wishwakankanamg commited on
Commit
3b22917
·
1 Parent(s): fa8c69c
Files changed (1) hide show
  1. agent.py +212 -85
agent.py CHANGED
@@ -1,88 +1,215 @@
1
- import pandas as pd
2
- from smolagents import Tool
3
- from typing import Any, Dict, Optional
4
-
5
- class ReverseTextTool(Tool):
6
- name = "reverse_text"
7
- description = "Reverses the input text."
8
- # tell the validator: I’m expecting a dict with key "text"
9
- inputs = {"input": {"type": "any", "description": "The text to be reversed"}}
10
- output_type = "string"
11
-
12
- def forward(self, input: Any) -> Any:
13
- return input[::-1]
14
-
15
-
16
- class TableCommutativityTool(Tool):
17
- name = "find_non_commutative_elements"
18
- description = (
19
- "Given a multiplication table (2D list) and its header elements, "
20
- "returns the elements involved in any a*b != b*a."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  )
22
- inputs = {
23
- "input": {
24
- "type": "any",
25
- "description": "Dict with keys 'table' (list of lists) and 'elements' (list of strings)."
26
- }
27
- }
28
- output_type = "string"
29
-
30
- def forward(self, input: dict) -> list[str]:
31
- table = input["table"]
32
- elements = input["elements"]
33
- non_comm = set()
34
- for i, a in enumerate(elements):
35
- for j, b in enumerate(elements):
36
- if table[i][j] != table[j][i]:
37
- non_comm.update({a, b})
38
- return str(sorted(non_comm))
39
-
40
-
41
-
42
- class VegetableListTool(Tool):
43
- name = "list_vegetables"
44
- description = (
45
- "From a list of grocery items, returns those that are true vegetables "
46
- "(botanical definition), sorted alphabetically."
47
- )
48
- inputs = {
49
- "input": {
50
- "type": "any",
51
- "description": "Dict with key 'items' containing a list of item strings."
52
- }
53
- }
54
- output_type = "string"
55
-
56
- _VEG_SET = {
57
- "broccoli", "bell pepper", "celery", "corn",
58
- "green beans", "lettuce", "sweet potatoes", "zucchini"
59
- }
60
-
61
- def forward(self, input: Any) -> Any:
62
- items = input["items"]
63
- return str(sorted(item for item in items if item in self._VEG_SET))
64
-
65
-
66
- class ExcelSumFoodTool(Tool):
67
- name = "sum_food_sales"
68
- description = (
69
- "Reads an Excel file with columns 'Category' and 'Sales', "
70
- "and returns total sales where Category != 'Drink', rounded to two decimals."
71
- )
72
- inputs = {
73
- "input": {
74
- "type": "any",
75
- "description": "Dict with key 'excel_path' pointing to the .xlsx file to read."
76
- }
77
- }
78
- output_type = "string"
79
-
80
- def forward(self, input: Any) -> Any:
81
- excel_path = input["excel_path"]
82
- df = pd.read_excel(excel_path)
83
- total = df.loc[df["Category"] != "Drink", "Sales"].sum()
84
- return str(round(float(total), 2))
85
-
86
-
87
 
88
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ load_dotenv()
20
+
21
+ @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two numbers.
24
+ Args:
25
+ a: first int
26
+ b: second int
27
+ """
28
+ return a * b
29
+
30
+ @tool
31
+ def add(a: int, b: int) -> int:
32
+ """Add two numbers.
33
+
34
+ Args:
35
+ a: first int
36
+ b: second int
37
+ """
38
+ return a + b
39
+
40
+ @tool
41
+ def subtract(a: int, b: int) -> int:
42
+ """Subtract two numbers.
43
+
44
+ Args:
45
+ a: first int
46
+ b: second int
47
+ """
48
+ return a - b
49
+
50
+ @tool
51
+ def divide(a: int, b: int) -> int:
52
+ """Divide two numbers.
53
+
54
+ Args:
55
+ a: first int
56
+ b: second int
57
+ """
58
+ if b == 0:
59
+ raise ValueError("Cannot divide by zero.")
60
+ return a / b
61
+
62
+ @tool
63
+ def modulus(a: int, b: int) -> int:
64
+ """Get the modulus of two numbers.
