Commit
·
384e4ac
1
Parent(s):
892466c
creating model_management.py for extraction
Browse files- Dockerfile +3 -0
- app.py +239 -739
- model_management.py +374 -0
Dockerfile
CHANGED
@@ -143,6 +143,9 @@ COPY --chown=appuser:appuser utils.py /home/appuser/app/utils.py
|
|
143 |
COPY --chown=appuser:appuser jam_worker.py /home/appuser/app/jam_worker.py
|
144 |
|
145 |
COPY --chown=appuser:appuser one_shot_generation.py /home/appuser/app/one_shot_generation.py
|
|
|
|
|
|
|
146 |
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
147 |
|
148 |
# Create docs directory and copy documentation files
|
|
|
143 |
COPY --chown=appuser:appuser jam_worker.py /home/appuser/app/jam_worker.py
|
144 |
|
145 |
COPY --chown=appuser:appuser one_shot_generation.py /home/appuser/app/one_shot_generation.py
|
146 |
+
|
147 |
+
COPY --chown=appuser:appuser model_management.py /home/appuser/app/model_management.py
|
148 |
+
|
149 |
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
150 |
|
151 |
# Create docs directory and copy documentation files
|
app.py
CHANGED
@@ -74,6 +74,8 @@ from huggingface_hub import snapshot_download, HfApi
|
|
74 |
|
75 |
from pydantic import BaseModel
|
76 |
|
|
|
|
|
77 |
# ---- Finetune assets (mean & centroids) --------------------------------------
|
78 |
_FINETUNE_REPO_DEFAULT = os.getenv("MRT_ASSETS_REPO", "thepatch/magenta-ft")
|
79 |
_ASSETS_REPO_ID: str | None = None
|
@@ -82,28 +84,38 @@ _CENTROIDS: np.ndarray | None = None # shape (K, D) dtype float32
|
|
82 |
|
83 |
_STEP_RE = re.compile(r"(?:^|/)checkpoint_(\d+)(?:/|\.tar\.gz|\.tgz)?$")
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
Looks for:
|
89 |
-
checkpoint_<step>/
|
90 |
-
checkpoint_<step>.tgz | .tar.gz
|
91 |
-
archives/checkpoint_<step>.tgz | .tar.gz
|
92 |
-
"""
|
93 |
-
api = HfApi()
|
94 |
-
files = api.list_repo_files(repo_id=repo_id, repo_type="model", revision=revision)
|
95 |
-
steps = set()
|
96 |
-
for f in files:
|
97 |
-
m = _STEP_RE.search(f)
|
98 |
-
if m:
|
99 |
-
try:
|
100 |
-
steps.add(int(m.group(1)))
|
101 |
-
except:
|
102 |
-
pass
|
103 |
-
return sorted(steps)
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def _any_jam_running() -> bool:
|
109 |
with jam_lock:
|
@@ -117,131 +129,131 @@ def _stop_all_jams(timeout: float = 5.0):
|
|
117 |
w.join(timeout=timeout)
|
118 |
jam_registry.pop(sid, None)
|
119 |
|
120 |
-
def _load_finetune_assets_from_hf(repo_id: str | None) -> tuple[bool, str]:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
def _ensure_assets_loaded():
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
# ------------------------------------------------------------------------------
|
185 |
|
186 |
-
def _resolve_checkpoint_dir() -> str | None:
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
|
246 |
|
247 |
async def send_json_safe(ws: WebSocket, obj) -> bool:
|
@@ -292,252 +304,6 @@ def _patch_t5x_for_gpu_coords():
|
|
292 |
# Call the patch immediately at import time (before MagentaRT init)
|
293 |
_patch_t5x_for_gpu_coords()
|
294 |
|
295 |
-
def create_documentation_interface():
|
296 |
-
"""Create a Gradio interface for documentation and transparency"""
|
297 |
-
with gr.Blocks(title="MagentaRT Research API", theme=gr.themes.Soft()) as interface:
|
298 |
-
gr.Markdown(
|
299 |
-
r"""
|
300 |
-
# 🎵 MagentaRT Live Music Generation Research API
|
301 |
-
|
302 |
-
**Research-only implementation for iOS/web app development**
|
303 |
-
|
304 |
-
This API uses Google's [MagentaRT](https://github.com/magenta/magenta-realtime) to generate
|
305 |
-
continuous music either as **bar-aligned chunks over HTTP** or as **low-latency realtime chunks via WebSocket**.
|
306 |
-
"""
|
307 |
-
)
|
308 |
-
|
309 |
-
with gr.Tabs():
|
310 |
-
# ------------------------------------------------------------------
|
311 |
-
# About & current status
|
312 |
-
# ------------------------------------------------------------------
|
313 |
-
with gr.Tab("📖 About & Status"):
|
314 |
-
gr.Markdown(
|
315 |
-
r"""
|
316 |
-
## What this is
|
317 |
-
We're exploring AI‑assisted loop‑based music creation that can run on GPUs (not just TPUs) and stream to apps in realtime.
|
318 |
-
|
319 |
-
### Implemented backends
|
320 |
-
- **HTTP (bar‑aligned):** `/generate`, `/jam/start`, `/jam/next`, `/jam/stop`, `/jam/update`, etc.
|
321 |
-
- **WebSocket (realtime):** `ws://…/ws/jam` with `mode="rt"` (Colab‑style continuous chunks). New in this build.
|
322 |
-
|
323 |
-
## What we learned (GPU notes)
|
324 |
-
- **L40S 48GB:** comfortably **faster than realtime** → we added a `pace: "realtime"` switch so the server doesn’t outrun playback.
|
325 |
-
- **L4 24GB:** **consistently just under realtime**; even with pre‑roll buffering, TF32/JAX tunings, reduced chunk size, and the **base** checkpoint, we still see eventual under‑runs.
|
326 |
-
- **Implication:** For production‑quality realtime, aim for ~**40GB VRAM** per user/session (e.g., **A100 40GB**, or MIG slices ≈ **35–40GB** on newer parts). Smaller GPUs can demo, but sustained realtime is not reliable.
|
327 |
-
|
328 |
-
## Model / audio specs
|
329 |
-
- **Model:** MagentaRT (T5X; decoder RVQ depth = 16)
|
330 |
-
- **Audio:** 48 kHz stereo, 2.0 s chunks by default, 40 ms crossfade
|
331 |
-
- **Context:** 10 s rolling context window
|
332 |
-
"""
|
333 |
-
)
|
334 |
-
|
335 |
-
# ------------------------------------------------------------------
|
336 |
-
# HTTP API
|
337 |
-
# ------------------------------------------------------------------
|
338 |
-
with gr.Tab("🔧 API (HTTP)"):
|
339 |
-
gr.Markdown(
|
340 |
-
r"""
|
341 |
-
### Single Generation
|
342 |
-
```bash
|
343 |
-
curl -X POST \
|
344 |
-
"$HOST/generate" \
|
345 |
-
-F "loop_audio=@drum_loop.wav" \
|
346 |
-
-F "bpm=120" \
|
347 |
-
-F "bars=8" \
|
348 |
-
-F "styles=acid house,techno" \
|
349 |
-
-F "guidance_weight=5.0" \
|
350 |
-
-F "temperature=1.1"
|
351 |
-
```
|
352 |
-
|
353 |
-
### Continuous Jamming (bar‑aligned, HTTP)
|
354 |
-
```bash
|
355 |
-
# 1) Start a session
|
356 |
-
echo $(curl -s -X POST "$HOST/jam/start" \
|
357 |
-
-F "loop_audio=@loop.wav" \
|
358 |
-
-F "bpm=120" \
|
359 |
-
-F "bars_per_chunk=8") | jq .
|
360 |
-
# → {"session_id":"…"}
|
361 |
-
|
362 |
-
# 2) Pull next chunk (repeat)
|
363 |
-
curl "$HOST/jam/next?session_id=$SESSION"
|
364 |
-
|
365 |
-
# 3) Stop
|
366 |
-
curl -X POST "$HOST/jam/stop" \
|
367 |
-
-H "Content-Type: application/json" \
|
368 |
-
-d '{"session_id":"'$SESSION'"}'
|
369 |
-
```
|
370 |
-
|
371 |
-
### Common parameters
|
372 |
-
- **bpm** *(int)* – beats per minute
|
373 |
-
- **bars / bars_per_chunk** *(int)* – musical length
|
374 |
-
- **styles** *(str)* – comma‑separated text prompts (mixed internally)
|
375 |
-
- **guidance_weight** *(float)* – style adherence (CFG weight)
|
376 |
-
- **temperature / topk** – sampling controls
|
377 |
-
- **intro_bars_to_drop** *(int, /generate)* – generate-and-trim intro
|
378 |
-
"""
|
379 |
-
)
|
380 |
-
|
381 |
-
# ------------------------------------------------------------------
|
382 |
-
# WebSocket API: realtime (‘rt’ mode)
|
383 |
-
# ------------------------------------------------------------------
|
384 |
-
with gr.Tab("🧩 API (WebSocket • rt mode)"):
|
385 |
-
gr.Markdown(
|
386 |
-
r"""
|
387 |
-
Connect to `wss://…/ws/jam` and send a **JSON control stream**. In `rt` mode the server emits ~2 s WAV chunks (or binary frames) continuously.
