cyberosa commited on
Commit
72d697e
·
1 Parent(s): 3a34298

removing extra parameter

Browse files
Files changed (1) hide show
  1. tabs/agent_graphs.py +12 -12
tabs/agent_graphs.py CHANGED
@@ -88,7 +88,7 @@ def plot_rolling_average_roi(
88
  ]
89
  # create the date column
90
  filtered_traders_data["creation_timestamp"] = pd.to_datetime(
91
- filtered_traders_data["creation_timestamp"], timezone="UTC"
92
  )
93
  filtered_traders_data["creation_date"] = filtered_traders_data[
94
  "creation_timestamp"
@@ -117,30 +117,30 @@ def plot_rolling_average_roi(
117
 
118
  def get_twoweeks_rolling_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
119
  """Function to get the 2-week rolling average of the ROI by market_creator and total"""
120
-
121
  # Create a copy to avoid SettingWithCopyWarning
122
  local_df = traders_data.copy()
123
-
124
  # Ensure creation_date is datetime64[ns]
125
  # Since creation_date comes from .dt.date, it's a date object, not datetime
126
  local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
127
-
128
  # Aggregate ROI at the date level
129
  daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()
130
-
131
  # Set the datetime index
132
  daily_avg = daily_avg.set_index("creation_date")
133
-
134
  # Now resample and rolling average
135
  weekly_avg = daily_avg.resample("W").mean()
136
  rolling_avg = weekly_avg.rolling(window=2).mean().reset_index()
137
-
138
  # Rename columns
139
- rolling_avg.rename(columns={
140
- "roi": "rolling_avg_roi",
141
- "creation_date": "month_year_week"
142
- }, inplace=True)
143
-
144
  return rolling_avg
145
 
146
 
 
88
  ]
89
  # create the date column
90
  filtered_traders_data["creation_timestamp"] = pd.to_datetime(
91
+ filtered_traders_data["creation_timestamp"]
92
  )
93
  filtered_traders_data["creation_date"] = filtered_traders_data[
94
  "creation_timestamp"
 
117
 
118
  def get_twoweeks_rolling_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
119
  """Function to get the 2-week rolling average of the ROI by market_creator and total"""
120
+
121
  # Create a copy to avoid SettingWithCopyWarning
122
  local_df = traders_data.copy()
123
+
124
  # Ensure creation_date is datetime64[ns]
125
  # Since creation_date comes from .dt.date, it's a date object, not datetime
126
  local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
127
+
128
  # Aggregate ROI at the date level
129
  daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()
130
+
131
  # Set the datetime index
132
  daily_avg = daily_avg.set_index("creation_date")
133
+
134
  # Now resample and rolling average
135
  weekly_avg = daily_avg.resample("W").mean()
136
  rolling_avg = weekly_avg.rolling(window=2).mean().reset_index()
137
+
138
  # Rename columns
139
+ rolling_avg.rename(
140
+ columns={"roi": "rolling_avg_roi", "creation_date": "month_year_week"},
141
+ inplace=True,
142
+ )
143
+
144
  return rolling_avg
145
 
146