File size: 65,160 Bytes
8381f2e
85e8363
 
e5eaa7e
 
 
 
 
 
 
 
 
85e8363
 
 
 
 
 
 
 
 
 
 
 
 
 
5139a47
 
 
 
8381f2e
 
 
c1e9a88
8381f2e
c1e9a88
8381f2e
5139a47
8381f2e
5139a47
8381f2e
 
 
 
 
5139a47
 
 
d1afbc8
 
e5eaa7e
46f9035
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
842a99f
 
d1afbc8
5139a47
8381f2e
 
1a7ea3c
49b5fee
1a7ea3c
2bd198e
 
6896250
227a9e0
 
 
d54b5ce
 
 
 
 
 
 
80346b6
147fd8b
49b5fee
 
 
147fd8b
384e4ac
 
85e8363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
30fdbbc
a8de318
 
 
 
30fdbbc
49b5fee
384e4ac
 
 
49b5fee
f0823f1
 
 
 
 
 
49b5fee
 
 
 
 
 
 
 
 
 
 
 
 
147fd8b
d54b5ce
 
 
 
 
 
 
 
 
 
 
2bd198e
9a1b4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fdbbc
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406bd0f
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0823f1
147fd8b
384e4ac
147fd8b
 
384e4ac
f0823f1
147fd8b
f0823f1
 
 
 
 
 
d1afbc8
 
87147f5
 
 
 
 
8381f2e
 
87147f5
 
 
 
 
 
8381f2e
87147f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1bc032
87147f5
 
 
 
 
 
 
 
 
8381f2e
 
87147f5
8381f2e
87147f5
 
 
 
 
 
 
 
 
 
 
30fdbbc
 
 
 
 
87147f5
f0823f1
 
 
 
 
 
 
 
 
 
 
87147f5
 
 
147fd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
 
384e4ac
 
 
 
 
 
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b5fee
 
f94c8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384e4ac
 
 
f94c8f9
 
 
384e4ac
 
f94c8f9
 
 
 
 
 
 
 
 
384e4ac
f94c8f9
384e4ac
f94c8f9
49b5fee
f94c8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b5fee
 
 
 
384e4ac
49b5fee
 
 
 
0577e3b
 
 
 
 
 
 
384e4ac
 
 
 
 
f0823f1
 
0577e3b
 
384e4ac
0577e3b
 
49b5fee
384e4ac
f0823f1
c211cf7
 
 
 
 
 
 
 
 
49b5fee
0577e3b
49b5fee
 
 
 
 
 
0577e3b
384e4ac
0577e3b
 
49b5fee
384e4ac
 
 
 
 
49b5fee
0577e3b
49b5fee
0577e3b
384e4ac
 
 
 
 
 
0577e3b
49b5fee
 
0577e3b
 
49b5fee
0577e3b
384e4ac
 
0577e3b
 
384e4ac
 
 
 
 
0577e3b
 
384e4ac
0577e3b
 
 
49b5fee
0577e3b
 
 
 
 
 
 
 
 
 
 
49b5fee
 
0577e3b
49b5fee
 
 
 
 
0577e3b
49b5fee
 
0577e3b
 
 
 
30fdbbc
 
 
 
 
 
49b5fee
 
aba0837
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406bd0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
 
 
 
 
d1afbc8
 
 
 
 
 
 
384e4ac
a8de318
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
af5a7b2
 
 
a8de318
af5a7b2
 
 
d1afbc8
a8de318
af5a7b2
 
a8de318
af5a7b2
a8de318
 
 
 
af5a7b2
384e4ac
a8de318
8cedcd0
 
 
 
 
a8de318
af5a7b2
 
 
 
 
 
8cedcd0
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cedcd0
 
 
a8de318
8cedcd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e8363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7ea3c
e7bec6e
 
 
 
 
 
 
 
 
 
 
 
 
4a4198e
2bd198e
6896250
 
 
 
 
 
2bd198e
 
 
 
 
 
 
 
d54b5ce
2bd198e
d54b5ce
2bd198e
 
 
 
 
 
 
 
 
 
a8de318
2bd198e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8de318
 
 
2bd198e
 
 
a8de318
6896250
2bd198e
6896250
a8de318
384e4ac
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd198e
60a96af
 
 
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd198e
 
6896250
 
 
2bd198e
 
6896250
 
 
60a96af
 
 
 
 
 
 
 
 
2bd198e
6896250
2bd198e
 
 
6896250
d54b5ce
2bd198e
d54b5ce
 
a8de318
d54b5ce
 
2bd198e
 
a8de318
 
6896250
d54b5ce
 
 
6896250
 
 
d54b5ce
6896250
 
d54b5ce
 
 
 
a8de318
d54b5ce
2bd198e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6896250
a8de318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384e4ac
60a96af
a8de318
 
 
 
 
 
 
 
60a96af
 
 
 
a8de318
2bd198e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d54b5ce
 
 
 
 
 
 
2bd198e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d54b5ce
 
2bd198e
4a4198e
 
 
 
 
 
 
 
 
 
dcfd5bb
 
 
 
 
 
 
 
 
 
 
 
00fc4dc
 
 
 
46f9035
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
import os

# ---- Space mode gating (place above any JAX import!) ----
SPACE_MODE = os.getenv("SPACE_MODE")
if SPACE_MODE is None:
    try:
        import jax
        SPACE_MODE = "serve" if any(getattr(d, "platform", "") in ("gpu","cuda","rocm") for d in jax.devices()) else "template"
    except Exception:
        SPACE_MODE = "template"



if SPACE_MODE != "serve":
    # In template mode, force JAX to CPU so it won't try to load CUDA plugins
    os.environ.setdefault("JAX_PLATFORMS", "cpu")
else:
    # Only set GPU-friendly XLA flags when we actually intend to serve on GPU
    os.environ.setdefault(
        "XLA_FLAGS",
        " ".join([
            "--xla_gpu_enable_triton_gemm=true",
            "--xla_gpu_enable_latency_hiding_scheduler=true",
            "--xla_gpu_autotune_level=2",
        ])
    )

# Optional: persist JAX compile cache across restarts (reduces warmup time)
os.environ.setdefault("JAX_CACHE_DIR", "/home/appuser/.cache/jax")

import jax
# ✅ Valid choices include: "default", "high", "highest", "tensorfloat32", "float32", etc.
# TF32 is the sweet spot on Ampere/Ada GPUs for ~1.1–1.3× matmul speedups.
try:
    jax.config.update("jax_default_matmul_precision", "tensorfloat32")
except Exception:
    jax.config.update("jax_default_matmul_precision", "high")  # older alias

# Initialize the on-disk compilation cache (best-effort)
try:
    from jax.experimental.compilation_cache import compilation_cache as cc
    cc.initialize_cache(os.environ["JAX_CACHE_DIR"])
except Exception:
    pass
# --------------------------------------------------------------------



from magenta_rt import system, audio as au
import numpy as np
from fastapi import FastAPI, UploadFile, File, Form, Body, HTTPException, Response, Request, WebSocket, WebSocketDisconnect, Query
from fastapi.responses import JSONResponse, FileResponse, HTMLResponse
import tempfile, io, base64, math, threading
from fastapi.middleware.cors import CORSMiddleware
from contextlib import contextmanager
import soundfile as sf
from math import gcd
from scipy.signal import resample_poly
from utils import (
    match_loudness_to_reference, stitch_generated, hard_trim_seconds,
    apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
    resample_and_snap, wav_bytes_base64
)

from jam_worker import JamWorker, JamParams, JamChunk
from one_shot_generation import generate_loop_continuation_with_mrt, generate_style_only_with_mrt

import uuid, threading

import logging

import gradio as gr
from typing import Optional, Union, Literal


import json, asyncio, base64
import time



from starlette.websockets import WebSocketState
try:
    from uvicorn.protocols.utils import ClientDisconnected  # uvicorn >= 0.20
except Exception:
    class ClientDisconnected(Exception):  # fallback
        pass

