion_limit": 27}
messages = graph.invoke({"messages": messages}, config=config)
for m in messages["messages"]:
m.pretty_print()
|