cyberosa
commited on
Commit
·
72d697e
1
Parent(s):
3a34298
removing extra parameter
Browse files- tabs/agent_graphs.py +12 -12
tabs/agent_graphs.py
CHANGED
@@ -88,7 +88,7 @@ def plot_rolling_average_roi(
|
|
88 |
]
|
89 |
# create the date column
|
90 |
filtered_traders_data["creation_timestamp"] = pd.to_datetime(
|
91 |
-
filtered_traders_data["creation_timestamp"]
|
92 |
)
|
93 |
filtered_traders_data["creation_date"] = filtered_traders_data[
|
94 |
"creation_timestamp"
|
@@ -117,30 +117,30 @@ def plot_rolling_average_roi(
|
|
117 |
|
118 |
def get_twoweeks_rolling_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
|
119 |
"""Function to get the 2-week rolling average of the ROI by market_creator and total"""
|
120 |
-
|
121 |
# Create a copy to avoid SettingWithCopyWarning
|
122 |
local_df = traders_data.copy()
|
123 |
-
|
124 |
# Ensure creation_date is datetime64[ns]
|
125 |
# Since creation_date comes from .dt.date, it's a date object, not datetime
|
126 |
local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
|
127 |
-
|
128 |
# Aggregate ROI at the date level
|
129 |
daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()
|
130 |
-
|
131 |
# Set the datetime index
|
132 |
daily_avg = daily_avg.set_index("creation_date")
|
133 |
-
|
134 |
# Now resample and rolling average
|
135 |
weekly_avg = daily_avg.resample("W").mean()
|
136 |
rolling_avg = weekly_avg.rolling(window=2).mean().reset_index()
|
137 |
-
|
138 |
# Rename columns
|
139 |
-
rolling_avg.rename(
|
140 |
-
"roi": "rolling_avg_roi",
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
return rolling_avg
|
145 |
|
146 |
|
|
|
88 |
]
|
89 |
# create the date column
|
90 |
filtered_traders_data["creation_timestamp"] = pd.to_datetime(
|
91 |
+
filtered_traders_data["creation_timestamp"]
|
92 |
)
|
93 |
filtered_traders_data["creation_date"] = filtered_traders_data[
|
94 |
"creation_timestamp"
|
|
|
117 |
|
118 |
def get_twoweeks_rolling_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
|
119 |
"""Function to get the 2-week rolling average of the ROI by market_creator and total"""
|
120 |
+
|
121 |
# Create a copy to avoid SettingWithCopyWarning
|
122 |
local_df = traders_data.copy()
|
123 |
+
|
124 |
# Ensure creation_date is datetime64[ns]
|
125 |
# Since creation_date comes from .dt.date, it's a date object, not datetime
|
126 |
local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
|
127 |
+
|
128 |
# Aggregate ROI at the date level
|
129 |
daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()
|
130 |
+
|
131 |
# Set the datetime index
|
132 |
daily_avg = daily_avg.set_index("creation_date")
|
133 |
+
|
134 |
# Now resample and rolling average
|
135 |
weekly_avg = daily_avg.resample("W").mean()
|
136 |
rolling_avg = weekly_avg.rolling(window=2).mean().reset_index()
|
137 |
+
|
138 |
# Rename columns
|
139 |
+
rolling_avg.rename(
|
140 |
+
columns={"roi": "rolling_avg_roi", "creation_date": "month_year_week"},
|
141 |
+
inplace=True,
|
142 |
+
)
|
143 |
+
|
144 |
return rolling_avg
|
145 |
|
146 |
|