cyberosa
commited on
Commit
·
65733ce
1
Parent(s):
2206479
adding new needed data source for pearl agents
Browse files- app.py +27 -4
- tabs/agent_graphs.py +69 -4
app.py
CHANGED
@@ -27,7 +27,11 @@ from tabs.trader_plots import (
|
|
27 |
plot_total_bet_amount,
|
28 |
plot_active_traders,
|
29 |
)
|
30 |
-
from tabs.agent_graphs import
|
|
|
|
|
|
|
|
|
31 |
|
32 |
from tabs.daily_graphs import (
|
33 |
get_current_week_data,
|
@@ -151,7 +155,14 @@ def load_all_data():
|
|
151 |
repo_type="dataset",
|
152 |
)
|
153 |
df9 = pd.read_parquet(daa_pearl_df)
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
|
157 |
def prepare_data():
|
@@ -166,6 +177,7 @@ def prepare_data():
|
|
166 |
all_mech_calls,
|
167 |
daa_qs_df,
|
168 |
daa_pearl_df,
|
|
|
169 |
) = load_all_data()
|
170 |
all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
|
171 |
"UTC"
|
@@ -243,6 +255,7 @@ def prepare_data():
|
|
243 |
all_mech_calls,
|
244 |
daa_qs_df,
|
245 |
daa_pearl_df,
|
|
|
246 |
)
|
247 |
|
248 |
|
@@ -256,6 +269,7 @@ def prepare_data():
|
|
256 |
all_mech_calls,
|
257 |
daa_qs_df,
|
258 |
daa_pearl_df,
|
|
|
259 |
) = prepare_data()
|
260 |
|
261 |
retention_df = prepare_retention_dataset(
|
@@ -559,10 +573,19 @@ with demo:
|
|
559 |
with gr.Row():
|
560 |
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
561 |
weekly_roi_df=weekly_metrics_by_market_creator,
|
562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
)
|
564 |
with gr.Row():
|
565 |
-
|
|
|
|
|
|
|
566 |
|
567 |
with gr.TabItem("🪝 Retention metrics (WIP)"):
|
568 |
with gr.Row():
|
|
|
27 |
plot_total_bet_amount,
|
28 |
plot_active_traders,
|
29 |
)
|
30 |
+
from tabs.agent_graphs import (
|
31 |
+
plot_rolling_average_dune,
|
32 |
+
plot_rolling_average_roi,
|
33 |
+
plot_weekly_average_roi,
|
34 |
+
)
|
35 |
|
36 |
from tabs.daily_graphs import (
|
37 |
get_current_week_data,
|
|
|
155 |
repo_type="dataset",
|
156 |
)
|
157 |
df9 = pd.read_parquet(daa_pearl_df)
|
158 |
+
# Read pearl_agents.parquet
|
159 |
+
pearl_agents_df = hf_hub_download(
|
160 |
+
repo_id="valory/Olas-predict-dataset",
|
161 |
+
filename="pearl_agents.parquet",
|
162 |
+
repo_type="dataset",
|
163 |
+
)
|
164 |
+
df10 = pd.read_parquet(pearl_agents_df)
|
165 |
+
return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10
|
166 |
|
167 |
|
168 |
def prepare_data():
|
|
|
177 |
all_mech_calls,
|
178 |
daa_qs_df,
|
179 |
daa_pearl_df,
|
180 |
+
pearl_agents_df,
|
181 |
) = load_all_data()
|
182 |
all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
|
183 |
"UTC"
|
|
|
255 |
all_mech_calls,
|
256 |
daa_qs_df,
|
257 |
daa_pearl_df,
|
258 |
+
pearl_agents_df,
|
259 |
)
|
260 |
|
261 |
|
|
|
269 |
all_mech_calls,
|
270 |
daa_qs_df,
|
271 |
daa_pearl_df,
|
272 |
+
pearl_agents_df,
|
273 |
) = prepare_data()
|
274 |
|
275 |
retention_df = prepare_retention_dataset(
|
|
|
573 |
with gr.Row():
|
574 |
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
575 |
weekly_roi_df=weekly_metrics_by_market_creator,
|
576 |
+
pearl_agents=pearl_agents_df,
|
577 |
+
)
|
578 |
+
with gr.Row():
|
579 |
+
gr.Markdown("# Average weekly ROI for Pearl agents")
|
580 |
+
with gr.Row():
|
581 |
+
gr.Markdown(
|
582 |
+
"This graph shows the average weekly ROI for Pearl agents. The data is based on the latest DAA results."