|
388 |
-
|
389 |
-
### Start (client → server)
|
390 |
-
```jsonc
|
391 |
-
{
|
392 |
-
"type": "start",
|
393 |
-
"mode": "rt",
|
394 |
-
"binary_audio": false, // true → raw WAV bytes + separate chunk_meta
|
395 |
-
"params": {
|
396 |
-
"styles": "heavy metal", // or "jazz, hiphop"
|
397 |
-
"style_weights": "1.0,1.0", // optional, auto‑normalized
|
398 |
-
"temperature": 1.1,
|
399 |
-
"topk": 40,
|
400 |
-
"guidance_weight": 1.1,
|
401 |
-
"pace": "realtime", // "realtime" | "asap" (default)
|
402 |
-
"max_decode_frames": 50 // 50≈2.0s; try 36–45 on smaller GPUs
|
403 |
-
}
|
404 |
-
}
|
405 |
-
```
|
406 |
-
|
407 |
-
### Server events (server → client)
|
408 |
-
- `{"type":"started","mode":"rt"}` – handshake
|
409 |
-
- `{"type":"chunk","audio_base64":"…","metadata":{…}}` – base64 WAV
|
410 |
-
- `metadata.sample_rate` *(int)* – usually 48000
|
411 |
-
- `metadata.chunk_frames` *(int)* – e.g., 50
|
412 |
-
- `metadata.chunk_seconds` *(float)* – frames / 25.0
|
413 |
-
- `metadata.crossfade_seconds` *(float)* – typically 0.04
|
414 |
-
- `{"type":"chunk_meta","metadata":{…}}` – sent **after** a binary frame when `binary_audio=true`
|
415 |
-
- `{"type":"status",…}`, `{"type":"error",…}`, `{"type":"stopped"}`
|
416 |
-
|
417 |
-
### Update (client → server)
|
418 |
-
```jsonc
|
419 |
-
{
|
420 |
-
"type": "update",
|
421 |
-
"styles": "jazz, hiphop",
|
422 |
-
"style_weights": "1.0,0.8",
|
423 |
-
"temperature": 1.2,
|
424 |
-
"topk": 64,
|
425 |
-
"guidance_weight": 1.0,
|
426 |
-
"pace": "realtime", // optional live flip
|
427 |
-
"max_decode_frames": 40 // optional; <= 50
|
428 |
-
}
|
429 |
-
```
|
430 |
-
|
431 |
-
### Stop / ping
|
432 |
-
```json
|
433 |
-
{"type":"stop"}
|
434 |
-
{"type":"ping"}
|
435 |
-
```
|
436 |
-
|
437 |
-
### Browser quick‑start (schedules seamlessly with 25–40 ms crossfade)
|
438 |
-
```html
|
439 |
-
<script>
|
440 |
-
const XFADE = 0.025; // 25 ms
|
441 |
-
let ctx, gain, ws, nextTime = 0;
|
442 |
-
async function start(){
|
443 |
-
ctx = new (window.AudioContext||window.webkitAudioContext)();
|
444 |
-
gain = ctx.createGain(); gain.connect(ctx.destination);
|
445 |
-
ws = new WebSocket("wss://YOUR_SPACE/ws/jam");
|
446 |
-
ws.onopen = ()=> ws.send(JSON.stringify({
|
447 |
-
type:"start", mode:"rt", binary_audio:false,
|
448 |
-
params:{ styles:"warmup", temperature:1.1, topk:40, guidance_weight:1.1, pace:"realtime" }
|
449 |
-
}));
|
450 |
-
ws.onmessage = async ev => {
|
451 |
-
const msg = JSON.parse(ev.data);
|
452 |
-
if (msg.type === "chunk" && msg.audio_base64){
|
453 |
-
const bin = atob(msg.audio_base64); const buf = new Uint8Array(bin.length);
|
454 |
-
for (let i=0;i<bin.length;i++) buf[i] = bin.charCodeAt(i);
|
455 |
-
const ab = buf.buffer; const audio = await ctx.decodeAudioData(ab);
|
456 |
-
const src = ctx.createBufferSource(); const g = ctx.createGain();
|
457 |
-
src.buffer = audio; src.connect(g); g.connect(gain);
|
458 |
-
if (nextTime < ctx.currentTime + 0.05) nextTime = ctx.currentTime + 0.12;
|
459 |
-
const startAt = nextTime, dur = audio.duration;
|
460 |
-
nextTime = startAt + Math.max(0, dur - XFADE);
|
461 |
-
g.gain.setValueAtTime(0, startAt);
|
462 |
-
g.gain.linearRampToValueAtTime(1, startAt + XFADE);
|
463 |
-
g.gain.setValueAtTime(1, startAt + Math.max(0, dur - XFADE));
|
464 |
-
g.gain.linearRampToValueAtTime(0, startAt + dur);
|
465 |
-
src.start(startAt);
|
466 |
-
}
|
467 |
-
};
|
468 |
-
}
|
469 |
-
</script>
|
470 |
-
```
|
471 |
-
|
472 |
-
### Python client (async)
|
473 |
-
```python
|
474 |
-
import asyncio, json, websockets, base64, soundfile as sf, io
|
475 |
-
async def run(url):
|
476 |
-
async with websockets.connect(url) as ws:
|
477 |
-
await ws.send(json.dumps({"type":"start","mode":"rt","binary_audio":False,
|
478 |
-
"params": {"styles":"warmup","temperature":1.1,"topk":40,"guidance_weight":1.1,"pace":"realtime"}}))
|
479 |
-
while True:
|
480 |
-
msg = json.loads(await ws.recv())
|
481 |
-
if msg.get("type") == "chunk":
|
482 |
-
wav = base64.b64decode(msg["audio_base64"]) # bytes of a WAV
|
483 |
-
x, sr = sf.read(io.BytesIO(wav), dtype="float32")
|
484 |
-
print("chunk", x.shape, sr)
|
485 |
-
elif msg.get("type") in ("stopped","error"): break
|
486 |
-
asyncio.run(run("wss://YOUR_SPACE/ws/jam"))
|
487 |
-
```
|
488 |
-
"""
|
489 |
-
)
|
490 |
-
|
491 |
-
# ------------------------------------------------------------------
|
492 |
-
# Performance & hardware guidance
|
493 |
-
# ------------------------------------------------------------------
|
494 |
-
with gr.Tab("📊 Performance & Hardware"):
|
495 |
-
gr.Markdown(
|
496 |
-
r"""
|
497 |
-
### Current observations
|
498 |
-
- **L40S 48GB** → faster than realtime. Use `pace:"realtime"` to avoid client over‑buffering.
|
499 |
-
- **L4 24GB** → slightly **below** realtime even with pre‑roll buffering, TF32/Autotune, smaller chunks (`max_decode_frames`), and the **base** checkpoint.
|
500 |
-
|
501 |
-
### Practical guidance
|
502 |
-
- For consistent realtime, target **~40GB VRAM per active stream** (e.g., **A100 40GB**, or MIG slices ≈ **35–40GB** on newer GPUs).
|
503 |
-
- Keep client‑side **overlap‑add** (25–40 ms) for seamless chunk joins.
|
504 |
-
- Prefer **`pace:"realtime"`** once playback begins; use **ASAP** only to build a short pre‑roll if needed.
|
505 |
-
- Optional knob: **`max_decode_frames`** (default **50** ≈ 2.0 s). Reducing to **36–45** can lower per‑chunk latency/VRAM, but doesn’t increase frames/sec throughput.
|
506 |
-
|
507 |
-
### Concurrency
|
508 |
-
This research build is designed for **one active jam per GPU**. Concurrency would require GPU partitioning (MIG) or horizontal scaling with a session scheduler.
|
509 |
-
"""
|
510 |
-
)
|
511 |
-
|
512 |
-
# ------------------------------------------------------------------
|
513 |
-
# Changelog & legal
|
514 |
-
# ------------------------------------------------------------------
|
515 |
-
with gr.Tab("🗒️ Changelog & Legal"):
|
516 |
-
gr.Markdown(
|
517 |
-
r"""
|
518 |
-
### Recent changes
|
519 |
-
- New **WebSocket realtime** route: `/ws/jam` (`mode:"rt"`)
|
520 |
-
- Added server pacing flag: `pace: "realtime" | "asap"`
|
521 |
-
- Exposed `max_decode_frames` for shorter chunks on smaller GPUs
|
522 |
-
- Client test page now does proper **overlap‑add** crossfade between chunks
|
523 |
-
|
524 |
-
### Licensing
|
525 |
-
This project uses MagentaRT under:
|
526 |
-
- **Code:** Apache 2.0
|
527 |
-
- **Model weights:** CC‑BY 4.0
|
528 |
-
Please review the MagentaRT repo for full terms.