import re, tarfile
from pathlib import Path
from huggingface_hub import snapshot_download, HfApi

from pydantic import BaseModel

from model_management import CheckpointManager, AssetManager, ModelSelector, ModelSelect

def _gpu_probe() -> dict:
    """
    Returns:
      {
        "ok": bool,
        "backend": str | None,        # "gpu" | "cpu" | "tpu" | None
        "has_gpu": bool,
        "devices": list[str],         # e.g. ["gpu:0", "gpu:1"]
        "error": str | None,
      }
    """
    try:
        import jax
        try:
            backend = jax.default_backend()  # "gpu", "cpu", "tpu"
        except Exception:
            from jax.lib import xla_bridge
            backend = getattr(xla_bridge.get_backend(), "platform", None)

        try:
            devices = jax.devices()
            has_gpu = any(getattr(d, "platform", "") in ("gpu", "cuda", "rocm") for d in devices)
            dev_list = [f"{getattr(d, 'platform', '?')}:{getattr(d, 'id', '?')}" for d in devices]
            return {"ok": True, "backend": backend, "has_gpu": has_gpu, "devices": dev_list, "error": None}
        except Exception as e:
            return {"ok": False, "backend": backend, "has_gpu": False, "devices": [], "error": f"jax.devices failed: {e}"}
    except Exception as e:
        return {"ok": False, "backend": None, "has_gpu": False, "devices": [], "error": f"jax import failed: {e}"}

# ---- Finetune assets (mean & centroids) --------------------------------------
# _FINETUNE_REPO_DEFAULT = os.getenv("MRT_ASSETS_REPO", "thepatch/magenta-ft")
_ASSETS_REPO_ID: str | None = None
_MEAN_EMBED: np.ndarray | None = None           # shape (D,) dtype float32
_CENTROIDS: np.ndarray | None = None            # shape (K, D) dtype float32

# _STEP_RE = re.compile(r"(?:^|/)checkpoint_(\d+)(?:/|\.tar\.gz|\.tgz)?$")

# Create instances (these don't modify globals)
asset_manager = AssetManager()
model_selector = ModelSelector(CheckpointManager(), asset_manager)

def _sync_assets_globals_from_manager():
    # Keeps /model/config in sync with what the asset manager has
    global _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID
    _MEAN_EMBED = asset_manager.mean_embed
    _CENTROIDS = asset_manager.centroids
    _ASSETS_REPO_ID = asset_manager.assets_repo_id

def _any_jam_running() -> bool:
    with jam_lock:
        return any(w.is_alive() for w in jam_registry.values())

def _stop_all_jams(timeout: float = 5.0):
    with jam_lock:
        for sid, w in list(jam_registry.items()):
            if w.is_alive():
                w.stop()
                w.join(timeout=timeout)
                jam_registry.pop(sid, None)


async def send_json_safe(ws: WebSocket, obj) -> bool:
    """Try to send. Returns False if the socket is (or becomes) closed."""
    if ws.client_state == WebSocketState.DISCONNECTED or ws.application_state == WebSocketState.DISCONNECTED:
        return False
    try:
        await ws.send_text(json.dumps(obj))
        return True
    except (WebSocketDisconnect, ClientDisconnected, RuntimeError):
        return False
    except Exception:
        return False

# --- Patch T5X mesh helpers for GPUs on JAX >= 0.7 (coords present, no core_on_chip) ---
def _patch_t5x_for_gpu_coords():
    try:
        import jax
        from t5x import partitioning as _t5x_part

        old_bounds = getattr(_t5x_part, "bounds_from_last_device", None)
        old_getcoords = getattr(_t5x_part, "get_coords", None)

        def _bounds_from_last_device_gpu_safe(last_device):
            # TPU: coords + core_on_chip
            core = getattr(last_device, "core_on_chip", None)
            coords = getattr(last_device, "coords", None)
            if coords is not None and core is not None:
                x, y, z = coords
                return x + 1, y + 1, z + 1, core + 1
            # Non-TPU (or GPU lacking core_on_chip): hosts x local_devices
            return jax.host_count(), jax.local_device_count()

        def _get_coords_gpu_safe(device):
            core = getattr(device, "core_on_chip", None)
            coords = getattr(device, "coords", None)
            if coords is not None and core is not None:
                return (*coords, core)
            # Fallback that works on CPU/GPU
            return (device.process_index, device.id % jax.local_device_count())

        _t5x_part.bounds_from_last_device = _bounds_from_last_device_gpu_safe
        _t5x_part.get_coords = _get_coords_gpu_safe
        import logging; logging.info("Patched t5x.partitioning for GPU coords without core_on_chip.")
    except Exception as e:
        import logging; logging.exception("t5x GPU-coords patch failed: %s", e)

# Call the patch immediately at import time (before MagentaRT init)
_patch_t5x_for_gpu_coords()

jam_registry: dict[str, JamWorker] = {}
jam_lock = threading.Lock()

@contextmanager
def mrt_overrides(mrt, **kwargs):
    """Temporarily set attributes on MRT if they exist; restore after."""
    old = {}
    try:
        for k, v in kwargs.items():
            if hasattr(mrt, k):
                old[k] = getattr(mrt, k)
                setattr(mrt, k, v)
        yield
    finally:
        for k, v in old.items():
            setattr(mrt, k, v)

# loudness utils
try:
    import pyloudnorm as pyln
    _HAS_LOUDNORM = True
except Exception:
    _HAS_LOUDNORM = False

# def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
#     extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
#     if not extra:
#         return mrt.embed_style("warmup")
#     sw = [float(x) for x in (weights_str or "").split(",") if x.strip()]
#     embeds, weights = [], []
#     for i, s in enumerate(extra):
#         embeds.append(mrt.embed_style(s))
#         weights.append(sw[i] if i < len(sw) else 1.0)
#     wsum = sum(weights) or 1.0
#     weights = [w/wsum for w in weights]
#     import numpy as np
#     return np.sum([w*e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)

def build_style_vector(
    mrt,
    *,
    text_styles: list[str] | None = None,
    text_weights: list[float] | None = None,
    loop_embed: np.ndarray | None = None,
    loop_weight: float | None = None,
    mean_weight: float | None = None,
    centroid_weights: list[float] | None = None,
) -> np.ndarray:
    """
    Returns a single style embedding combining:
      - loop embedding (optional)
      - one or more text style embeddings (optional)
      - mean finetune embedding (optional)
      - centroid embeddings (optional)
    All weights are normalized so they sum to 1 if > 0.
    """
    comps: list[np.ndarray] = []
    weights: list[float] = []

    # loop component
    if loop_embed is not None and (loop_weight or 0) > 0:
        comps.append(loop_embed.astype(np.float32, copy=False))
        weights.append(float(loop_weight))

    # text components
    if text_styles:
        for i, s in enumerate(text_styles):
            s = s.strip()
            if not s:
                continue
            w = 1.0
            if text_weights and i < len(text_weights):
                try: w = float(text_weights[i])
                except: w = 1.0
            if w <= 0: 
                continue
            e = mrt.embed_style(s)
            comps.append(e.astype(np.float32, copy=False))
            weights.append(w)

    # mean finetune
    if mean_weight and (_MEAN_EMBED is not None) and mean_weight > 0:
        comps.append(_MEAN_EMBED)
        weights.append(float(mean_weight))

    # centroid components
    if centroid_weights and _CENTROIDS is not None:
        K = _CENTROIDS.shape[0]
        for k, w in enumerate(centroid_weights[:K]):
            try: w = float(w)
            except: w = 0.0
            if w <= 0: 
                continue
            comps.append(_CENTROIDS[k])
            weights.append(w)

    if not comps:
        # fallback: neutral style if nothing provided
        return mrt.embed_style("")

    wsum = sum(weights)
    if wsum <= 0:
        return mrt.embed_style("")
    weights = [w/wsum for w in weights]