|
583 |
)
|
584 |
with gr.Row():
|
585 |
+
weekly_avg_roi_plot = plot_weekly_average_roi(
|
586 |
+
weekly_roi_df=weekly_metrics_by_market_creator,
|
587 |
+
pearl_agents=pearl_agents_df,
|
588 |
+
)
|
589 |
|
590 |
with gr.TabItem("🪝 Retention metrics (WIP)"):
|
591 |
with gr.Row():
|
tabs/agent_graphs.py
CHANGED
@@ -7,7 +7,7 @@ import plotly.express as px
|
|
7 |
def plot_rolling_average_dune(
|
8 |
daa_df: pd.DataFrame,
|
9 |
) -> gr.Plot:
|
10 |
-
"""Function to plot the rolling average of daily active
|
11 |
|
12 |
fig = px.bar(
|
13 |
daa_df,
|
@@ -28,7 +28,7 @@ def plot_rolling_average(
|
|
28 |
daa_df: pd.DataFrame,
|
29 |
market_creator: str = None,
|
30 |
) -> gr.Plot:
|
31 |
-
"""Function to plot the rolling average of daily active
|
32 |
if market_creator is not None:
|
33 |
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
34 |
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
@@ -77,15 +77,24 @@ def get_sevenday_rolling_average(daa_df: pd.DataFrame) -> pd.DataFrame:
|
|
77 |
|
78 |
|
79 |
def plot_rolling_average_roi(
|
80 |
-
weekly_roi_df: pd.DataFrame,
|
81 |
) -> gr.Plot:
|
82 |
"""Function to plot the rolling average of ROI for pearl agents"""
|
83 |
# Get the list of unique addresses from the daa_pearl_df
|
84 |
-
unique_addresses =
|
85 |
# Filter the weekly_roi_df to include only those addresses
|
86 |
filtered_weekly_roi_df = weekly_roi_df[
|
87 |
weekly_roi_df["trader_address"].isin(unique_addresses)
|
88 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
# Get the 2-week rolling average of ROI
|
90 |
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_weekly_roi_df)
|
91 |
print(rolling_avg_roi_df.head())
|
@@ -125,3 +134,59 @@ def get_twoweeks_rolling_average_roi(weekly_roi_df: pd.DataFrame) -> pd.DataFram
|
|
125 |
)
|
126 |
trader_rolling_avg_roi.rename(columns={"roi": "rolling_avg_roi"}, inplace=True)
|
127 |
return trader_rolling_avg_roi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def plot_rolling_average_dune(
|
8 |
daa_df: pd.DataFrame,
|
9 |
) -> gr.Plot:
|
10 |
+
"""Function to plot the rolling average of daily active agents"""
|
11 |
|
12 |
fig = px.bar(
|
13 |
daa_df,
|
|
|
28 |
daa_df: pd.DataFrame,
|
29 |
market_creator: str = None,
|
30 |
) -> gr.Plot:
|
31 |
+
"""Function to plot the rolling average of daily active agents"""
|
32 |
if market_creator is not None:
|
33 |
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
34 |
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
|
|
77 |
|
78 |
|
79 |
def plot_rolling_average_roi(
|
80 |
+
weekly_roi_df: pd.DataFrame, pearl_agents: pd.DataFrame
|
81 |
) -> gr.Plot:
|
82 |
"""Function to plot the rolling average of ROI for pearl agents"""
|
83 |
# Get the list of unique addresses from the daa_pearl_df
|
84 |
+
unique_addresses = pearl_agents["safe_address"].unique()
|
85 |
# Filter the weekly_roi_df to include only those addresses
|
86 |
filtered_weekly_roi_df = weekly_roi_df[
|
87 |
weekly_roi_df["trader_address"].isin(unique_addresses)
|
88 |
]
|
89 |
+
