import streamlit as st import torch import torch.nn as nn import numpy as np import joblib from transformers import AutoTokenizer, AutoModel from rdkit import Chem from rdkit.Chem import Descriptors, AllChem from datetime import datetime from db import get_database import random # Set seeds random.seed(42) np.random.seed(42) torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load ChemBERTa @st.cache_resource def load_chemberta(): tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1") model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(device).eval() return tokenizer, model # Load scalers scalers = { "Tensile Strength(Mpa)": joblib.load("scaler_Tensile_strength_Mpa_.joblib"), "Ionization Energy(eV)": joblib.load("scaler_Ionization_Energy_eV_.joblib"), "Electron Affinity(eV)": joblib.load("scaler_Electron_Affinity_eV_.joblib"), "logP": joblib.load("scaler_LogP.joblib"), "Refractive Index": joblib.load("scaler_Refractive_Index.joblib"), "Molecular Weight(g/mol)": joblib.load("scaler_Molecular_Weight_g_mol_.joblib") } # Transformer model class TransformerRegressor(nn.Module): def __init__(self, feat_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6): super().__init__() self.feat_proj = nn.Linear(feat_dim, embedding_dim) encoder_layer = nn.TransformerEncoderLayer( d_model=embedding_dim, nhead=8, dim_feedforward=ff_dim, dropout=0.1, batch_first=True ) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.regression_head = nn.Sequential( nn.Linear(embedding_dim, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, output_dim) ) def forward(self, x,feat): feat_emb=self.feat_proj(feat) stacked=torch.stack([x,feat_emb],dim=1) encoded=self.transformer_encoder(stacked) aggregated=encoded.mean(dim=1) return self.regression_head(aggregated) # Load model @st.cache_resource def load_model(): model = TransformerRegressor() try: state_dict = torch.load("transformer_model.bin", map_location=device) model.load_state_dict(state_dict) model.eval().to(device) except Exception as e: raise ValueError(f"Failed to load model: {e}") return model # RDKit descriptors def compute_descriptors(smiles: str): mol = Chem.MolFromSmiles(smiles) if mol is None: raise ValueError("Invalid SMILES string.") desc = [ Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.TPSA(mol), Descriptors.NumRotatableBonds(mol), Descriptors.NumHDonors(mol), Descriptors.NumHAcceptors(mol), Descriptors.FractionCSP3(mol), Descriptors.HeavyAtomCount(mol), Descriptors.RingCount(mol), Descriptors.MolMR(mol) ] return np.array(desc, dtype=np.float32) # Morgan fingerprint def get_morgan_fingerprint(smiles, radius=2, n_bits=2048): mol = Chem.MolFromSmiles(smiles) if mol is None: raise ValueError("Invalid SMILES string.") fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits) return np.array(fp, dtype=np.float32).reshape(1,-1) # ChemBERTa embedding def get_chemberta_embedding(smiles: str, tokenizer, chemberta): inputs = tokenizer(smiles, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = chemberta(**inputs) return outputs.last_hidden_state.mean(dim=1).to(device) # Save to DB def save_to_db(smiles, predictions): predictions_clean = {k: float(v) for k, v in predictions.items()} doc = { "smiles": smiles, "predictions": predictions_clean, "timestamp": datetime.now() } db = get_database() db["polymer_predictions"].insert_one(doc) # Streamlit UI def show(): st.markdown("

🔬 Polymer Property Prediction

", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) smiles_input = st.text_input("Enter SMILES Representation of Polymer") if st.button("Predict"): try: model = load_model() tokenizer, chemberta = load_chemberta() mol = Chem.MolFromSmiles(smiles_input) if mol is None: st.error("Invalid SMILES string.") return descriptors = compute_descriptors(smiles_input) descriptors_tensor=torch.tensor(descriptors,dtype=torch.float32).unsqueeze(0) fingerprint = get_morgan_fingerprint(smiles_input) fingerprint_tensor=torch.tensor(fingerprint,dtype=torch.float32) features=torch.cat([descriptors_tensor,fingerprint_tensor],dim=1).to(device) embedding = get_chemberta_embedding(smiles_input, tokenizer, chemberta) with torch.no_grad(): preds = model(embedding,features) preds_np=preds.cpu().numpy() keys = list(scalers.keys()) preds_rescaled = np.concatenate([ scalers[keys[i]].inverse_transform(preds_np[:, [i]]) for i in range(6) ], axis=1) results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())} st.success("Predicted Properties:") for key, val in results.items(): st.markdown(f"**{key}**: {val}") save_to_db(smiles_input, results) except Exception as e: st.error(f"Prediction failed: {e}")