|
529 |
-
"""
|
530 |
-
)
|
531 |
-
|
532 |
-
gr.Markdown(
|
533 |
-
r"""
|
534 |
-
---
|
535 |
-
**🔬 Research Project** | **📱 iOS/Web Development** | **🎵 Powered by MagentaRT**
|
536 |
-
"""
|
537 |
-
)
|
538 |
-
|
539 |
-
return interface
|
540 |
-
|
541 |
jam_registry: dict[str, JamWorker] = {}
|
542 |
jam_lock = threading.Lock()
|
543 |
|
@@ -562,170 +328,6 @@ try:
|
|
562 |
except Exception:
|
563 |
_HAS_LOUDNORM = False
|
564 |
|
565 |
-
# # ----------------------------
|
566 |
-
# # Main generation (single combined style vector)
|
567 |
-
# # ----------------------------
|
568 |
-
# def generate_loop_continuation_with_mrt(
|
569 |
-
# mrt,
|
570 |
-
# input_wav_path: str,
|
571 |
-
# bpm: float,
|
572 |
-
# extra_styles=None,
|
573 |
-
# style_weights=None,
|
574 |
-
# bars: int = 8,
|
575 |
-
# beats_per_bar: int = 4,
|
576 |
-
# loop_weight: float = 1.0,
|
577 |
-
# loudness_mode: str = "auto",
|
578 |
-
# loudness_headroom_db: float = 1.0,
|
579 |
-
# intro_bars_to_drop: int = 0, # <— NEW
|
580 |
-
# ):
|
581 |
-
# # Load & prep (unchanged)
|
582 |
-
# loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
|
583 |
-
|
584 |
-
# # Use tail for context (your recent change)
|
585 |
-
# codec_fps = float(mrt.codec.frame_rate)
|
586 |
-
# ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
587 |
-
# loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
|
588 |
-
|
589 |
-
# tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
|
590 |
-
# tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
591 |
-
|
592 |
-
# # Bar-aligned token window (unchanged)
|
593 |
-
# context_tokens = make_bar_aligned_context(
|
594 |
-
# tokens, bpm=bpm, fps=float(mrt.codec.frame_rate),
|
595 |
-
# ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
|
596 |
-
# )
|
597 |
-
# state = mrt.init_state()
|
598 |
-
# state.context_tokens = context_tokens
|
599 |
-
|
600 |
-
# # STYLE embed (optional: switch to loop_for_context if you want stronger “recent” bias)
|
601 |
-
# loop_embed = mrt.embed_style(loop_for_context)
|
602 |
-
# embeds, weights = [loop_embed], [float(loop_weight)]
|
603 |
-
# if extra_styles:
|
604 |
-
# for i, s in enumerate(extra_styles):
|
605 |
-
# if s.strip():
|
606 |
-
# embeds.append(mrt.embed_style(s.strip()))
|
607 |
-
# w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
|
608 |
-
# weights.append(float(w))
|
609 |
-
# wsum = float(sum(weights)) or 1.0
|
610 |
-
# weights = [w / wsum for w in weights]
|
611 |
-
# combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
|
612 |
-
|
613 |
-
# # --- Length math ---
|
614 |
-
# seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
615 |
-
# total_secs = bars * seconds_per_bar
|
616 |
-
# drop_bars = max(0, int(intro_bars_to_drop))
|
617 |
-
# drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
|
618 |
-
# gen_total_secs = total_secs + drop_secs # generate extra
|
619 |
-
|
620 |
-
# # Chunk scheduling to cover gen_total_secs
|
621 |
-
# chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
|
622 |
-
# steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
|
623 |
-
|
624 |
-
# # Generate
|
625 |
-
# chunks = []
|
626 |
-
# for _ in range(steps):
|
627 |
-
# wav, state = mrt.generate_chunk(state=state, style=combined_style)
|
628 |
-
# chunks.append(wav)
|
629 |
-
|
630 |
-
# # Stitch continuous audio
|
631 |
-
# stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
632 |
-
|
633 |
-
# # Trim to generated length (bars + dropped bars)
|
634 |
-
# stitched = hard_trim_seconds(stitched, gen_total_secs)
|
635 |
-
|
636 |
-
# # 👉 Drop the intro bars
|
637 |
-
# if drop_secs > 0:
|
638 |
-
# n_drop = int(round(drop_secs * stitched.sample_rate))
|
639 |
-
# stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
640 |
-
|
641 |
-
# # Final exact-length trim to requested bars
|
642 |
-
# out = hard_trim_seconds(stitched, total_secs)
|
643 |
-
|
644 |
-
# # Final polish AFTER drop
|
645 |
-
# out = out.peak_normalize(0.95)
|
646 |
-
# apply_micro_fades(out, 5)
|
647 |
-
|
648 |
-
# # Loudness match to input (after drop) so bar 1 sits right
|
649 |
-
# out, loud_stats = match_loudness_to_reference(
|
650 |
-
# ref=loop, target=out,
|
651 |
-
# method=loudness_mode, headroom_db=loudness_headroom_db
|
652 |
-
# )
|
653 |
-
|
654 |
-
# return out, loud_stats
|
655 |
-
|
656 |
-
# # untested.
|
657 |
-
# # not sure how it will retain the input bpm. we may want to use a metronome instead of silence. i think google might do that.
|
658 |
-
# # does a generation with silent context rather than a combined loop
|
659 |
-
# def generate_style_only_with_mrt(
|
660 |
-
# mrt,
|
661 |
-
# bpm: float,
|
662 |
-
# bars: int = 8,
|
663 |
-
# beats_per_bar: int = 4,
|
664 |
-
# styles: str = "warmup",
|
665 |
-
# style_weights: str = "",
|
666 |
-
# intro_bars_to_drop: int = 0,
|
667 |
-
# ):
|
668 |
-
# """
|
669 |
-
# Style-only, bar-aligned generation using a silent context (no input audio).
|
670 |
-
# Returns: (au.Waveform out, dict loud_stats_or_None)
|
671 |
-
# """
|
672 |
-
# # ---- Build a 10s silent context, tokenized for the model ----
|
673 |
-
# codec_fps = float(mrt.codec.frame_rate)
|
674 |
-
# ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
675 |
-
# sr = int(mrt.sample_rate)
|
676 |
-
|
677 |
-
# silent = au.Waveform(np.zeros((int(round(ctx_seconds * sr)), 2), np.float32), sr)
|
678 |
-
# tokens_full = mrt.codec.encode(silent).astype(np.int32)
|
679 |
-
# tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
680 |
-
|
681 |
-
# state = mrt.init_state()
|
682 |
-
# state.context_tokens = tokens
|
683 |
-
|
684 |
-
# # ---- Style vector (text prompts only, normalized weights) ----
|
685 |
-
# prompts = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
|
686 |
-
# if not prompts:
|
687 |
-
# prompts = ["warmup"]
|
688 |
-
# sw = [float(x) for x in style_weights.split(",")] if style_weights else []
|
689 |
-
# embeds, weights = [], []
|
690 |
-
# for i, p in enumerate(prompts):
|
691 |
-
# embeds.append(mrt.embed_style(p))
|
692 |
-
# weights.append(sw[i] if i < len(sw) else 1.0)
|
693 |
-
# wsum = float(sum(weights)) or 1.0
|
694 |
-
# weights = [w / wsum for w in weights]
|
695 |
-
# style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)
|
696 |
-
|
697 |
-
# # ---- Target length math ----
|
698 |
-
# seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
699 |
-
# total_secs = bars * seconds_per_bar
|
700 |
-
# drop_bars = max(0, int(intro_bars_to_drop))
|
701 |
-
# drop_secs = min(drop_bars, bars) * seconds_per_bar
|
702 |
-
# gen_total_secs = total_secs + drop_secs
|
703 |
-
|
704 |
-
# # ~2.0s chunk length from model config
|
705 |
-
# chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
|
706 |
-
|
707 |
-
# # Generate enough chunks to cover total, plus a pad chunk for crossfade headroom
|
708 |
-
# steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1
|
709 |
-
|
710 |
-
# chunks = []
|
711 |
-
# for _ in range(steps):
|
712 |
-
# wav, state = mrt.generate_chunk(state=state, style=style_vec)
|
713 |
-
# chunks.append(wav)
|
714 |
-
|
715 |
-
# # Stitch & trim to exact musical length
|
716 |
-
# stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
717 |
-
# stitched = hard_trim_seconds(stitched, gen_total_secs)
|
718 |
-
|
719 |
-
# if drop_secs > 0:
|
720 |
-
# n_drop = int(round(drop_secs * stitched.sample_rate))
|
721 |
-
# stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
722 |
-
|
723 |
-
# out = hard_trim_seconds(stitched, total_secs)
|
724 |
-
# out = out.peak_normalize(0.95)
|
725 |
-
# apply_micro_fades(out, 5)
|
726 |
-
|
727 |
-
# return out, None # loudness stats not applicable (no reference)
|
728 |
-
|
729 |
def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
|
730 |
extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
|
731 |
if not extra:
|
@@ -836,12 +438,13 @@ def get_mrt():
|
|
836 |
if _MRT is None:
|
837 |
with _MRT_LOCK:
|
838 |
if _MRT is None:
|
839 |
-
|
|
|
840 |
_MRT = system.MagentaRT(
|
841 |
-
tag=os.getenv("MRT_SIZE", "large"),
|
842 |
guidance_weight=5.0,
|
843 |
device="gpu",
|
844 |
-
checkpoint_dir=ckpt_dir,
|
845 |
lazy=False,
|
846 |
)
|
847 |
return _MRT
|
@@ -948,7 +551,12 @@ def model_swap(step: int = Form(...)):
|
|
948 |
|
949 |
@app.post("/model/assets/load")
|
950 |
def model_assets_load(repo_id: str = Form(None)):
|
951 |
-
|
|
|
|
|
|
|
|
|
|
|
952 |
return {"ok": ok, "message": msg, "repo_id": _ASSETS_REPO_ID,
|
953 |
"mean": _MEAN_EMBED is not None,
|
954 |
"centroids": None if _CENTROIDS is None else int(_CENTROIDS.shape[0])}
|
@@ -987,15 +595,14 @@ def model_config():
|
|
987 |
step = os.getenv("MRT_CKPT_STEP")
|
988 |
assets = os.getenv("MRT_ASSETS_REPO")
|
989 |
|
990 |
-
#
|
991 |
-
|
992 |
-
|
993 |
-
return None
|
994 |
try:
|
995 |
from pathlib import Path
|
996 |
import re
|
997 |
-
|
998 |
-
candidates
|
999 |
for root in ("/home/appuser/.cache/mrt_ckpt/extracted",
|
1000 |
"/home/appuser/.cache/mrt_ckpt/repo"):
|
1001 |
p = Path(root)
|
@@ -1005,11 +612,9 @@ def model_config():
|
|
1005 |
for d in p.rglob(f"checkpoint_{step}"):
|
1006 |
if d.is_dir():
|
1007 |
candidates.append(str(d))
|
1008 |
-
|
1009 |
except Exception:
|
1010 |
-
|
1011 |
-
|
1012 |
-
local_ckpt = _local_ckpt_dir(step)
|
1013 |
|
1014 |
return {
|
1015 |
"size": size,
|
@@ -1032,160 +637,89 @@ def model_config():
|
|
1032 |
|
1033 |
@app.get("/model/checkpoints")
|
1034 |
def model_checkpoints(repo_id: str, revision: str = "main"):
|
1035 |
-
steps =
|
1036 |
return {"repo": repo_id, "revision": revision, "steps": steps, "latest": (steps[-1] if steps else None)}
|
1037 |
|
1038 |
-
class ModelSelect(BaseModel):
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
|
1049 |
@app.post("/model/select")
|
1050 |
def model_select(req: ModelSelect):
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
"
|
1057 |
-
|
1058 |
-
"