    # weighted sum
    out = np.zeros_like(comps[0], dtype=np.float32)
    for w, e in zip(weights, comps):
        out += w * e.astype(np.float32, copy=False)
    return out



# ----------------------------
# FastAPI app with lazy, thread-safe model init
# ----------------------------
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],   # or lock to your domain(s)
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

_MRT = None
_MRT_LOCK = threading.Lock()

def get_mrt():
    global _MRT
    if _MRT is None:
        with _MRT_LOCK:
            if _MRT is None:
                ckpt_dir = CheckpointManager.resolve_checkpoint_dir()  # uses MRT_CKPT_REPO/STEP if present
                _MRT = system.MagentaRT(
                    tag=os.getenv("MRT_SIZE", "large"),
                    guidance_weight=5.0,
                    device="gpu",
                    checkpoint_dir=ckpt_dir,
                    lazy=False
                )
                # If no assets loaded yet, and a repo is configured, load them now.
                if asset_manager.mean_embed is None and asset_manager.centroids is None:
                    repo = os.getenv("MRT_ASSETS_REPO") or os.getenv("MRT_CKPT_REPO")
                    if repo:
                        asset_manager.load_finetune_assets_from_hf(repo, None)
                        _sync_assets_globals_from_manager()
    return _MRT

_WARMED = False
_WARMUP_LOCK = threading.Lock()

def _mrt_warmup():
    """
    Build a minimal, bar-aligned silent context and run one 2s generate_chunk
    to trigger XLA JIT & autotune so first real request is fast.
    """
    global _WARMED
    with _WARMUP_LOCK:
        if _WARMED:
            return
        try:
            mrt = get_mrt()

            # --- derive timing from model config ---
            codec_fps = float(mrt.codec.frame_rate)
            ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
            sr = int(mrt.sample_rate)

            # We'll align to 120 BPM, 4/4, and generate one ~2s chunk
            bpm = 120.0
            beats_per_bar = 4

            # --- build a silent, stereo context of ctx_seconds ---
            samples = int(max(1, round(ctx_seconds * sr)))
            silent = np.zeros((samples, 2), dtype=np.float32)

            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
                sf.write(tmp.name, silent, sr, subtype="PCM_16")
                tmp_path = tmp.name

            try:
                # Load as Waveform and take a tail of exactly ctx_seconds
                loop = au.Waveform.from_file(tmp_path).resample(sr).as_stereo()
                seconds_per_bar = beats_per_bar * (60.0 / bpm)
                ctx_tail = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)

                # Tokens for context window
                tokens_full = mrt.codec.encode(ctx_tail).astype(np.int32)
                tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
                context_tokens = make_bar_aligned_context(
                    tokens,
                    bpm=bpm,
                    fps=float(mrt.codec.frame_rate),
                    ctx_frames=mrt.config.context_length_frames,
                    beats_per_bar=beats_per_bar,
                )

                # Init state and a basic style vector (text token is fine)
                state = mrt.init_state()
                state.context_tokens = context_tokens
                style_vec = mrt.embed_style("warmup")

                # --- one throwaway chunk (~2s) ---
                _wav, _state = mrt.generate_chunk(state=state, style=style_vec)

                logging.info("MagentaRT warmup complete.")
            finally:
                try:
                    os.unlink(tmp_path)
                except Exception:
                    pass

            _WARMED = True
        except Exception as e:
            # Never crash on warmup errors; log and continue serving
            logging.exception("MagentaRT warmup failed (continuing without warmup): %s", e)


# ----------------------------
# startup and model selection
# ----------------------------

@app.on_event("startup")
def _boot():
    # 1) Load finetune assets up front (only if envs are present)
    repo = os.getenv("MRT_ASSETS_REPO") or os.getenv("MRT_CKPT_REPO")
    if repo:
        ok, msg = asset_manager.load_finetune_assets_from_hf(repo, None)
        _sync_assets_globals_from_manager()  # keep /model/config in sync
        logging.info("Startup asset load from %s: %s", repo, "ok" if ok else msg)
    else:
        logging.info("Startup asset load: no repo env set; skipping.")

    # 2) Start warmup in the background (unchanged behavior)
    if os.getenv("MRT_WARMUP", "1") != "0":
        threading.Thread(target=_mrt_warmup, name="mrt-warmup", daemon=True).start()

@app.get("/model/status")
def model_status():
    mrt = get_mrt()
    return {
        "tag": getattr(mrt, "_tag", "unknown"),
        "using_checkpoint_dir": True,
        "codec_frame_rate": float(mrt.codec.frame_rate),
        "decoder_rvq_depth": int(mrt.config.decoder_codec_rvq_depth),
        "context_seconds": float(mrt.config.context_length),
        "chunk_seconds": float(mrt.config.chunk_length),
        "crossfade_seconds": float(mrt.config.crossfade_length),
        "selected_step": os.getenv("MRT_CKPT_STEP"),
        "repo": os.getenv("MRT_CKPT_REPO"),
    }

@app.post("/model/swap")
def model_swap(step: int = Form(...)):
    # stop any active jam if you want to be strict (not shown)
    os.environ["MRT_CKPT_STEP"] = str(step)
    global _MRT
    with _MRT_LOCK:
        _MRT = None  # force re-create on next get_mrt()
    # optionally pre-warm here by calling get_mrt()
    return {"reloaded": True, "step": step}

@app.post("/model/assets/load")
def model_assets_load(repo_id: str = Form(None)):
    global _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID
    ok, msg = asset_manager.load_finetune_assets_from_hf(repo_id, get_mrt())
    # Sync globals after loading
    _MEAN_EMBED = asset_manager.mean_embed
    _CENTROIDS = asset_manager.centroids
    _ASSETS_REPO_ID = asset_manager.assets_repo_id
    return {"ok": ok, "message": msg, "repo_id": _ASSETS_REPO_ID,
            "mean": _MEAN_EMBED is not None,
            "centroids": None if _CENTROIDS is None else int(_CENTROIDS.shape[0])}

@app.get("/model/assets/status")
def model_assets_status():
    d = None
    try:
        d = int(get_mrt().style_model.config.embedding_dim)
    except Exception:
        pass
    return {
        "repo_id": _ASSETS_REPO_ID,
        "mean_loaded": _MEAN_EMBED is not None,
        "centroids_loaded": False if _CENTROIDS is None else True,
        "centroid_count": None if _CENTROIDS is None else int(_CENTROIDS.shape[0]),
        "embedding_dim": d,
    }

@app.get("/model/config")
def model_config():
    """
    Lightweight config snapshot:
      - never calls get_mrt() (no model build / no downloads)
      - never calls snapshot_download()
      - reports whether a model instance is currently loaded in memory
      - best-effort local checkpoint presence (no network)
    """
    # Read-only snapshot of in-memory model presence
    with _MRT_LOCK:
        loaded = (_MRT is not None)

    size   = os.getenv("MRT_SIZE", "large")
    repo   = os.getenv("MRT_CKPT_REPO")
    rev    = os.getenv("MRT_CKPT_REV", "main")
    step   = os.getenv("MRT_CKPT_STEP")
    assets = os.getenv("MRT_ASSETS_REPO")

    # Use CheckpointManager for local cache probe (no network)
    local_ckpt = None
    if step:
        try:
            from pathlib import Path
            import re
            step_escaped = re.escape(str(step))
            candidates = []
            for root in ("/home/appuser/.cache/mrt_ckpt/extracted",
                         "/home/appuser/.cache/mrt_ckpt/repo"):
                p = Path(root)
                if not p.exists():
                    continue
                # Look for exact "checkpoint_<step>" directories anywhere under these roots
                for d in p.rglob(f"checkpoint_{step}"):
                    if d.is_dir():
                        candidates.append(str(d))
            local_ckpt = candidates[0] if candidates else None
        except Exception:
            local_ckpt = None

    return {
        "size": size,
        "repo": repo,
        "revision": rev,
        "selected_step": step,
        "assets_repo": assets,

