File size: 6,255 Bytes
2206479
 
 
 
 
 
 
 
 
65733ce
2206479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65733ce
2206479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c51f62
2206479
 
 
65733ce
2206479
9c51f62
 
2206479
9c51f62
4e4eb03
72d697e
4e4eb03
9c51f62
 
 
65733ce
2206479
9c51f62
2206479
fc9603c
2206479
 
fc9603c
2206479
 
 
 
 
 
 
 
 
 
 
 
9c51f62
2206479
72d697e
3a34298
 
72d697e
4e4eb03
3a34298
 
72d697e
3a34298
 
72d697e
3a34298
9c51f62
72d697e
3a34298
9c51f62
 
72d697e
3a34298
72d697e
c235ab0
72d697e
 
 
9c51f62
65733ce
 
c235ab0
 
65733ce
c235ab0
 
 
 
 
 
65733ce
c235ab0
 
 
 
 
 
 
 
 
 
65733ce
 
 
c235ab0
65733ce
 
 
c235ab0
65733ce
 
c235ab0
 
65733ce
c235ab0
 
 
65733ce
c235ab0
 
 
 
65733ce
c235ab0
65733ce
 
c235ab0
65733ce
 
c235ab0
9863c18
65733ce
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pandas as pd
import gradio as gr
import gc
import plotly.express as px


def plot_rolling_average_dune(
    daa_df: pd.DataFrame,
) -> gr.Plot:
    """Function to plot the rolling average of daily active agents"""

    fig = px.bar(
        daa_df,
        x="tx_date",
        y="seven_day_trailing_avg",
    )
    fig.update_layout(
        xaxis_title="Date",
        yaxis_title="7-day rolling average of DAA",
    )

    return gr.Plot(
        value=fig,
    )


def plot_rolling_average(
    daa_df: pd.DataFrame,
    market_creator: str = None,
) -> gr.Plot:
    """Function to plot the rolling average of daily active agents"""
    if market_creator is not None:
        filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
        rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
    else:
        rolling_avg_df = get_sevenday_rolling_average(daa_df)
    print(rolling_avg_df.head())

    # Ensure 'creation_date' is a column, not an index
    if "tx_date" not in rolling_avg_df.columns:
        rolling_avg_df = rolling_avg_df.reset_index()

    fig = px.bar(
        rolling_avg_df,
        x="tx_date",
        y="rolling_avg_traders",
    )
    fig.update_layout(
        xaxis_title="Date",
        yaxis_title="7-day rolling average of DAA",
    )

    return gr.Plot(
        value=fig,
    )


def get_sevenday_rolling_average(daa_df: pd.DataFrame) -> pd.DataFrame:
    """Function to get the 7-day rolling average of the number of unique
    trader_address"""
    # Create a local copy of the dataframe
    local_df = daa_df.copy()

    # Sort the dataframe by date
    local_df = local_df.sort_values(by="tx_date").set_index("tx_date")

    # Group by market_creator and calculate rolling average of unique trader_address
    rolling_avg = (
        local_df.resample("D")["trader_address"]
        .nunique()
        .rolling(window=7)
        .mean()
        .reset_index()
    )
    rolling_avg.rename(columns={"trader_address": "rolling_avg_traders"}, inplace=True)
    return rolling_avg


def plot_rolling_average_roi(
    traders_data: pd.DataFrame, pearl_agents: pd.DataFrame
) -> gr.Plot:
    """Function to plot the rolling average of ROI for pearl agents"""
    # Get the list of unique addresses from the daa_pearl_df
    unique_addresses = pearl_agents["safe_address"].unique()
    # Filter the weekly_roi_df to include only those addresses
    filtered_traders_data = traders_data[
        traders_data["trader_address"].isin(unique_addresses)
    ]
    # create the date column
    filtered_traders_data["creation_timestamp"] = pd.to_datetime(
        filtered_traders_data["creation_timestamp"]
    )
    filtered_traders_data["creation_date"] = filtered_traders_data[
        "creation_timestamp"
    ].dt.date

    # Get the 2-week rolling average of ROI
    rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_traders_data)
    print(rolling_avg_roi_df.head())

    fig = px.bar(
        rolling_avg_roi_df,
        x="creation_date",
        y="rolling_avg_roi",
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="2-week rolling average of ROI at the trader level",
    )

    return gr.Plot(
        value=fig,
    )


def get_twoweeks_rolling_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
    """Function to get the 2-week rolling average of the ROI by market_creator and total"""

    # Create a copy to avoid SettingWithCopyWarning
    local_df = traders_data.copy()

    # Ensure creation_date is datetime64[ns]
    # Since creation_date comes from .dt.date, it's a date object, not datetime
    local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])

    # Aggregate ROI at the date level
    daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()

    # Set the datetime index
    daily_avg = daily_avg.set_index("creation_date")

    # Now resample and rolling average
    weekly_avg = daily_avg.resample("W").mean()
    rolling_avg = weekly_avg.rolling(window=2).mean().reset_index()

    # Rename columns
    rolling_avg.rename(
        columns={"roi": "rolling_avg_roi", "date": "creation_date"},
        inplace=True,
    )

    return rolling_avg


def get_weekly_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
    """Function to get the weekly average ROI by market_creator and total"""

    # Create a copy to avoid SettingWithCopyWarning
    local_df = traders_data.copy()

    # Ensure creation_date is datetime64[ns]
    # Since creation_date comes from .dt.date, it's a date object, not datetime
    local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])

    # Aggregate ROI at the date level first
    daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()

    # Set the datetime index
    daily_avg = daily_avg.set_index("creation_date")

    # Resample to weekly frequency and calculate mean
    weekly_avg = daily_avg.resample("W").mean().reset_index()

    return weekly_avg


def plot_weekly_average_roi(
    traders_data: pd.DataFrame, pearl_agents: pd.DataFrame
) -> gr.Plot:
    """Function to plot the weekly average of ROI for pearl agents"""
    # Get the list of unique addresses from the daa_pearl_df
    # Get the list of unique addresses from the daa_pearl_df
    unique_addresses = pearl_agents["safe_address"].unique()
    # Filter the weekly_roi_df to include only those addresses
    filtered_traders_data = traders_data[
        traders_data["trader_address"].isin(unique_addresses)
    ]
    # create the date column
    filtered_traders_data["creation_timestamp"] = pd.to_datetime(
        filtered_traders_data["creation_timestamp"]
    )
    filtered_traders_data["creation_date"] = filtered_traders_data[
        "creation_timestamp"
    ].dt.date

    # Get the weekly average ROI
    weekly_avg_roi_df = get_weekly_average_roi(filtered_traders_data)
    # plot the weekly average ROI
    print(weekly_avg_roi_df.head())

    fig = px.line(
        weekly_avg_roi_df,
        x="creation_date",
        y="weekly_avg_roi",
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly average ROI for pearl agents",
    )
    return gr.Plot(
        value=fig,
    )