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
# --- Target selection (do not require repo when no_ckpt) ---
|
1066 |
-
tgt = {
|
1067 |
-
"size": (req.size or cur["size"]),
|
1068 |
-
"repo": (None if no_ckpt else (req.repo_id or cur["repo"])),
|
1069 |
-
"rev": (req.revision if req.revision is not None else cur["rev"]),
|
1070 |
-
# None => resolve to "latest" below. Keep None for no_ckpt as well.
|
1071 |
-
"step": (None if (no_ckpt or latest) else (str(req.step) if req.step is not None else cur["step"])),
|
1072 |
-
"assets": (req.assets_repo_id or req.repo_id or cur["assets"]),
|
1073 |
-
}
|
1074 |
-
|
1075 |
-
# ---------- CASE 1: run with NO FINETUNE (stock base/large) ----------
|
1076 |
-
if no_ckpt:
|
1077 |
-
preview = {
|
1078 |
-
"target_size": tgt["size"],
|
1079 |
-
"target_repo": None,
|
1080 |
-
"target_revision": None,
|
1081 |
-
"target_step": None,
|
1082 |
-
"assets_repo": None,
|
1083 |
-
"assets_probe": {"ok": True, "message": "skipped"},
|
1084 |
-
"active_jam": _any_jam_running(),
|
1085 |
-
}
|
1086 |
-
if req.dry_run:
|
1087 |
-
return {"ok": True, "dry_run": True, **preview}
|
1088 |
-
|
1089 |
-
# Jam policy
|
1090 |
-
if _any_jam_running():
|
1091 |
-
if req.stop_active:
|
1092 |
-
_stop_all_jams()
|
1093 |
-
else:
|
1094 |
-
raise HTTPException(status_code=409, detail="A jam is running; retry with stop_active=true")
|
1095 |
-
|
1096 |
-
# Clear checkpoint + asset env so get_mrt() uses stock weights
|
1097 |
-
for k in ("MRT_CKPT_REPO", "MRT_CKPT_REV", "MRT_CKPT_STEP", "MRT_ASSETS_REPO"):
|
1098 |
-
os.environ.pop(k, None)
|
1099 |
-
os.environ["MRT_SIZE"] = str(tgt["size"])
|
1100 |
-
|
1101 |
-
# Rebuild model and optionally prewarm
|
1102 |
-
|
1103 |
-
with _MRT_LOCK:
|
1104 |
-
_MRT = None
|
1105 |
-
if req.prewarm:
|
1106 |
-
get_mrt()
|
1107 |
-
|
1108 |
-
return {"ok": True, **preview}
|
1109 |
-
|
1110 |
-
# ---------- CASE 2: select a repo + step (supports "latest") ----------
|
1111 |
-
if not tgt["repo"]:
|
1112 |
-
raise HTTPException(status_code=400, detail="repo_id is required for model selection.")
|
1113 |
-
|
1114 |
-
# 1) enumerate available steps
|
1115 |
-
steps = _list_ckpt_steps(tgt["repo"], tgt["rev"])
|
1116 |
-
if not steps:
|
1117 |
-
return {"ok": False, "error": f"No checkpoint files found in {tgt['repo']}@{tgt['rev']}", "discovered_steps": steps}
|
1118 |
-
|
1119 |
-
# 2) choose step (explicit or latest)
|
1120 |
-
chosen_step = int(tgt["step"]) if tgt["step"] is not None else steps[-1]
|
1121 |
-
if chosen_step not in steps:
|
1122 |
-
return {"ok": False, "error": f"checkpoint_{chosen_step} not present in {tgt['repo']}@{tgt['rev']}", "discovered_steps": steps}
|
1123 |
-
|
1124 |
-
# 3) optional finetune assets probe (no downloads, just listing)
|
1125 |
-
assets_ok, assets_msg = True, "skipped"
|
1126 |
-
if req.sync_assets:
|
1127 |
-
try:
|
1128 |
-
api = HfApi()
|
1129 |
-
files = set(api.list_repo_files(repo_id=tgt["assets"], repo_type="model"))
|
1130 |
-
if ("mean_style_embed.npy" not in files) and ("cluster_centroids.npy" not in files):
|
1131 |
-
assets_ok, assets_msg = False, f"No finetune asset files in {tgt['assets']}"
|
1132 |
-
else:
|
1133 |
-
assets_msg = "found"
|
1134 |
-
except Exception as e:
|
1135 |
-
assets_ok, assets_msg = False, f"probe failed: {e}"
|
1136 |
-
|
1137 |
-
preview = {
|
1138 |
-
"target_size": tgt["size"],
|
1139 |
-
"target_repo": tgt["repo"],
|
1140 |
-
"target_revision": tgt["rev"],
|
1141 |
-
"target_step": chosen_step,
|
1142 |
-
"assets_repo": (tgt["assets"] if req.sync_assets else None),
|
1143 |
-
"assets_probe": {"ok": assets_ok, "message": assets_msg},
|
1144 |
-
"active_jam": _any_jam_running(),
|
1145 |
-
}
|
1146 |
-
|
1147 |
if req.dry_run:
|
1148 |
-
return {"ok": True, "dry_run": True, **
|
1149 |
|
1150 |
-
#
|
1151 |
if _any_jam_running():
|
1152 |
if req.stop_active:
|
1153 |
_stop_all_jams()
|
1154 |
else:
|
1155 |
raise HTTPException(status_code=409, detail="A jam is running; retry with stop_active=true")
|
1156 |
|
1157 |
-
#
|
|
|
|
|
|
|
1158 |
old_env = {
|
1159 |
-
"MRT_SIZE":
|
1160 |
-
"MRT_CKPT_REPO":
|
1161 |
-
"MRT_CKPT_REV":
|
1162 |
-
"MRT_CKPT_STEP":
|
1163 |
-
"MRT_ASSETS_REPO":
|
1164 |
}
|
|
|
1165 |
try:
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
#
|
1174 |
-
|
1175 |
with _MRT_LOCK:
|
1176 |
_MRT = None
|
1177 |
|
1178 |
-
#
|
1179 |
-
if req.sync_assets:
|
1180 |
-
|
1181 |
-
|
1182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1183 |
if req.prewarm:
|
1184 |
get_mrt()
|
1185 |
|
1186 |
-
return {"ok": True, **
|
|
|
1187 |
except Exception as e:
|
1188 |
-
#
|
1189 |
for k, v in old_env.items():
|
1190 |
if v is None:
|
1191 |
os.environ.pop(k, None)
|
@@ -1193,6 +727,7 @@ def model_select(req: ModelSelect):
|
|
1193 |
os.environ[k] = v
|
1194 |
with _MRT_LOCK:
|
1195 |
_MRT = None
|
|
|
1196 |
try:
|
1197 |
get_mrt()
|
1198 |
except Exception:
|
@@ -1379,7 +914,7 @@ def jam_start(
|
|
1379 |
topk: int = Form(40),
|
1380 |
target_sample_rate: int | None = Form(None),
|
1381 |
):
|
1382 |
-
|
1383 |
|
1384 |
# enforce single active jam per GPU
|
1385 |
with jam_lock:
|
@@ -1534,7 +1069,7 @@ def jam_update(
|
|
1534 |
mean: Optional[float] = Form(None),
|
1535 |
centroid_weights: str = Form(""),
|
1536 |
):
|
1537 |
-
|
1538 |
|
1539 |
with jam_lock:
|
1540 |
worker = jam_registry.get(session_id)
|
@@ -1842,7 +1377,7 @@ async def ws_jam(websocket: WebSocket):
|
|
1842 |
state.context_tokens = tokens
|
1843 |
|
1844 |
# Parse params (including steering)
|
1845 |
-
|
1846 |
styles_str = params.get("styles", "warmup") or ""
|
1847 |
style_weights_str = params.get("style_weights", "") or ""
|
1848 |
mean_w = float(params.get("mean", 0.0) or 0.0)
|
@@ -2009,7 +1544,7 @@ async def ws_jam(websocket: WebSocket):
|
|
2009 |
text_list = [s for s in (styles_str.split(",") if styles_str else []) if s.strip()]
|
2010 |
text_w = [float(x) for x in style_weights_str.split(",")] if style_weights_str else []
|
2011 |
|
2012 |
-
|
2013 |
websocket._style_tgt = build_style_vector(
|
2014 |
websocket._mrt,
|
2015 |
text_styles=text_list,
|
@@ -2116,39 +1651,4 @@ def read_root():
|
|
2116 |
<p>Documentation file not found. Please check documentation.html</p>
|
2117 |
</body></html>
|
2118 |
"""
|
2119 |
-
return Response(content=html_content, media_type="text/html")
|
2120 |
-
|
2121 |
-
def load_doc_content(filename: str) -> str:
|
2122 |
-
"""Load markdown content from docs directory, with fallback."""