        # in-memory + local cache hints (no network, no model build)
        "loaded": loaded,
        "active_jam": _any_jam_running(),
        "local_checkpoint_dir": local_ckpt,   # None if not found locally

        # steering assets currently resident in memory
        "mean_loaded": (_MEAN_EMBED is not None),
        "centroids_loaded": (_CENTROIDS is not None),
        "centroid_count": (None if _CENTROIDS is None else int(_CENTROIDS.shape[0])),
        "warmup_done": bool(_WARMED),
    }

@app.get("/model/checkpoints")
def model_checkpoints(repo_id: str, revision: str = "main"):
    steps = CheckpointManager.list_ckpt_steps(repo_id, revision)
    return {"repo": repo_id, "revision": revision, "steps": steps, "latest": (steps[-1] if steps else None)}

@app.post("/model/select")
def model_select(req: ModelSelect):
    """
    Swap model/checkpoint/assets. If req.prewarm is True, run the full bar-aligned warmup
    (_mrt_warmup) synchronously so we only report warmed once the new model is actually ready.
    """
    global _MRT, _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID, _WARMED

    # 1) Validate the request (no side-effects)
    success, validation_result = model_selector.validate_selection(req)
    if not success:
        if "error" in validation_result:
            raise HTTPException(status_code=400, detail=validation_result["error"])
        return {"ok": False, **validation_result}
    


    # Augment response surface
    validation_result["active_jam"] = _any_jam_running()

    # Dry-run path
    if req.dry_run:
        return {"ok": True, "dry_run": True, **validation_result}
    
    if isinstance(req.step, str) and req.step.lower() == "none":  # user asked for stock base
        # Clear any resident finetune assets so /model/config reflects "no assets"
        asset_manager.mean_embed = None
        asset_manager.centroids = None
        asset_manager.assets_repo_id = None
        # keep module-level mirrors in sync
        _MEAN_EMBED = None
        _CENTROIDS = None
        _ASSETS_REPO_ID = None

    # 2) Handle jam policy
    if _any_jam_running():
        if req.stop_active:
            _stop_all_jams()
        else:
            raise HTTPException(status_code=409, detail="A jam is running; retry with stop_active=true")

    # 3) Compute environment changes (no mutation yet)
    env_changes = model_selector.prepare_env_changes(req, validation_result)

    # Keep current env for rollback
    old_env = {
        "MRT_SIZE": os.getenv("MRT_SIZE"),
        "MRT_CKPT_REPO": os.getenv("MRT_CKPT_REPO"),
        "MRT_CKPT_REV": os.getenv("MRT_CKPT_REV"),
        "MRT_CKPT_STEP": os.getenv("MRT_CKPT_STEP"),
        "MRT_ASSETS_REPO": os.getenv("MRT_ASSETS_REPO"),
    }

    try:
        # 4) Apply env atomically
        for key, value in env_changes.items():
            if value is None:
                os.environ.pop(key, None)
            else:
                os.environ[key] = str(value)

        # 5) Force rebuild of the model and reset warmup state
        with _MRT_LOCK:
            _MRT = None
        with _WARMUP_LOCK:
            _WARMED = False  # ← critical: don't leak previous model's warmed state

        # 6) Load finetune assets if requested (mean/centroids)
        if req.sync_assets and validation_result.get("assets_repo"):
            ok, msg = asset_manager.load_finetune_assets_from_hf(
                validation_result["assets_repo"],
                None  # don't implicitly instantiate model here; we'll do it below
            )
            if ok:
                _MEAN_EMBED = asset_manager.mean_embed
                _CENTROIDS = asset_manager.centroids
                _ASSETS_REPO_ID = asset_manager.assets_repo_id
            else:
                logging.warning("Asset sync skipped/failed: %s", msg)

        # 7) Prewarm behavior:
        #    - If prewarm=True, run the *real* bar-aligned warmup synchronously.
        #    - This will instantiate the new MRT and set _WARMED=True on success.
        if req.prewarm:
            _mrt_warmup()  # builds MRT internally via get_mrt(), runs generate_chunk, sets _WARMED

        # Optional: if you want to always ensure MRT exists (even without prewarm), uncomment:
        # else:
        #     _ = get_mrt()

        return {
            "ok": True,
            **validation_result,
            "warmup_done": bool(_WARMED),
        }

    except Exception as e:
        # 8) Roll back env on failure
        for k, v in old_env.items():
            if v is None:
                os.environ.pop(k, None)
            else:
                os.environ[k] = v
        # Also reset model pointer & warmed flag to a safe state
        with _MRT_LOCK:
            _MRT = None
        with _WARMUP_LOCK:
            _WARMED = False
        logging.exception("Model select failed: %s", e)
        raise HTTPException(status_code=500, detail=f"Model select failed: {e}")
    


# ----------------------------
# one-shot generation
# ----------------------------



@app.post("/generate")
def generate(
    loop_audio: UploadFile = File(...),
    bpm: float = Form(...),
    bars: int = Form(8),
    beats_per_bar: int = Form(4),
    styles: str = Form("acid house"),
    style_weights: str = Form(""),
    loop_weight: float = Form(1.0),
    loudness_mode: str = Form("auto"),
    loudness_headroom_db: float = Form(1.0),
    guidance_weight: float = Form(5.0),
    temperature: float = Form(1.1),
    topk: int = Form(40),
    target_sample_rate: int | None = Form(None),
    intro_bars_to_drop: int = Form(0),          # <— NEW
):
    # Read file
    data = loop_audio.file.read()
    if not data:
        return {"error": "Empty file"}
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
        tmp.write(data)
        tmp_path = tmp.name

    # Parse styles + weights
    extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()]
    weights = [float(x) for x in style_weights.split(",")] if style_weights else None

    mrt = get_mrt()  # warm once, in this worker thread
    # Temporarily override MRT inference knobs for this request
    with mrt_overrides(mrt,
                       guidance_weight=guidance_weight,
                       temperature=temperature,
                       topk=topk):
        wav, loud_stats = generate_loop_continuation_with_mrt(
            mrt,
            input_wav_path=tmp_path,
            bpm=bpm,
            extra_styles=extra_styles,
            style_weights=weights,
            bars=bars,
            beats_per_bar=beats_per_bar,
            loop_weight=loop_weight,
            loudness_mode=loudness_mode,
            loudness_headroom_db=loudness_headroom_db,
            intro_bars_to_drop=intro_bars_to_drop,   # <— pass through
        )

    # 1) Figure out the desired SR
    inp_info = sf.info(tmp_path)
    input_sr = int(inp_info.samplerate)
    target_sr = int(target_sample_rate or input_sr)

    # 2) Convert to target SR + snap to exact bars
    cur_sr = int(mrt.sample_rate)
    x = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
    seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
    expected_secs = float(bars) * seconds_per_bar
    x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=expected_secs)

    # 3) Encode WAV once (no extra write)
    audio_b64, total_samples, channels = wav_bytes_base64(x, target_sr)
    loop_duration_seconds = total_samples / float(target_sr)

    # 4) Metadata
    metadata = {
        "bpm": int(round(bpm)),
        "bars": int(bars),
        "beats_per_bar": int(beats_per_bar),
        "styles": extra_styles,
        "style_weights": weights,
        "loop_weight": loop_weight,
        "loudness": loud_stats,
        "sample_rate": int(target_sr),
        "channels": int(channels),
        "crossfade_seconds": mrt.config.crossfade_length,
        "total_samples": int(total_samples),
        "seconds_per_bar": seconds_per_bar,
        "loop_duration_seconds": loop_duration_seconds,
        "guidance_weight": guidance_weight,
        "temperature": temperature,
        "topk": topk,
    }
    return {"audio_base64": audio_b64, "metadata": metadata}

