wishwakankanamg commited on
Commit
81027bf
·
1 Parent(s): 298cdc4

added stuff

Browse files
Files changed (1) hide show
  1. agent.py +24 -24
agent.py CHANGED
@@ -121,21 +121,21 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
121
  sys_msg = SystemMessage(content=system_prompt)
122
 
123
  # build a retriever
124
- # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
125
- # supabase: Client = create_client(
126
- # os.environ.get("SUPABASE_URL"),
127
- # os.environ.get("SUPABASE_SERVICE_KEY"))
128
- # vector_store = SupabaseVectorStore(
129
- # client=supabase,
130
- # embedding= embeddings,
131
- # table_name="documents",
132
- # query_name="match_documents_langchain",
133
- # )
134
- # create_retriever_tool = create_retriever_tool(
135
- # retriever=vector_store.as_retriever(),
136
- # name="Question Search",
137
- # description="A tool to retrieve similar questions from a vector store.",
138
- # )
139
 
140
 
141
 
@@ -189,20 +189,20 @@ def build_graph(provider: str = "groq"):
189
  """Assistant node"""
190
  return {"messages": [llm_with_tools.invoke(state["messages"])]}
191
 
192
- # def retriever(state: MessagesState):
193
- # """Retriever node"""
194
- # similar_question = vector_store.similarity_search(state["messages"][0].content)
195
- # example_msg = HumanMessage(
196
- # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
197
- # )
198
- # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
199
 
200
  builder = StateGraph(MessagesState)
201
- # builder.add_node("retriever", retriever)
202
  builder.add_node("assistant", assistant)
203
  builder.add_node("tools", ToolNode(tools))
204
  builder.add_edge(START, "assistant")
205
- # builder.add_edge("retriever", "assistant")
206
  builder.add_conditional_edges(
207
  "assistant",
208
  tools_condition,
 
121
  sys_msg = SystemMessage(content=system_prompt)
122
 
123
  # build a retriever
124
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
125
+ supabase: Client = create_client(
126
+ os.environ.get("SUPABASE_URL"),
127
+ os.environ.get("SUPABASE_SERVICE_KEY"))
128
+ vector_store = SupabaseVectorStore(
129
+ client=supabase,
130
+ embedding= embeddings,
131
+ table_name="documents",
132
+ query_name="match_documents_langchain",
133
+ )
134
+ create_retriever_tool = create_retriever_tool(
135
+ retriever=vector_store.as_retriever(),
136
+ name="Question Search",
137
+ description="A tool to retrieve similar questions from a vector store.",
138
+ )
139
 
140
 
141
 
 
189
  """Assistant node"""
190
  return {"messages": [llm_with_tools.invoke(state["messages"])]}
191
 
192
+ def retriever(state: MessagesState):
193
+ """Retriever node"""
194
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
195
+ example_msg = HumanMessage(
196
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
197
+ )
198
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
199
 
200
  builder = StateGraph(MessagesState)
201
+ builder.add_node("retriever", retriever)
202
  builder.add_node("assistant", assistant)
203
  builder.add_node("tools", ToolNode(tools))
204
  builder.add_edge(START, "assistant")
205
+ builder.add_edge("retriever", "assistant")
206
  builder.add_conditional_edges(
207
  "assistant",
208
  tools_condition,