# Select only the columns: "roi", "month_year_week", "trader_address"
|
90 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df[
|
91 |
+
["roi", "month_year_week", "trader_address"]
|
92 |
+
].copy()
|
93 |
+
# Remove duplicates
|
94 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df.drop_duplicates(
|
95 |
+
subset=["month_year_week", "trader_address"]
|
96 |
+
)
|
97 |
+
|
98 |
# Get the 2-week rolling average of ROI
|
99 |
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_weekly_roi_df)
|
100 |
print(rolling_avg_roi_df.head())
|
|
|
134 |
)
|
135 |
trader_rolling_avg_roi.rename(columns={"roi": "rolling_avg_roi"}, inplace=True)
|
136 |
return trader_rolling_avg_roi
|
137 |
+
|
138 |
+
|
139 |
+
def get_weekly_average_roi(weekly_roi_df: pd.DataFrame) -> pd.DataFrame:
|
140 |
+
"""Function to get the weekly average ROI for pearl agents"""
|
141 |
+
# Create a local copy of the dataframe
|
142 |
+
local_df = weekly_roi_df.copy()
|
143 |
+
|
144 |
+
# Convert string dates to datetime
|
145 |
+
local_df["month_year_week"] = pd.to_datetime(
|
146 |
+
local_df["month_year_week"], format="%b-%d-%Y"
|
147 |
+
)
|
148 |
+
|
149 |
+
# Group by month_year_week and market_creator, then calculate the mean ROI
|
150 |
+
weekly_avg_roi = (
|
151 |
+
local_df.groupby(["month_year_week"], sort=False)["roi"].mean().reset_index()
|
152 |
+
)
|
153 |
+
return weekly_avg_roi
|
154 |
+
|
155 |
+
|
156 |
+
def plot_weekly_average_roi(
|
157 |
+
weekly_roi_df: pd.DataFrame, pearl_agents: pd.DataFrame
|
158 |
+
) -> gr.Plot:
|
159 |
+
"""Function to plot the weekly average of ROI for pearl agents"""
|
160 |
+
# Get the list of unique addresses from the daa_pearl_df
|
161 |
+
unique_addresses = pearl_agents["safe_address"].unique()
|
162 |
+
# Filter the weekly_roi_df to include only those addresses
|
163 |
+
filtered_weekly_roi_df = weekly_roi_df[
|
164 |
+
weekly_roi_df["trader_address"].isin(unique_addresses)
|
165 |
+
]
|
166 |
+
# Select only the columns: "roi", "month_year_week", "trader_address"
|
167 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df[
|
168 |
+
["roi", "month_year_week", "trader_address"]
|
169 |
+
].copy()
|
170 |
+
# Remove duplicates
|
171 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df.drop_duplicates(
|
172 |
+
subset=["month_year_week", "trader_address"]
|
173 |
+
)
|
174 |
+
# Get the weekly average ROI
|
175 |
+
weekly_avg_roi_df = get_weekly_average_roi(filtered_weekly_roi_df)
|
176 |
+
# plot the weekly average ROI
|
177 |
+
print(weekly_avg_roi_df.head())
|
178 |
+
# Ensure 'month_year_week' is a column, not an index
|
179 |
+
if "month_year_week" not in weekly_avg_roi_df.columns:
|
180 |
+
weekly_avg_roi_df = weekly_avg_roi_df.reset_index()
|
181 |
+
fig = px.line(
|
182 |
+
weekly_avg_roi_df,
|
183 |
+
x="month_year_week",
|
184 |
+
y="roi",
|
185 |
+
)
|
186 |
+
fig.update_layout(
|
187 |
+
xaxis_title="Week",
|
188 |
+
yaxis_title="Weekly average ROI for pearl agents",
|
189 |
+
)
|
190 |
+
return gr.Plot(
|
191 |
+
value=fig,
|
192 |
+
)
|