# new endpoint to return a bar-aligned chunk without the need for combined audio

@app.post("/generate_style")
def generate_style(
    bpm: float = Form(...),
    bars: int = Form(8),
    beats_per_bar: int = Form(4),
    styles: str = Form("warmup"),
    style_weights: str = Form(""),
    guidance_weight: float = Form(1.1),
    temperature: float = Form(1.1),
    topk: int = Form(40),
    target_sample_rate: int | None = Form(None),
    intro_bars_to_drop: int = Form(0),
):
    """
    Style-only, bar-aligned generation (no input audio).
    Seeds with 10s of silent context; outputs exactly `bars` at the requested BPM.
    """
    mrt = get_mrt()

    # Override sampling knobs just for this request
    with mrt_overrides(mrt,
                       guidance_weight=guidance_weight,
                       temperature=temperature,
                       topk=topk):
        wav, _ = generate_style_only_with_mrt(
            mrt,
            bpm=bpm,
            bars=bars,
            beats_per_bar=beats_per_bar,
            styles=styles,
            style_weights=style_weights,
            intro_bars_to_drop=intro_bars_to_drop,
        )

    # Determine target SR (defaults to model SR = 48k)
    cur_sr = int(mrt.sample_rate)
    target_sr = int(target_sample_rate or cur_sr)
    x = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]

    seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
    expected_secs   = float(bars) * seconds_per_bar

    # Snap exactly to musical length at the requested sample rate
    x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=expected_secs)

    audio_b64, total_samples, channels = wav_bytes_base64(x, target_sr)

    metadata = {
        "bpm": int(round(bpm)),
        "bars": int(bars),
        "beats_per_bar": int(beats_per_bar),
        "styles": [s.strip() for s in (styles.split(",") if styles else []) if s.strip()],
        "style_weights": [float(y) for y in style_weights.split(",")] if style_weights else None,
        "sample_rate": int(target_sr),
        "channels": int(channels),
        "crossfade_seconds": mrt.config.crossfade_length,
        "seconds_per_bar": seconds_per_bar,
        "loop_duration_seconds": total_samples / float(target_sr),
        "guidance_weight": guidance_weight,
        "temperature": temperature,
        "topk": topk,
    }
    return {"audio_base64": audio_b64, "metadata": metadata}


# ----------------------------
# the 'keep jamming' button
# ----------------------------

@app.post("/jam/start")
def jam_start(
    loop_audio: UploadFile = File(...),
    bpm: float = Form(...),
    bars_per_chunk: int = Form(4),
    beats_per_bar: int = Form(4),
    styles: str = Form(""),
    style_weights: str = Form(""),
    loop_weight: float = Form(1.0),

    # NEW steering params:
    mean: float = Form(0.0),
    centroid_weights: str = Form(""),

    loudness_mode: str = Form("auto"),
    loudness_headroom_db: float = Form(1.0),
    guidance_weight: float = Form(1.1),
    temperature: float = Form(1.1),
    topk: int = Form(40),
    target_sample_rate: int | None = Form(None),
):
    asset_manager.ensure_assets_loaded(get_mrt())

    # enforce single active jam per GPU
    with jam_lock:
        for sid, w in list(jam_registry.items()):
            if w.is_alive():
                raise HTTPException(status_code=429, detail="A jam is already running. Try again later.")

    # read input + prep context/style (reuse your existing code)
    data = loop_audio.file.read()
    if not data: raise HTTPException(status_code=400, detail="Empty file")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
        tmp.write(data); tmp_path = tmp.name

    mrt = get_mrt()
    loop = au.Waveform.from_file(tmp_path).resample(mrt.sample_rate).as_stereo()

    # build tail context + style vec (tail-biased)
    codec_fps = float(mrt.codec.frame_rate)
    ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
    loop_tail = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)

    # Parse client style fields (preserves your semantics)
    text_list = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
    try:
        tw = [float(x) for x in style_weights.split(",")] if style_weights else []
    except ValueError:
        tw = []
    try:
        cw = [float(x) for x in centroid_weights.split(",")] if centroid_weights else []
    except ValueError:
        cw = []

    # Compute loop-tail embed once (same as before)
    loop_tail_embed = mrt.embed_style(loop_tail)

    # Build final style vector:
    # - identical to your previous mix when mean==0 and cw is empty
    # - otherwise includes mean and centroid components (weights auto-normalized)
    style_vec = build_style_vector(
        mrt,
        text_styles=text_list,
        text_weights=tw,
        loop_embed=loop_tail_embed,
        loop_weight=float(loop_weight),
        mean_weight=float(mean),
        centroid_weights=cw,
    ).astype(np.float32, copy=False)

    # target SR (default input SR)
    inp_info = sf.info(tmp_path)
    input_sr = int(inp_info.samplerate)
    target_sr = int(target_sample_rate or input_sr)

    params = JamParams(
        bpm=bpm, 
        beats_per_bar=beats_per_bar, 
        bars_per_chunk=bars_per_chunk,
        target_sr=target_sr, 
        loudness_mode=loudness_mode, 
        headroom_db=loudness_headroom_db,
        style_vec=style_vec, 
        ref_loop=loop_tail,                    # For loudness matching
        combined_loop=loop,                    # NEW: Full loop for context setup
        guidance_weight=guidance_weight, 
        temperature=temperature, 
        topk=topk
    )

    worker = JamWorker(mrt, params)
    sid = str(uuid.uuid4())
    with jam_lock:
        jam_registry[sid] = worker
    worker.start()

    return {"session_id": sid}

@app.get("/jam/next")
def jam_next(session_id: str):
    """
    Get the next sequential chunk in the jam session.
    This ensures chunks are delivered in order without gaps.
    """
    with jam_lock:
        worker = jam_registry.get(session_id)
    if worker is None or not worker.is_alive():
        raise HTTPException(status_code=404, detail="Session not found")

    # Get the next sequential chunk (this blocks until ready)
    chunk = worker.get_next_chunk()
    
    if chunk is None:
        raise HTTPException(status_code=408, detail="Chunk not ready within timeout")

    return {
        "chunk": {
            "index": chunk.index,
            "audio_base64": chunk.audio_base64,
            "metadata": chunk.metadata
        }
    }

@app.post("/jam/consume")
def jam_consume(session_id: str = Form(...), chunk_index: int = Form(...)):
    """
    Mark a chunk as consumed by the frontend.
    This helps the worker manage its buffer and generation flow.
    """
    with jam_lock:
        worker = jam_registry.get(session_id)
    if worker is None or not worker.is_alive():
        raise HTTPException(status_code=404, detail="Session not found")

    worker.mark_chunk_consumed(chunk_index)
    
    return {"consumed": chunk_index}



@app.post("/jam/stop")
def jam_stop(session_id: str = Body(..., embed=True)):
    with jam_lock:
        worker = jam_registry.get(session_id)
    if worker is None:
        raise HTTPException(status_code=404, detail="Session not found")

    worker.stop()
    worker.join(timeout=5.0)
    if worker.is_alive():
        # It’s daemon=True, so it won’t block process exit, but report it
        print(f"⚠️ JamWorker {session_id} did not stop within timeout")

    with jam_lock:
        jam_registry.pop(session_id, None)
    return {"stopped": True}

@app.post("/jam/update")
def jam_update(
    session_id: str = Form(...),

    # knobs
    guidance_weight: Optional[float] = Form(None),
    temperature: Optional[float]     = Form(None),
    topk: Optional[int]              = Form(None),