|
2123 |
-
try:
|
2124 |
-
doc_path = Path(__file__).parent / "docs" / filename
|
2125 |
-
return doc_path.read_text(encoding='utf-8')
|
2126 |
-
except FileNotFoundError:
|
2127 |
-
return f"⚠️ Documentation file `{filename}` not found. Please check the docs directory."
|
2128 |
-
except Exception as e:
|
2129 |
-
return f"⚠️ Error loading `{filename}`: {e}"
|
2130 |
-
|
2131 |
-
@app.get("/documentation")
|
2132 |
-
def documentation():
|
2133 |
-
# Just return a simple combined markdown page
|
2134 |
-
all_content = f"""
|
2135 |
-
# MagentaRT Documentation
|
2136 |
-
|
2137 |
-
## About & Status
|
2138 |
-
{load_doc_content("about_status.md")}
|
2139 |
-
|
2140 |
-
## HTTP API
|
2141 |
-
{load_doc_content("api_http.md")}
|
2142 |
-
|
2143 |
-
## WebSocket API
|
2144 |
-
{load_doc_content("api_websocket.md")}
|
2145 |
-
|
2146 |
-
## Performance
|
2147 |
-
{load_doc_content("performance.md")}
|
2148 |
-
|
2149 |
-
## Changelog
|
2150 |
-
{load_doc_content("changelog.md")}
|
2151 |
-
"""
|
2152 |
-
|
2153 |
-
# Convert markdown to HTML if you want, or just serve as plain text
|
2154 |
-
return Response(content=all_content, media_type="text/plain")
|
|
|
74 |
|
75 |
from pydantic import BaseModel
|
76 |
|
77 |
+
from model_management import CheckpointManager, AssetManager, ModelSelector, ModelSelect
|
78 |
+
|
79 |
# ---- Finetune assets (mean & centroids) --------------------------------------
|
80 |
_FINETUNE_REPO_DEFAULT = os.getenv("MRT_ASSETS_REPO", "thepatch/magenta-ft")
|
81 |
_ASSETS_REPO_ID: str | None = None
|
|
|
84 |
|
85 |
_STEP_RE = re.compile(r"(?:^|/)checkpoint_(\d+)(?:/|\.tar\.gz|\.tgz)?$")
|
86 |
|
87 |
+
# Create instances (these don't modify globals)
|
88 |
+
asset_manager = AssetManager()
|
89 |
+
model_selector = ModelSelector(CheckpointManager(), asset_manager)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
# Sync asset manager with existing globals
|
92 |
+
def _sync_asset_manager():
|
93 |
+
asset_manager.mean_embed = _MEAN_EMBED
|
94 |
+
asset_manager.centroids = _CENTROIDS
|
95 |
+
asset_manager.assets_repo_id = _ASSETS_REPO_ID
|
96 |
+
|
97 |
+
# def _list_ckpt_steps(repo_id: str, revision: str = "main") -> list[int]:
|
98 |
+
# """
|
99 |
+
# List available checkpoint steps in a HF model repo without downloading all weights.
|
100 |
+
# Looks for:
|
101 |
+
# checkpoint_<step>/
|
102 |
+
# checkpoint_<step>.tgz | .tar.gz
|
103 |
+
# archives/checkpoint_<step>.tgz | .tar.gz
|
104 |
+
# """
|
105 |
+
# api = HfApi()
|
106 |
+
# files = api.list_repo_files(repo_id=repo_id, repo_type="model", revision=revision)
|
107 |
+
# steps = set()
|
108 |
+
# for f in files:
|
109 |
+
# m = _STEP_RE.search(f)
|
110 |
+
# if m:
|
111 |
+
# try:
|
112 |
+
# steps.add(int(m.group(1)))
|
113 |
+
# except:
|
114 |
+
# pass
|
115 |
+
# return sorted(steps)
|
116 |
+
|
117 |
+
# def _step_exists(repo_id: str, revision: str, step: int) -> bool:
|
118 |
+
# return step in _list_ckpt_steps(repo_id, revision)
|
119 |
|
120 |
def _any_jam_running() -> bool:
|
121 |
with jam_lock:
|
|
|
129 |
w.join(timeout=timeout)
|
130 |
jam_registry.pop(sid, None)
