Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import joblib | |
from transformers import AutoTokenizer, AutoModel | |
from rdkit import Chem | |
from rdkit.Chem import Descriptors, AllChem | |
from datetime import datetime | |
from db import get_database | |
import random | |
# Set seeds | |
random.seed(42) | |
np.random.seed(42) | |
torch.manual_seed(42) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load ChemBERTa | |
def load_chemberta(): | |
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1") | |
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(device).eval() | |
return tokenizer, model | |
# Load scalers | |
scalers = { | |
"Tensile Strength(Mpa)": joblib.load("scaler_Tensile_strength_Mpa_.joblib"), | |
"Ionization Energy(eV)": joblib.load("scaler_Ionization_Energy_eV_.joblib"), | |
"Electron Affinity(eV)": joblib.load("scaler_Electron_Affinity_eV_.joblib"), | |
"logP": joblib.load("scaler_LogP.joblib"), | |
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"), | |
"Molecular Weight(g/mol)": joblib.load("scaler_Molecular_Weight_g_mol_.joblib") | |
} | |
# Transformer model | |
class TransformerRegressor(nn.Module): | |
def __init__(self, feat_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6): | |
super().__init__() | |
self.feat_proj = nn.Linear(feat_dim, embedding_dim) | |
encoder_layer = nn.TransformerEncoderLayer( | |
d_model=embedding_dim, nhead=8, dim_feedforward=ff_dim, | |
dropout=0.1, batch_first=True | |
) | |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.regression_head = nn.Sequential( | |
nn.Linear(embedding_dim, 256), | |
nn.ReLU(), | |
nn.Linear(256, 128), | |
nn.ReLU(), | |
nn.Linear(128, output_dim) | |
) | |
def forward(self, x,feat): | |
feat_emb=self.feat_proj(feat) | |
stacked=torch.stack([x,feat_emb],dim=1) | |
encoded=self.transformer_encoder(stacked) | |
aggregated=encoded.mean(dim=1) | |
return self.regression_head(aggregated) | |
# Load model | |
def load_model(): | |
model = TransformerRegressor() | |
try: | |
state_dict = torch.load("transformer_model.bin", map_location=device) | |
model.load_state_dict(state_dict) | |
model.eval().to(device) | |
except Exception as e: | |
raise ValueError(f"Failed to load model: {e}") | |
return model | |
# RDKit descriptors | |
def compute_descriptors(smiles: str): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
raise ValueError("Invalid SMILES string.") | |
desc = [ | |
Descriptors.MolWt(mol), | |
Descriptors.MolLogP(mol), | |
Descriptors.TPSA(mol), | |
Descriptors.NumRotatableBonds(mol), | |
Descriptors.NumHDonors(mol), | |
Descriptors.NumHAcceptors(mol), | |
Descriptors.FractionCSP3(mol), | |
Descriptors.HeavyAtomCount(mol), | |
Descriptors.RingCount(mol), | |
Descriptors.MolMR(mol) | |
] | |
return np.array(desc, dtype=np.float32) | |
# Morgan fingerprint | |
def get_morgan_fingerprint(smiles, radius=2, n_bits=2048): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
raise ValueError("Invalid SMILES string.") | |
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits) | |
return np.array(fp, dtype=np.float32).reshape(1,-1) | |
# ChemBERTa embedding | |
def get_chemberta_embedding(smiles: str, tokenizer, chemberta): | |
inputs = tokenizer(smiles, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = chemberta(**inputs) | |
return outputs.last_hidden_state.mean(dim=1).to(device) | |
# Save to DB | |
def save_to_db(smiles, predictions): | |
predictions_clean = {k: float(v) for k, v in predictions.items()} | |
doc = { | |
"smiles": smiles, | |
"predictions": predictions_clean, | |
"timestamp": datetime.now() | |
} | |
db = get_database() | |
db["polymer_predictions"].insert_one(doc) | |
# Streamlit UI | |
def show(): | |
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>π¬ Polymer Property Prediction</h1>", unsafe_allow_html=True) | |
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True) | |
smiles_input = st.text_input("Enter SMILES Representation of Polymer") | |
if st.button("Predict"): | |
try: | |
model = load_model() | |
tokenizer, chemberta = load_chemberta() | |
mol = Chem.MolFromSmiles(smiles_input) | |
if mol is None: | |
st.error("Invalid SMILES string.") | |
return | |
descriptors = compute_descriptors(smiles_input) | |
descriptors_tensor=torch.tensor(descriptors,dtype=torch.float32).unsqueeze(0) | |
fingerprint = get_morgan_fingerprint(smiles_input) | |
fingerprint_tensor=torch.tensor(fingerprint,dtype=torch.float32) | |
features=torch.cat([descriptors_tensor,fingerprint_tensor],dim=1).to(device) | |
embedding = get_chemberta_embedding(smiles_input, tokenizer, chemberta) | |
with torch.no_grad(): | |
preds = model(embedding,features) | |
preds_np=preds.cpu().numpy() | |
keys = list(scalers.keys()) | |
preds_rescaled = np.concatenate([ | |
scalers[keys[i]].inverse_transform(preds_np[:, [i]]) | |
for i in range(6) | |
], axis=1) | |
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())} | |
st.success("Predicted Properties:") | |
for key, val in results.items(): | |
st.markdown(f"**{key}**: {val}") | |
save_to_db(smiles_input, results) | |
except Exception as e: | |
st.error(f"Prediction failed: {e}") | |