    # styles
    styles: str                      = Form(""),
    style_weights: str               = Form(""),
    loop_weight: Optional[float]     = Form(None),
    use_current_mix_as_style: bool   = Form(False),

    # NEW steering
    mean: Optional[float]            = Form(None),
    centroid_weights: str            = Form(""),
):
    asset_manager.ensure_assets_loaded(get_mrt())

    with jam_lock:
        worker = jam_registry.get(session_id)
    if worker is None or not worker.is_alive():
        raise HTTPException(status_code=404, detail="Session not found")

    # 1) fast knob updates
    if any(v is not None for v in (guidance_weight, temperature, topk)):
        worker.update_knobs(
            guidance_weight=guidance_weight,
            temperature=temperature,
            topk=topk
        )

    # 2) rebuild style only if asked
    wants_style_update = (
        use_current_mix_as_style
        or (styles.strip() != "")
        or (mean is not None)
        or (centroid_weights.strip() != "")
    )
    if not wants_style_update:
        return {"ok": True}

    # --- parse inputs (robust) ---
    text_list = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
    try:
        tw = [float(x) for x in style_weights.split(",")] if style_weights else []
    except ValueError:
        tw = []
    try:
        cw = [float(x) for x in centroid_weights.split(",")] if centroid_weights else []
    except ValueError:
        cw = []

    # Clamp centroid weights to available centroids (if loaded)
    max_c = 0 if _CENTROIDS is None else int(_CENTROIDS.shape[0])
    if max_c and len(cw) > max_c:
        cw = cw[:max_c]

    # Snapshot minimal state under lock
    with worker._lock:
        combined_loop = worker.params.combined_loop if use_current_mix_as_style else None
        lw = None
        if use_current_mix_as_style:
            lw = 1.0 if (loop_weight is None) else float(loop_weight)
        mrt = worker.mrt

    # Heavy work OUTSIDE the lock
    loop_embed = None
    if combined_loop is not None:
        loop_embed = mrt.embed_style(combined_loop)

    style_vec = build_style_vector(
        mrt,
        text_styles=text_list,
        text_weights=tw,
        loop_embed=loop_embed,             # None => ignored by builder
        loop_weight=lw,                    # None => ignored by builder
        mean_weight=(None if mean is None else float(mean)),
        centroid_weights=cw,               # [] => ignored by builder
    ).astype(np.float32, copy=False)

    # Swap atomically
    with worker._lock:
        worker.params.style_vec = style_vec

    return {"ok": True}


@app.post("/jam/reseed")
def jam_reseed(session_id: str = Form(...), loop_audio: UploadFile = File(None)):
    with jam_lock:
        worker = jam_registry.get(session_id)
    if worker is None or not worker.is_alive():
        raise HTTPException(status_code=404, detail="Session not found")

    # Option 1: use uploaded new “combined” bounce from the app
    if loop_audio is not None:
        data = loop_audio.file.read()
        if not data:
            raise HTTPException(status_code=400, detail="Empty file")

        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(data); path = tmp.name
        wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo()
    else:
        # Option 2: reseed from what we’ve been streaming (the model side)
        # (Usually better to reseed from the Swift-side “combined” mix you trust.)

        s = getattr(worker, "_stream", None)
        if s is None or s.shape[0] == 0:
            raise HTTPException(status_code=400, detail="No internal stream to reseed from")
        wav = au.Waveform(s.astype(np.float32, copy=False), int(worker.mrt.sample_rate)).as_stereo()

    worker.reseed_from_waveform(wav)
    return {"ok": True}

@app.post("/jam/reseed_splice")
def jam_reseed_splice(
    session_id: str = Form(...),
    anchor_bars: float = Form(2.0),              # how much of the original to re-inject
    combined_audio: UploadFile = File(None),     # preferred: Swift supplies the current combined mix
):
    worker = jam_registry.get(session_id)
    if worker is None or not worker.is_alive():
        raise HTTPException(status_code=404, detail="Session not found")

    # Build a waveform to reseed from

    wav = None

    if combined_audio is not None:
        data = combined_audio.file.read()
        if not data:
            raise HTTPException(status_code=400, detail="Empty combined_audio")

        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(data)
            path = tmp.name
        wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo()
    else:
        # Fallback: reseed from the model’s internal stream (less ideal than the Swift-side bounce)
        s = getattr(worker, "_stream", None)
        if s is None or s.shape[0] == 0:
            raise HTTPException(status_code=400, detail="No audio available to reseed from")
        wav = au.Waveform(s.astype(np.float32, copy=False), int(worker.mrt.sample_rate)).as_stereo()

    # Perform the splice reseed
    worker.reseed_splice(wav, anchor_bars=float(anchor_bars))
    return {"ok": True, "anchor_bars": float(anchor_bars)}

@app.get("/jam/status")
def jam_status(session_id: str):
    with jam_lock:
        worker = jam_registry.get(session_id)

    if worker is None:
        raise HTTPException(status_code=404, detail="Session not found")

    running = worker.is_alive()

    # Snapshot safely
    with worker._lock:
        last_generated = int(worker.idx)
        last_delivered = int(worker._last_delivered_index)
        queued = len(worker.outbox)
        buffer_ahead = last_generated - last_delivered
        p = worker.params
        spb = p.beats_per_bar * (60.0 / p.bpm)
        chunk_secs = p.bars_per_chunk * spb

    return {
        "running": running,
        "last_generated_index": last_generated,       # Last chunk that finished generating
        "last_delivered_index": last_delivered,       # Last chunk sent to frontend
        "buffer_ahead": buffer_ahead,                  # How many chunks ahead we are
        "queued_chunks": queued,                       # Total chunks in outbox
        "bpm": p.bpm,
        "beats_per_bar": p.beats_per_bar,
        "bars_per_chunk": p.bars_per_chunk,
        "seconds_per_bar": spb,
        "chunk_duration_seconds": chunk_secs,
        "target_sample_rate": p.target_sr,
        "last_chunk_started_at": worker.last_chunk_started_at,
        "last_chunk_completed_at": worker.last_chunk_completed_at,
    }


@app.get("/health")
def health():
    # 1) Template mode → not ready (encourage duplication on GPU)
    if SPACE_MODE != "serve":
        return JSONResponse(
            status_code=503,
            content={
                "ok": False,
                "status": "template_mode",
                "message": "This Space is a GPU template. Duplicate it and select an L40s/A100-class runtime to use the API.",
                "mode": SPACE_MODE,
            },
        )

    # 2) Runtime hardware probe
    probe = _gpu_probe()
    if not probe["ok"] or not probe["has_gpu"] or probe.get("backend") != "gpu":
        return JSONResponse(
            status_code=503,
            content={
                "ok": False,
                "status": "gpu_unavailable",
                "message": "GPU is not visible to JAX. Select a GPU runtime (e.g., L40s) to serve.",
                "probe": probe,
                "mode": SPACE_MODE,
            },
        )

    # 3) Ready; include operational hints
    warmed = bool(_WARMED)
    with jam_lock:
        active_jams = sum(1 for w in jam_registry.values() if w.is_alive())
    return {
        "ok": True,
        "status": "ready" if warmed else "initializing",
        "mode": SPACE_MODE,
        "warmed": warmed,
        "active_jams": active_jams,
        "probe": probe,
    }

@app.middleware("http")
async def log_requests(request: Request, call_next):
    rid = request.headers.get("X-Request-ID", "-")
    print(f"📥 {request.method} {request.url.path}?{request.url.query} [rid={rid}]")
    try:
        response = await call_next(request)
    except Exception as e:
        print(f"💥 exception for {request.url.path} [rid={rid}]: {e}")
        raise
    print(f"📤 {response.status_code} {request.url.path} [rid={rid}]")
    return response





# ----------------------------
# websockets route
# ----------------------------


@app.websocket("/ws/jam")
async def ws_jam(websocket: WebSocket):
    await websocket.accept()
    sid = None
    worker = None
    binary_audio = False
    mode = "rt"  # or "bar"