|
131 |
|
132 |
+
# def _load_finetune_assets_from_hf(repo_id: str | None) -> tuple[bool, str]:
|
133 |
+
# """
|
134 |
+
# Download & load mean_style_embed.npy and cluster_centroids.npy from a HF model repo.
|
135 |
+
# Safe to call multiple times; will overwrite globals if successful.
|
136 |
+
# """
|
137 |
+
# global _ASSETS_REPO_ID, _MEAN_EMBED, _CENTROIDS
|
138 |
+
# repo_id = repo_id or _FINETUNE_REPO_DEFAULT
|
139 |
+
# try:
|
140 |
+
# from huggingface_hub import hf_hub_download
|
141 |
+
# mean_path = None
|
142 |
+
# cent_path = None
|
143 |
+
# try:
|
144 |
+
# mean_path = hf_hub_download(repo_id, filename="mean_style_embed.npy", repo_type="model")
|
145 |
+
# except Exception:
|
146 |
+
# pass
|
147 |
+
# try:
|
148 |
+
# cent_path = hf_hub_download(repo_id, filename="cluster_centroids.npy", repo_type="model")
|
149 |
+
# except Exception:
|
150 |
+
# pass
|
151 |
+
|
152 |
+
# if mean_path is None and cent_path is None:
|
153 |
+
# return False, f"No finetune asset files found in repo {repo_id}"
|
154 |
+
|
155 |
+
# if mean_path is not None:
|
156 |
+
# m = np.load(mean_path)
|
157 |
+
# if m.ndim != 1:
|
158 |
+
# return False, f"mean_style_embed.npy must be 1-D (got {m.shape})"
|
159 |
+
# else:
|
160 |
+
# m = None
|
161 |
+
|
162 |
+
# if cent_path is not None:
|
163 |
+
# c = np.load(cent_path)
|
164 |
+
# if c.ndim != 2:
|
165 |
+
# return False, f"cluster_centroids.npy must be 2-D (got {c.shape})"
|
166 |
+
# else:
|
167 |
+
# c = None
|
168 |
+
|
169 |
+
# # Optional: shape check vs model embedding dim once model is alive
|
170 |
+
# try:
|
171 |
+
# d = int(get_mrt().style_model.config.embedding_dim)
|
172 |
+
# if m is not None and m.shape[0] != d:
|
173 |
+
# return False, f"mean_style_embed dim {m.shape[0]} != model dim {d}"
|
174 |
+
# if c is not None and c.shape[1] != d:
|
175 |
+
# return False, f"cluster_centroids dim {c.shape[1]} != model dim {d}"
|
176 |
+
# except Exception:
|
177 |
+
# # Model not built yet; we’ll trust the files and rely on runtime checks later
|
178 |
+
# pass
|
179 |
+
|
180 |
+
# _MEAN_EMBED = m.astype(np.float32, copy=False) if m is not None else None
|
181 |
+
# _CENTROIDS = c.astype(np.float32, copy=False) if c is not None else None
|
182 |
+
# _ASSETS_REPO_ID = repo_id
|
183 |
+
# logging.info("Loaded finetune assets from %s (mean=%s, centroids=%s)",
|
184 |
+
# repo_id,
|
185 |
+
# "yes" if _MEAN_EMBED is not None else "no",
|
186 |
+
# f"{_CENTROIDS.shape[0]}x{_CENTROIDS.shape[1]}" if _CENTROIDS is not None else "no")
|
187 |
+
# return True, "ok"
|
188 |
+
# except Exception as e:
|
189 |
+
# logging.exception("Failed to load finetune assets: %s", e)
|
190 |
+
# return False, str(e)
|
191 |
+
|
192 |
+
# def _ensure_assets_loaded():
|
193 |
+
# # Best-effort lazy load if nothing is loaded yet
|
194 |
+
# if _MEAN_EMBED is None and _CENTROIDS is None:
|
195 |
+
# _load_finetune_assets_from_hf(_ASSETS_REPO_ID or _FINETUNE_REPO_DEFAULT)
|
196 |
# ------------------------------------------------------------------------------
|
197 |
|
198 |
+
# def _resolve_checkpoint_dir() -> str | None:
|
199 |
+
# repo_id = os.getenv("MRT_CKPT_REPO")
|
200 |
+
# if not repo_id:
|
201 |
+
# return None
|
202 |
+
# step = os.getenv("MRT_CKPT_STEP") # e.g. "1863001"
|
203 |
+
|
204 |
+
# root = Path(snapshot_download(
|
205 |
+
# repo_id=repo_id,
|
206 |
+
# repo_type="model",
|
207 |
+
# revision=os.getenv("MRT_CKPT_REV", "main"),
|
208 |
+
# local_dir="/home/appuser/.cache/mrt_ckpt/repo",
|
209 |
+
# local_dir_use_symlinks=False,
|
210 |
+
# ))
|
211 |
+
|
212 |
+
# # Prefer an archive if present (more reliable for Zarr/T5X)
|
213 |
+
# arch_names = [
|
214 |
+
# f"checkpoint_{step}.tgz",
|
215 |
+
# f"checkpoint_{step}.tar.gz",
|
216 |
+
# f"archives/checkpoint_{step}.tgz",
|
217 |
+
# f"archives/checkpoint_{step}.tar.gz",
|
218 |
+
# ] if step else []
|
219 |
+
|
220 |
+
# cache_root = Path("/home/appuser/.cache/mrt_ckpt/extracted")
|
221 |
+
# cache_root.mkdir(parents=True, exist_ok=True)
|
222 |
+
# for name in arch_names:
|
223 |
+
# arch = root / name
|
224 |
+
# if arch.is_file():
|
225 |
+
# out_dir = cache_root / f"checkpoint_{step}"
|
226 |
+
# marker = out_dir.with_suffix(".ok")
|
227 |
+
# if not marker.exists():
|
228 |
+
# out_dir.mkdir(parents=True, exist_ok=True)
|
229 |
+
# with tarfile.open(arch, "r:*") as tf:
|
230 |
+
# tf.extractall(out_dir)
|
231 |
+
# marker.write_text("ok")
|
232 |
+
# # sanity: require .zarray to exist inside the extracted tree
|
233 |
+
# if not any(out_dir.rglob(".zarray")):
|
234 |
+
# raise RuntimeError(f"Extracted archive missing .zarray files: {out_dir}")
|
235 |
+
# return str(out_dir / f"checkpoint_{step}") if (out_dir / f"checkpoint_{step}").exists() else str(out_dir)
|
236 |
+
|
237 |
+
# # No archive; try raw folder from repo and sanity check.
|
238 |
+
# if step:
|
239 |
+
# raw = root / f"checkpoint_{step}"
|
240 |
+
# if raw.is_dir():
|
241 |
+
# if not any(raw.rglob(".zarray")):
|
242 |
+
# raise RuntimeError(
|
243 |
+
# f"Downloaded checkpoint_{step} appears incomplete (no .zarray). "
|
244 |
+
# "Upload as a .tgz or push via git from a Unix shell."
|
245 |
+
# )
|
246 |
+
# return str(raw)
|
247 |
+
|
248 |
+
# # Pick latest if no step
|
249 |
+
# step_dirs = [d for d in root.iterdir() if d.is_dir() and re.match(r"checkpoint_\\d+$", d.name)]
|
250 |
+
# if step_dirs:
|
251 |
+
# pick = max(step_dirs, key=lambda d: int(d.name.split('_')[-1]))
|
252 |
+
# if not any(pick.rglob(".zarray")):
|
253 |
+
# raise RuntimeError(f"Downloaded {pick} appears incomplete (no .zarray).")
|
254 |
+
# return str(pick)
|
255 |
+
|
256 |
+
# return None
|
257 |
|
258 |
|
259 |
async def send_json_safe(ws: WebSocket, obj) -> bool:
|
|
|
304 |
# Call the patch immediately at import time (before MagentaRT init)
|
305 |
_patch_t5x_for_gpu_coords()
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
jam_registry: dict[str, JamWorker] = {}
|
308 |
jam_lock = threading.Lock()
|
309 |
|
|
|
328 |
except Exception:
|
329 |
_HAS_LOUDNORM = False
|
330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
|
332 |
extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
|
333 |
if not extra:
|
|
|
438 |
if _MRT is None:
|
439 |
with _MRT_LOCK:
|
440 |
if _MRT is None:
|
441 |
+
from model_management import CheckpointManager
|
442 |
+
ckpt_dir = CheckpointManager.resolve_checkpoint_dir() # ← Updated call
|
443 |
_MRT = system.MagentaRT(
|
444 |
+
tag=os.getenv("MRT_SIZE", "large"),
|
445 |
guidance_weight=5.0,
|
446 |
device="gpu",
|
447 |
+
checkpoint_dir=ckpt_dir,
|
448 |
lazy=False,
|
449 |
)
|
450 |
return _MRT
|
|
|
551 |
|
552 |
@app.post("/model/assets/load")
|
553 |
def model_assets_load(repo_id: str = Form(None)):
|
554 |
+
global _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID
|
555 |
+
ok, msg = asset_manager.load_finetune_assets_from_hf(repo_id, get_mrt())
|
556 |
+
# Sync globals after loading
|
557 |
+
_MEAN_EMBED = asset_manager.mean_embed
|
558 |
+
_CENTROIDS = asset_manager.centroids
|
559 |
+
_ASSETS_REPO_ID = asset_manager.assets_repo_id
|
560 |
return {"ok": ok, "message": msg, "repo_id": _ASSETS_REPO_ID,
|
561 |
"mean": _MEAN_EMBED is not None,
|
562 |
"centroids": None if _CENTROIDS is None else int(_CENTROIDS.shape[0])}
|
|
|
595 |
step = os.getenv("MRT_CKPT_STEP")
|
596 |
assets = os.getenv("MRT_ASSETS_REPO")
|
597 |
|
598 |
+
# Use CheckpointManager for local cache probe (no network)
|
599 |
+
local_ckpt = None
|
600 |
+
if step:
|
|
|
601 |
try:
|
602 |
from pathlib import Path
|
603 |
import re
|
604 |
+
step_escaped = re.escape(str(step))
|
605 |
+
candidates = []
|
606 |
for root in ("/home/appuser/.cache/mrt_ckpt/extracted",
|
607 |
"/home/appuser/.cache/mrt_ckpt/repo"):
|
608 |
p = Path(root)
|
|
|
612 |
for d in p.rglob(f"checkpoint_{step}"):
|
613 |
if d.is_dir():
|
614 |
candidates.append(str(d))
|
615 |
+
local_ckpt = candidates[0] if candidates else None
|
616 |
except Exception:
|
617 |
+
local_ckpt = None
|
|
|
|
|
618 |
|
619 |
return {
|
620 |
"size": size,
|
|
|
637 |
|
638 |
@app.get("/model/checkpoints")
|
639 |
def model_checkpoints(repo_id: str, revision: str = "main"):
|
640 |
+
steps = CheckpointManager.list_ckpt_steps(repo_id, revision)
|
641 |
return {"repo": repo_id, "revision": revision, "steps": steps, "latest": (steps[-1] if steps else None)}
|
642 |
|
643 |
+
# class ModelSelect(BaseModel):
|
644 |
+
# size: Optional[Literal["base","large"]] = None
|
645 |
+
# repo_id: Optional[str] = None
|
646 |
+
# revision: Optional[str] = "main"
|
647 |
+
# step: Optional[Union[int, str]] = None # allow "latest"
|
648 |
+
# assets_repo_id: Optional[str] = None # default: follow repo_id
|
649 |
+
# sync_assets: bool = True # load mean/centroids from repo
|
650 |
+
# prewarm: bool = False # call get_mrt() to build right away
|
651 |
+
# stop_active: bool = True # auto-stop jams; else 409
|
652 |
+
# dry_run: bool = False # validate only, don't swap
|
653 |
|
654 |
@app.post("/model/select")
|
655 |
def model_select(req: ModelSelect):
|
656 |
+
global _MRT, _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID
|
657 |
+
|
658 |
+
# Use ModelSelector to validate the request
|
659 |
+
success, validation_result = model_selector.validate_selection(req)
|
660 |
+
if not success:
|
661 |
+
if "error" in validation_result:
|
662 |
+
raise HTTPException(status_code=400, detail=validation_result["error"])