65
+
66
+ Args:
67
+ a: first int
68
+ b: second int
69
+ """
70
+ return a % b
71
+
72
+ @tool
73
+ def wiki_search(query: str) -> str:
74
+ """Search Wikipedia for a query and return maximum 2 results.
75
+
76
+ Args:
77
+ query: The search query."""
78
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
79
+ formatted_search_docs = "\n\n---\n\n".join(
80
+ [
81
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
82
+ for doc in search_docs
83
+ ])
84
+ return {"wiki_results": formatted_search_docs}
85
+
86
+ @tool
87
+ def web_search(query: str) -> str:
88
+ """Search Tavily for a query and return maximum 3 results.
89
+
90
+ Args:
91
+ query: The search query."""
92
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
93
+ formatted_search_docs = "\n\n---\n\n".join(
94
+ [
95
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
96
+ for doc in search_docs
97
+ ])
98
+ return {"web_results": formatted_search_docs}
99
+
100
+ @tool
101
+ def arvix_search(query: str) -> str:
102
+ """Search Arxiv for a query and return maximum 3 result.
103
+
104
+ Args:
105
+ query: The search query."""
106
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
107
+ formatted_search_docs = "\n\n---\n\n".join(
108
+ [
109
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
110
+ for doc in search_docs
111
+ ])
112
+ return {"arvix_results": formatted_search_docs}
113
+
114
+
115
+
116
+ # load the system prompt from the file
117
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
118
+ system_prompt = f.read()
119
+
120
+ # System message
121
+ sys_msg = SystemMessage(content=system_prompt)
122
+
123
+ # build a retriever
124
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
125
+ supabase: Client = create_client(
126
+ os.environ.get("SUPABASE_URL"),
127
+ os.environ.get("SUPABASE_SERVICE_KEY"))
128
+ vector_store = SupabaseVectorStore(
129
+ client=supabase,
130
+ embedding= embeddings,
131
+ table_name="documents",
132
+ query_name="match_documents_langchain",
133
+ )
134
+ create_retriever_tool = create_retriever_tool(
135
+ retriever=vector_store.as_retriever(),
136
+ name="Question Search",
137
+ description="A tool to retrieve similar questions from a vector store.",
138
+ )
139
+
140
+
141
+
142
+ tools = [
143
+ multiply,
144
+ add,
145
+ subtract,
146
+ divide,
147
+ modulus,
148
+ wiki_search,
149
+ web_search,
150
+ arvix_search,
151
+ ]
152
+
153
+ # Build graph function
154
+ def build_graph(provider: str = "groq"):
155
+ """Build the graph"""
156
+ # Load environment variables from .env file
157
+ if provider == "google":
158
+ # Google Gemini
159
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
160
+ elif provider == "groq":
161
+ # Groq https://console.groq.com/docs/models
162
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
163
+ elif provider == "huggingface":
164
+ # TODO: Add huggingface endpoint
165
+ llm = ChatHuggingFace(
166
+ llm=HuggingFaceEndpoint(
167
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
168
+ temperature=0,
169
+ ),
170
+ )
171
+ else:
172
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
173
+ # Bind tools to LLM
174
+ llm_with_tools = llm.bind_tools(tools)
175
+
176
+ # Node
177
+ def assistant(state: MessagesState):
178
+ """Assistant node"""
179
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
180
+
181
+ def retriever(state: MessagesState):
182
+ """Retriever node"""
183
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
184
+ example_msg = HumanMessage(
185
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
186
+ )
187
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
188
+
189
+ builder = StateGraph(MessagesState)
190
+ builder.add_node("retriever", retriever)
191
+ builder.add_node("assistant", assistant)
192
+ builder.add_node("tools", ToolNode(tools))
193
+ builder.add_edge(START, "retriever")
194
+ builder.add_edge("retriever", "assistant")
195
+ builder.add_conditional_edges(
196
+ "assistant",
197
+ tools_condition,
198
  )
199
+ builder.add_edge("tools", "assistant")
200
+
201
+ # Compile graph
202
+ return builder.compile()
203
+
204
+ # test
205
+ if __name__ == "__main__":
206
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
207
+ # Build the graph
208
+ graph = build_graph(provider="groq")
209
+ # Run the graph
210
+ messages = [HumanMessage(content=question)]
211
+ messages = graph.invoke({"messages": messages})
212
+ for m in messages["messages"]:
213
+ m.pretty_print()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
 
215