    # NEW: capture ws in closure
    async def send_json(obj):
        return await send_json_safe(websocket, obj)

    try:
        while True:
            raw = await websocket.receive_text()
            msg = json.loads(raw)
            mtype = msg.get("type")

            # --- START ---
            if mtype == "start":
                binary_audio = bool(msg.get("binary_audio", False))
                mode = msg.get("mode", "rt")
                params = msg.get("params", {}) or {}
                sid = msg.get("session_id")

                # attach or create
                if sid:
                    with jam_lock:
                        worker = jam_registry.get(sid)
                    if worker is None or not worker.is_alive():
                        await send_json({"type":"error","error":"Session not found"})
                        continue
                else:
                    # optionally accept base64 loop and start a new worker (bar-mode)
                    if mode == "bar":
                        loop_b64 = msg.get("loop_audio_b64")
                        if not loop_b64:
                            await send_json({"type":"error","error":"loop_audio_b64 required for mode=bar when no session_id"})
                            continue
                        loop_bytes = base64.b64decode(loop_b64)
                        # mimic /jam/start
                        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
                            tmp.write(loop_bytes); tmp_path = tmp.name
                        # build JamParams similar to /jam/start
                        mrt = get_mrt()
                        model_sr = int(mrt.sample_rate)  # typically 48000
                        # Defaults for WS: raw loudness @ model SR, unless overridden by client:
                        target_sr = int(params.get("target_sr", model_sr))
                        loudness_mode = params.get("loudness_mode", "none")
                        headroom_db = float(params.get("headroom_db", 1.0))
                        loop = au.Waveform.from_file(tmp_path).resample(mrt.sample_rate).as_stereo()

                        codec_fps = float(mrt.codec.frame_rate)
                        ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
                        bpm = float(params.get("bpm", 120.0))
                        bpb = int(params.get("beats_per_bar", 4))
                        loop_tail = take_bar_aligned_tail(loop, bpm, bpb, ctx_seconds)

                        # style vector (loop + extra styles)
                        embeds, weights = [mrt.embed_style(loop_tail)], [float(params.get("loop_weight", 1.0))]
                        extra = [s for s in (params.get("styles","").split(",")) if s.strip()]
                        sw = [float(x) for x in params.get("style_weights","").split(",") if x.strip()]
                        for i, s in enumerate(extra):
                            embeds.append(mrt.embed_style(s.strip()))
                            weights.append(sw[i] if i < len(sw) else 1.0)
                        wsum = sum(weights) or 1.0
                        weights = [w/wsum for w in weights]
                        style_vec = np.sum([w*e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)

                        # target SR fallback: input SR
                        inp_info = sf.info(tmp_path)
                        target_sr = int(params.get("target_sr", int(inp_info.samplerate)))

                        # Build JamParams for WS bar-mode
                        jp = JamParams(
                            bpm=bpm, beats_per_bar=bpb, bars_per_chunk=int(params.get("bars_per_chunk", 8)),
                            target_sr=target_sr,
                            loudness_mode=loudness_mode, headroom_db=headroom_db,
                            style_vec=style_vec,
                            ref_loop=None if loudness_mode == "none" else loop_tail,  # disable match by default
                            combined_loop=loop,
                            guidance_weight=float(params.get("guidance_weight", 1.1)),
                            temperature=float(params.get("temperature", 1.1)),
                            topk=int(params.get("topk", 40)),
                        )
                        worker = JamWorker(get_mrt(), jp)
                        sid = str(uuid.uuid4())
                        with jam_lock:
                            # single active jam per GPU, mirroring /jam/start
                            for _sid, w in list(jam_registry.items()):
                                if w.is_alive():
                                    await send_json({"type":"error","error":"A jam is already running"})
                                    worker = None; sid = None
                                    break
                            if worker is not None:
                                jam_registry[sid] = worker
                                worker.start()

                    else:
                        # mode == "rt" (Colab-style, no loop context)
                        mrt = get_mrt()
                        state = mrt.init_state()

                        # Build silent context (10s) tokens
                        codec_fps   = float(mrt.codec.frame_rate)
                        ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
                        sr = int(mrt.sample_rate)
                        samples = int(max(1, round(ctx_seconds * sr)))
                        silent = au.Waveform(np.zeros((samples, 2), np.float32), sr)
                        tokens = mrt.codec.encode(silent).astype(np.int32)[:, :mrt.config.decoder_codec_rvq_depth]
                        state.context_tokens = tokens

                        # Parse params (including steering)
                        asset_manager.ensure_assets_loaded(get_mrt())
                        styles_str        = params.get("styles", "warmup") or ""
                        style_weights_str = params.get("style_weights", "") or ""
                        mean_w            = float(params.get("mean", 0.0) or 0.0)
                        cw_str            = str(params.get("centroid_weights", "") or "")

                        text_list = [s.strip() for s in styles_str.split(",") if s.strip()]
                        try:
                            text_w = [float(x) for x in style_weights_str.split(",")] if style_weights_str else []
                        except ValueError:
                            text_w = []
                        try:
                            cw = [float(x) for x in cw_str.split(",") if x.strip() != ""]
                        except ValueError:
                            cw = []

                        # Clamp centroid weights to available centroids
                        if _CENTROIDS is not None and len(cw) > int(_CENTROIDS.shape[0]):
                            cw = cw[: int(_CENTROIDS.shape[0])]

                        # Build initial style vector (no loop_embed in rt mode)
                        style_vec = build_style_vector(
                            mrt,
                            text_styles=text_list,
                            text_weights=text_w,
                            loop_embed=None,
                            loop_weight=None,
                            mean_weight=mean_w,
                            centroid_weights=cw,
                        )

                        # Stash rt session fields
                        websocket._mrt   = mrt
                        websocket._state = state
                        websocket._style_cur = style_vec
                        websocket._style_tgt = style_vec
                        websocket._style_ramp_s = float(params.get("style_ramp_seconds", 0.0))

                        websocket._rt_mean              = mean_w
                        websocket._rt_centroid_weights  = cw
                        websocket._rt_running           = True
                        websocket._rt_sr                = sr
                        websocket._rt_topk              = int(params.get("topk", 40))
                        websocket._rt_temp              = float(params.get("temperature", 1.1))
                        websocket._rt_guid              = float(params.get("guidance_weight", 1.1))
                        websocket._pace                 = params.get("pace", "asap")  # "realtime" | "asap"

                        # (Optional) report whether steering assets were loaded
                        assets_ok = (_MEAN_EMBED is not None) or (_CENTROIDS is not None)
                        await send_json({"type": "started", "mode": "rt", "steering_assets": "loaded" if assets_ok else "none"})

                        # kick off the ~2s streaming loop
                        async def _rt_loop():
                            try:
                                mrt = websocket._mrt
                                chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
                                target_next = time.perf_counter()
                                while websocket._rt_running:
                                    mrt.guidance_weight = websocket._rt_guid
                                    mrt.temperature     = websocket._rt_temp
                                    mrt.topk            = websocket._rt_topk

                                    # ramp style
                                    ramp = float(getattr(websocket, "_style_ramp_s", 0.0) or 0.0)
                                    if ramp <= 0.0:
                                        websocket._style_cur = websocket._style_tgt
                                    else:
                                        step = min(1.0, chunk_secs / ramp)
                                        websocket._style_cur = websocket._style_cur + step * (websocket._style_tgt - websocket._style_cur)

                                    wav, new_state = mrt.generate_chunk(state=websocket._state, style=websocket._style_cur)
                                    websocket._state = new_state

                                    x = wav.samples.astype(np.float32, copy=False)
                                    buf = io.BytesIO()
                                    sf.write(buf, x, mrt.sample_rate, subtype="FLOAT", format="WAV")