|
663 |
+
return {"ok": False, **validation_result}
|
664 |
+
|
665 |
+
# Add active_jam status to the validation result
|
666 |
+
validation_result["active_jam"] = _any_jam_running()
|
667 |
+
|
668 |
+
# If dry run, return the validation result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
669 |
if req.dry_run:
|
670 |
+
return {"ok": True, "dry_run": True, **validation_result}
|
671 |
|
672 |
+
# Handle jam policy
|
673 |
if _any_jam_running():
|
674 |
if req.stop_active:
|
675 |
_stop_all_jams()
|
676 |
else:
|
677 |
raise HTTPException(status_code=409, detail="A jam is running; retry with stop_active=true")
|
678 |
|
679 |
+
# Prepare environment changes
|
680 |
+
env_changes = model_selector.prepare_env_changes(req, validation_result)
|
681 |
+
|
682 |
+
# Save current environment for rollback
|
683 |
old_env = {
|
684 |
+
"MRT_SIZE": os.getenv("MRT_SIZE"),
|
685 |
+
"MRT_CKPT_REPO": os.getenv("MRT_CKPT_REPO"),
|
686 |
+
"MRT_CKPT_REV": os.getenv("MRT_CKPT_REV"),
|
687 |
+
"MRT_CKPT_STEP": os.getenv("MRT_CKPT_STEP"),
|
688 |
+
"MRT_ASSETS_REPO": os.getenv("MRT_ASSETS_REPO"),
|
689 |
}
|
690 |
+
|
691 |
try:
|
692 |
+
# Apply environment changes atomically
|
693 |
+
for key, value in env_changes.items():
|
694 |
+
if value is None:
|
695 |
+
os.environ.pop(key, None)
|
696 |
+
else:
|
697 |
+
os.environ[key] = str(value)
|
698 |
+
|
699 |
+
# Force model rebuild
|
|
|
700 |
with _MRT_LOCK:
|
701 |
_MRT = None
|
702 |
|
703 |
+
# Load finetune assets if requested
|
704 |
+
if req.sync_assets and validation_result.get("assets_repo"):
|
705 |
+
ok, msg = asset_manager.load_finetune_assets_from_hf(
|
706 |
+
validation_result["assets_repo"],
|
707 |
+
get_mrt() if req.prewarm else None
|
708 |
+
)
|
709 |
+
if ok:
|
710 |
+
# Sync globals after successful asset loading
|
711 |
+
_MEAN_EMBED = asset_manager.mean_embed
|
712 |
+
_CENTROIDS = asset_manager.centroids
|
713 |
+
_ASSETS_REPO_ID = asset_manager.assets_repo_id
|
714 |
+
|
715 |
+
# Optional prewarm to amortize JIT
|
716 |
if req.prewarm:
|
717 |
get_mrt()
|
718 |
|
719 |
+
return {"ok": True, **validation_result}
|
720 |
+
|
721 |
except Exception as e:
|
722 |
+
# Rollback on error
|
723 |
for k, v in old_env.items():
|
724 |
if v is None:
|
725 |
os.environ.pop(k, None)
|
|
|
727 |
os.environ[k] = v
|
728 |
with _MRT_LOCK:
|
729 |
_MRT = None
|
730 |
+
# Try to restore working state
|
731 |
try:
|
732 |
get_mrt()
|
733 |
except Exception:
|
|
|
914 |
topk: int = Form(40),
|
915 |
target_sample_rate: int | None = Form(None),
|
916 |
):
|
917 |
+
asset_manager.ensure_assets_loaded(get_mrt())
|
918 |
|
919 |
# enforce single active jam per GPU
|
920 |
with jam_lock:
|
|
|
1069 |
mean: Optional[float] = Form(None),
|
1070 |
centroid_weights: str = Form(""),
|
1071 |
):
|
1072 |
+
asset_manager.ensure_assets_loaded(get_mrt())
|
1073 |
|
1074 |
with jam_lock:
|
1075 |
worker = jam_registry.get(session_id)
|
|
|
1377 |
state.context_tokens = tokens
|
1378 |
|
1379 |
# Parse params (including steering)
|
1380 |
+
asset_manager.ensure_assets_loaded(get_mrt())
|
1381 |
styles_str = params.get("styles", "warmup") or ""
|
1382 |
style_weights_str = params.get("style_weights", "") or ""
|
1383 |
mean_w = float(params.get("mean", 0.0) or 0.0)
|
|
|
1544 |
text_list = [s for s in (styles_str.split(",") if styles_str else []) if s.strip()]
|
1545 |
text_w = [float(x) for x in style_weights_str.split(",")] if style_weights_str else []
|
1546 |
|
1547 |
+
asset_manager.ensure_assets_loaded(get_mrt())
|
1548 |
websocket._style_tgt = build_style_vector(
|
1549 |
websocket._mrt,
|
1550 |
text_styles=text_list,
|
|
|
1651 |
<p>Documentation file not found. Please check documentation.html</p>
|
1652 |
</body></html>
|
1653 |
"""
|
1654 |
+
return Response(content=html_content, media_type="text/html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_management.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model_management.py
|
2 |
+
"""
|
3 |
+
Model management utilities for MagentaRT API.
|
4 |
+
|
5 |
+
This module handles checkpoint discovery, asset loading, and model selection logic.
|
6 |
+
It is designed to work with the global state managed in app.py without interfering
|
7 |
+
with the critical JAX/XLA initialization sequence.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import re
|
12 |
+
import logging
|
13 |
+
from pathlib import Path
|
14 |
+
from typing import Optional, Union, Literal, Tuple, List
|
15 |
+
import tarfile
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
from pydantic import BaseModel
|
19 |
+
from huggingface_hub import snapshot_download, HfApi, hf_hub_download
|
20 |
+
|
21 |
+
|
22 |
+
# ---- Constants and Patterns ----
|
23 |
+
_FINETUNE_REPO_DEFAULT = os.getenv("MRT_ASSETS_REPO", "thepatch/magenta-ft")
|
24 |
+
_STEP_RE = re.compile(r"(?:^|/)checkpoint_(\d+)(?:/|\.tar\.gz|\.tgz)?$")
|
25 |
+
|
26 |
+
|
27 |
+
# ---- Pydantic Models ----
|
28 |
+
class ModelSelect(BaseModel):
|
29 |
+
size: Optional[Literal["base","large"]] = None
|
30 |
+
repo_id: Optional[str] = None
|
31 |
+
revision: Optional[str] = "main"
|
32 |
+
step: Optional[Union[int, str]] = None # allow "latest"
|
33 |
+
assets_repo_id: Optional[str] = None # default: follow repo_id
|
34 |
+
sync_assets: bool = True # load mean/centroids from repo
|
35 |
+
prewarm: bool = False # call get_mrt() to build right away
|
36 |
+
stop_active: bool = True # auto-stop jams; else 409
|
37 |
+
dry_run: bool = False # validate only, don't swap
|
38 |
+
|
39 |
+
|
40 |
+
# ---- Checkpoint Discovery ----
|
41 |
+
class CheckpointManager:
|
42 |
+
"""Handles checkpoint discovery and validation without modifying global state."""
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def list_ckpt_steps(repo_id: str, revision: str = "main") -> List[int]:
|
46 |
+
"""
|
47 |
+
List available checkpoint steps in a HF model repo without downloading all weights.
|
48 |
+
Looks for:
|
49 |
+
checkpoint_<step>/
|
50 |
+
checkpoint_<step>.tgz | .tar.gz
|
51 |
+
archives/checkpoint_<step>.tgz | .tar.gz
|
52 |
+
"""
|
53 |
+
api = HfApi()
|
54 |
+
files = api.list_repo_files(repo_id=repo_id, repo_type="model", revision=revision)
|
55 |
+
steps = set()
|
56 |
+
for f in files:
|
57 |
+
m = _STEP_RE.search(f)
|
58 |
+
if m:
|
59 |
+
try:
|
60 |
+
steps.add(int(m.group(1)))
|
61 |
+
except:
|
62 |
+
pass
|
63 |
+
return sorted(steps)
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def step_exists(repo_id: str, revision: str, step: int) -> bool:
|
67 |
+
"""Check if a specific checkpoint step exists in the repo."""
|
68 |
+
return step in CheckpointManager.list_ckpt_steps(repo_id, revision)
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def resolve_checkpoint_dir() -> Optional[str]:
|
72 |
+
"""
|
73 |
+
Resolve the checkpoint directory from environment variables.
|
74 |
+
Downloads and extracts if necessary.
|
75 |
+
Returns the path to the checkpoint directory or None if not configured.
|
76 |
+
"""
|
77 |
+
repo_id = os.getenv("MRT_CKPT_REPO")
|
78 |
+
if not repo_id:
|
79 |
+
return None
|
80 |
+
step = os.getenv("MRT_CKPT_STEP") # e.g. "1863001"
|
81 |
+
|
82 |
+
root = Path(snapshot_download(
|
83 |
+
repo_id=repo_id,
|
84 |
+
repo_type="model",
|
85 |
+
revision=os.getenv("MRT_CKPT_REV", "main"),
|
86 |
+
local_dir="/home/appuser/.cache/mrt_ckpt/repo",
|
87 |
+
local_dir_use_symlinks=False,
|
88 |
+
))
|
89 |
+
|
90 |
+
# Prefer an archive if present (more reliable for Zarr/T5X)
|
91 |
+
arch_names = [
|
92 |
+
f"checkpoint_{step}.tgz",
|
93 |
+
f"checkpoint_{step}.tar.gz",
|
94 |
+
f"archives/checkpoint_{step}.tgz",
|
95 |
+
f"archives/checkpoint_{step}.tar.gz",
|
96 |
+
] if step else []
|
97 |
+
|
98 |
+
cache_root = Path("/home/appuser/.cache/mrt_ckpt/extracted")
|
99 |
+
cache_root.mkdir(parents=True, exist_ok=True)
|
100 |
+
for name in arch_names:
|
101 |
+
arch = root / name
|
102 |
+
if arch.is_file():
|
103 |
+
out_dir = cache_root / f"checkpoint_{step}"
|
104 |
+
marker = out_dir.with_suffix(".ok")
|
105 |
+
if not marker.exists():
|
106 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
107 |
+
with tarfile.open(arch, "r:*") as tf:
|
108 |
+
tf.extractall(out_dir)
|
109 |
+
marker.write_text("ok")
|
110 |
+
# sanity: require .zarray to exist inside the extracted tree
|
111 |
+
if not any(out_dir.rglob(".zarray")):
|
112 |
+
raise RuntimeError(f"Extracted archive missing .zarray files: {out_dir}")
|
113 |
+
return str(out_dir / f"checkpoint_{step}") if (out_dir / f"checkpoint_{step}").exists() else str(out_dir)
|
114 |
+
|
115 |
+
# No archive; try raw folder from repo and sanity check.
|
116 |
+
if step:
|
117 |
+
raw = root / f"checkpoint_{step}"
|
118 |
+
if raw.is_dir():
|
119 |
+
if not any(raw.rglob(".zarray")):
|
120 |
+
raise RuntimeError(
|
121 |
+
f"Downloaded checkpoint_{step} appears incomplete (no .zarray). "
|
122 |
+
"Upload as a .tgz or push via git from a Unix shell."
|
123 |
+
)
|
124 |
+
return str(raw)
|
125 |
+
|
126 |
+
# Pick latest if no step
|
127 |
+
step_dirs = [d for d in root.iterdir() if d.is_dir() and re.match(r"checkpoint_\d+$", d.name)]
|
128 |
+
if step_dirs:
|
129 |
+
pick = max(step_dirs, key=lambda d: int(d.name.split('_')[-1]))
|
130 |
+
if not any(pick.rglob(".zarray")):
|
131 |
+
raise RuntimeError(f"Downloaded {pick} appears incomplete (no .zarray).")