                                    ok = True
                                    if binary_audio:
                                        try:
                                            await websocket.send_bytes(buf.getvalue())
                                            ok = await send_json({"type": "chunk_meta", "metadata": {"sample_rate": mrt.sample_rate}})
                                        except Exception:
                                            ok = False
                                    else:
                                        b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
                                        ok = await send_json({"type": "chunk", "audio_base64": b64,
                                                            "metadata": {"sample_rate": mrt.sample_rate}})

                                    if not ok:
                                        break

                                    if getattr(websocket, "_pace", "asap") == "realtime":
                                        t1 = time.perf_counter()
                                        target_next += chunk_secs
                                        sleep_s = max(0.0, target_next - t1 - 0.02)
                                        if sleep_s > 0:
                                            await asyncio.sleep(sleep_s)
                            except asyncio.CancelledError:
                                pass
                            except Exception:
                                pass

                        websocket._rt_task = asyncio.create_task(_rt_loop())
                        continue  # skip the “bar-mode started” message below

                await send_json({"type":"started","session_id": sid, "mode": mode})

                # if we’re in bar-mode, begin pushing chunks as they arrive
                if mode == "bar" and worker is not None:
                    async def _pump():
                        while True:
                            if not worker.is_alive():
                                break
                            chunk = worker.get_next_chunk(timeout=60.0)
                            if chunk is None:
                                continue
                            if binary_audio:
                                await websocket.send_bytes(base64.b64decode(chunk.audio_base64))
                                await send_json({"type":"chunk_meta","index":chunk.index,"metadata":chunk.metadata})
                            else:
                                await send_json({"type":"chunk","index":chunk.index,
                                                 "audio_base64":chunk.audio_base64,"metadata":chunk.metadata})
                    asyncio.create_task(_pump())

            # --- UPDATES (bar or rt) ---
            elif mtype == "update":
                if mode == "bar":
                    if not sid:
                        await send_json({"type":"error","error":"No session_id yet"}); return
                    # fan values straight into your existing HTTP handler:
                    res = jam_update(
                        session_id=sid,
                        guidance_weight=msg.get("guidance_weight"),
                        temperature=msg.get("temperature"),
                        topk=msg.get("topk"),
                        styles=msg.get("styles",""),
                        style_weights=msg.get("style_weights",""),
                        loop_weight=msg.get("loop_weight"),
                        use_current_mix_as_style=bool(msg.get("use_current_mix_as_style", False)),
                    )
                    await send_json({"type":"status", **res})  # {"ok": True}
                else:
                    # rt-mode: there’s no JamWorker; update the local knobs/state
                    websocket._rt_temp = float(msg.get("temperature", websocket._rt_temp))
                    websocket._rt_topk = int(msg.get("topk", websocket._rt_topk))
                    websocket._rt_guid = float(msg.get("guidance_weight", websocket._rt_guid))

                    # NEW steering fields
                    if "mean" in msg and msg["mean"] is not None:
                        try: websocket._rt_mean = float(msg["mean"])
                        except: websocket._rt_mean = 0.0

                    if "centroid_weights" in msg:
                        cw = [w.strip() for w in str(msg["centroid_weights"]).split(",") if w.strip() != ""]
                        try:
                            websocket._rt_centroid_weights = [float(x) for x in cw]
                        except:
                            websocket._rt_centroid_weights = []

                    # styles / text weights (optional, comma-separated)
                    styles_str = msg.get("styles", None)
                    style_weights_str = msg.get("style_weights", "")

                    text_list = [s for s in (styles_str.split(",") if styles_str else []) if s.strip()]
                    text_w = [float(x) for x in style_weights_str.split(",")] if style_weights_str else []

                    asset_manager.ensure_assets_loaded(get_mrt())
                    websocket._style_tgt = build_style_vector(
                        websocket._mrt,
                        text_styles=text_list,
                        text_weights=text_w,
                        loop_embed=None,
                        loop_weight=None,
                        mean_weight=float(websocket._rt_mean),
                        centroid_weights=websocket._rt_centroid_weights,
                    )
                    # optionally allow live changes to ramp:
                    if "style_ramp_seconds" in msg:
                        try: websocket._style_ramp_s = float(msg["style_ramp_seconds"])
                        except: pass
                    await send_json({"type":"status","updated":"rt-knobs+style"})

            elif mtype == "consume" and mode == "bar":
                with jam_lock:
                    worker = jam_registry.get(msg.get("session_id"))
                if worker is not None:
                    worker.mark_chunk_consumed(int(msg.get("chunk_index", -1)))

            elif mtype == "reseed" and mode == "bar":
                with jam_lock:
                    worker = jam_registry.get(msg.get("session_id"))
                if worker is None or not worker.is_alive():
                    await send_json({"type":"error","error":"Session not found"}); continue
                loop_b64 = msg.get("loop_audio_b64")
                if not loop_b64:
                    await send_json({"type":"error","error":"loop_audio_b64 required"}); continue
                loop_bytes = base64.b64decode(loop_b64)
                with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
                    tmp.write(loop_bytes); path = tmp.name
                wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo()
                worker.reseed_from_waveform(wav)
                await send_json({"type":"status","reseeded":True})

            elif mtype == "reseed_splice" and mode == "bar":
                with jam_lock:
                    worker = jam_registry.get(msg.get("session_id"))
                if worker is None or not worker.is_alive():
                    await send_json({"type":"error","error":"Session not found"}); continue
                anchor = float(msg.get("anchor_bars", 2.0))
                b64 = msg.get("combined_audio_b64")
                if b64:
                    data = base64.b64decode(b64)
                    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
                        tmp.write(data); path = tmp.name
                    wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo()
                    worker.reseed_splice(wav, anchor_bars=anchor)
                else:
                    # fallback: model-side stream splice
                    worker.reseed_splice(worker.params.combined_loop, anchor_bars=anchor)
                await send_json({"type":"status","splice":anchor})

            elif mtype == "stop":
                if mode == "rt":
                    websocket._rt_running = False
                    task = getattr(websocket, "_rt_task", None)
                    if task is not None:
                        task.cancel()
                        try: await task
                        except asyncio.CancelledError: pass
                    await send_json({"type":"stopped"})
                    break  # <- add this if you want to end the socket after stop

            elif mtype == "ping":
                await send_json({"type":"pong"})

            else:
                await send_json({"type":"error","error":f"Unknown type {mtype}"})

    except WebSocketDisconnect:
        # best-effort cleanup for bar-mode sessions started within this socket (optional)
        pass
    except Exception as e:
        try:
            await send_json({"type":"error","error":str(e)})
        except Exception:
            pass
    finally:
        try:
            if websocket.client_state != WebSocketState.DISCONNECTED:
                await websocket.close()
        except Exception:
            pass


@app.get("/ping")
def ping():
    return {"ok": True}

@app.get("/", response_class=Response)
def read_root():
    """Root endpoint that explains what this API does"""
    try:
        html_file = Path(__file__).parent / "documentation.html"
        html_content = html_file.read_text(encoding='utf-8')
    except FileNotFoundError:
        # Fallback if file is missing
        html_content = """
        <!DOCTYPE html>
        <html><body>
        <h1>MagentaRT Research API</h1>
        <p>Documentation file not found. Please check documentation.html</p>
        </body></html>
        """
    return Response(content=html_content, media_type="text/html")

@app.get("/lil_demo_540p.mp4")
def demo_video():
    return FileResponse(Path(__file__).parent / "lil_demo_540p.mp4", media_type="video/mp4")

@app.get("/tester", response_class=HTMLResponse)
def tester():
    html_path = Path(__file__).parent / "magentaRT_rt_tester.html"
    return HTMLResponse(
        html_path.read_text(encoding="utf-8"),
        headers={"Cache-Control": "no-store"}  # avoid sticky caches while iterating
    )