|
132 |
+
return str(pick)
|
133 |
+
|
134 |
+
return None
|
135 |
+
|
136 |
+
|
137 |
+
# ---- Asset Management ----
|
138 |
+
class AssetManager:
|
139 |
+
"""
|
140 |
+
Handles finetune asset loading and management.
|
141 |
+
|
142 |
+
This class modifies global variables in the calling module, but encapsulates
|
143 |
+
the logic for loading and validating assets.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
# These will be set by the calling module
|
148 |
+
self.mean_embed = None
|
149 |
+
self.centroids = None
|
150 |
+
self.assets_repo_id = None
|
151 |
+
|
152 |
+
def load_finetune_assets_from_hf(self, repo_id: Optional[str], mrt=None) -> Tuple[bool, str]:
|
153 |
+
"""
|
154 |
+
Download & load mean_style_embed.npy and cluster_centroids.npy from a HF model repo.
|
155 |
+
Safe to call multiple times; will overwrite instance vars if successful.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
repo_id: HuggingFace repo ID, defaults to _FINETUNE_REPO_DEFAULT
|
159 |
+
mrt: MagentaRT instance for dimension validation (optional)
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
Tuple of (success: bool, message: str)
|
163 |
+
"""
|
164 |
+
repo_id = repo_id or _FINETUNE_REPO_DEFAULT
|
165 |
+
try:
|
166 |
+
mean_path = None
|
167 |
+
cent_path = None
|
168 |
+
try:
|
169 |
+
mean_path = hf_hub_download(repo_id, filename="mean_style_embed.npy", repo_type="model")
|
170 |
+
except Exception:
|
171 |
+
pass
|
172 |
+
try:
|
173 |
+
cent_path = hf_hub_download(repo_id, filename="cluster_centroids.npy", repo_type="model")
|
174 |
+
except Exception:
|
175 |
+
pass
|
176 |
+
|
177 |
+
if mean_path is None and cent_path is None:
|
178 |
+
return False, f"No finetune asset files found in repo {repo_id}"
|
179 |
+
|
180 |
+
if mean_path is not None:
|
181 |
+
m = np.load(mean_path)
|
182 |
+
if m.ndim != 1:
|
183 |
+
return False, f"mean_style_embed.npy must be 1-D (got {m.shape})"
|
184 |
+
else:
|
185 |
+
m = None
|
186 |
+
|
187 |
+
if cent_path is not None:
|
188 |
+
c = np.load(cent_path)
|
189 |
+
if c.ndim != 2:
|
190 |
+
return False, f"cluster_centroids.npy must be 2-D (got {c.shape})"
|
191 |
+
else:
|
192 |
+
c = None
|
193 |
+
|
194 |
+
# Optional: shape check vs model embedding dim once model is alive
|
195 |
+
if mrt is not None:
|
196 |
+
try:
|
197 |
+
d = int(mrt.style_model.config.embedding_dim)
|
198 |
+
if m is not None and m.shape[0] != d:
|
199 |
+
return False, f"mean_style_embed dim {m.shape[0]} != model dim {d}"
|
200 |
+
if c is not None and c.shape[1] != d:
|
201 |
+
return False, f"cluster_centroids dim {c.shape[1]} != model dim {d}"
|
202 |
+
except Exception:
|
203 |
+
# Model not built yet; we'll trust the files and rely on runtime checks later
|
204 |
+
pass
|
205 |
+
|
206 |
+
# Update instance variables
|
207 |
+
self.mean_embed = m.astype(np.float32, copy=False) if m is not None else None
|
208 |
+
self.centroids = c.astype(np.float32, copy=False) if c is not None else None
|
209 |
+
self.assets_repo_id = repo_id
|
210 |
+
|
211 |
+
logging.info("Loaded finetune assets from %s (mean=%s, centroids=%s)",
|
212 |
+
repo_id,
|
213 |
+
"yes" if self.mean_embed is not None else "no",
|
214 |
+
f"{self.centroids.shape[0]}x{self.centroids.shape[1]}" if self.centroids is not None else "no")
|
215 |
+
return True, "ok"
|
216 |
+
except Exception as e:
|
217 |
+
logging.exception("Failed to load finetune assets: %s", e)
|
218 |
+
return False, str(e)
|
219 |
+
|
220 |
+
def ensure_assets_loaded(self, mrt=None):
|
221 |
+
"""Best-effort lazy load if nothing is loaded yet."""
|
222 |
+
if self.mean_embed is None and self.centroids is None:
|
223 |
+
self.load_finetune_assets_from_hf(self.assets_repo_id or _FINETUNE_REPO_DEFAULT, mrt)
|
224 |
+
|
225 |
+
def get_status(self, mrt=None) -> dict:
|
226 |
+
"""Get current asset status."""
|
227 |
+
d = None
|
228 |
+
if mrt is not None:
|
229 |
+
try:
|
230 |
+
d = int(mrt.style_model.config.embedding_dim)
|
231 |
+
except Exception:
|
232 |
+
pass
|
233 |
+
|
234 |
+
return {
|
235 |
+
"repo_id": self.assets_repo_id,
|
236 |
+
"mean_loaded": self.mean_embed is not None,
|
237 |
+
"centroids_loaded": self.centroids is not None,
|
238 |
+
"centroid_count": None if self.centroids is None else int(self.centroids.shape[0]),
|
239 |
+
"embedding_dim": d,
|
240 |
+
}
|
241 |
+
|
242 |
+
|
243 |
+
# ---- Model Selection Logic ----
|
244 |
+
class ModelSelector:
|
245 |
+
"""
|
246 |
+
Handles model selection and validation logic.
|
247 |
+
|
248 |
+
This class encapsulates the complex logic from the /model/select endpoint
|
249 |
+
while keeping environment variable management in the calling code.
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self, checkpoint_manager: CheckpointManager, asset_manager: AssetManager):
|
253 |
+
self.checkpoint_manager = checkpoint_manager
|
254 |
+
self.asset_manager = asset_manager
|
255 |
+
|
256 |
+
def validate_selection(self, req: ModelSelect) -> Tuple[bool, dict]:
|
257 |
+
"""
|
258 |
+
Validate a model selection request without making any changes.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
Tuple of (success: bool, result_dict: dict)
|
262 |
+
"""
|
263 |
+
# Current env defaults
|
264 |
+
cur = {
|
265 |
+
"size": os.getenv("MRT_SIZE", "large"),
|
266 |
+
"repo": os.getenv("MRT_CKPT_REPO"),
|
267 |
+
"rev": os.getenv("MRT_CKPT_REV", "main"),
|
268 |
+
"step": os.getenv("MRT_CKPT_STEP"),
|
269 |
+
"assets": os.getenv("MRT_ASSETS_REPO", _FINETUNE_REPO_DEFAULT),
|
270 |
+
}
|
271 |
+
|
272 |
+
# Flags for special step values
|
273 |
+
no_ckpt = isinstance(req.step, str) and req.step.lower() == "none"
|
274 |
+
latest = isinstance(req.step, str) and req.step.lower() == "latest"
|
275 |
+
|
276 |
+
# Target selection
|
277 |
+
tgt = {
|
278 |
+
"size": req.size or cur["size"],
|
279 |
+
"repo": None if no_ckpt else (req.repo_id or cur["repo"]),
|
280 |
+
"rev": req.revision if req.revision is not None else cur["rev"],
|
281 |
+
"step": None if (no_ckpt or latest) else (str(req.step) if req.step is not None else cur["step"]),
|
282 |
+
"assets": req.assets_repo_id or req.repo_id or cur["assets"],
|
283 |
+
}
|
284 |
+
|
285 |
+
# Case 1: No checkpoint (stock model)
|
286 |
+
if no_ckpt:
|
287 |
+
return True, {
|
288 |
+
"target_size": tgt["size"],
|
289 |
+
"target_repo": None,
|
290 |
+
"target_revision": None,
|
291 |
+
"target_step": None,
|
292 |
+
"assets_repo": None,
|
293 |
+
"assets_probe": {"ok": True, "message": "skipped"},
|
294 |
+
}
|
295 |
+
|
296 |
+
# Case 2: Checkpoint selection
|
297 |
+
if not tgt["repo"]:
|
298 |
+
return False, {"error": "repo_id is required for model selection."}
|
299 |
+
|
300 |
+
# Enumerate available steps
|
301 |
+
try:
|
302 |
+
steps = self.checkpoint_manager.list_ckpt_steps(tgt["repo"], tgt["rev"])
|
303 |
+
except Exception as e:
|
304 |
+
return False, {"error": f"Failed to list checkpoints: {e}"}
|
305 |
+
|
306 |
+
if not steps:
|
307 |
+
return False, {
|
308 |
+
"error": f"No checkpoint files found in {tgt['repo']}@{tgt['rev']}",
|
309 |
+
"discovered_steps": steps
|
310 |
+
}
|
311 |
+
|
312 |
+
# Choose step (explicit or latest)
|
313 |
+
chosen_step = int(tgt["step"]) if tgt["step"] is not None else steps[-1]
|
314 |
+
if chosen_step not in steps:
|
315 |
+
return False, {
|
316 |
+
"error": f"checkpoint_{chosen_step} not present in {tgt['repo']}@{tgt['rev']}",
|
317 |
+
"discovered_steps": steps
|
318 |
+
}
|
319 |
+
|
320 |
+
# Optional finetune assets probe
|
321 |
+
assets_ok, assets_msg = True, "skipped"
|
322 |
+
if req.sync_assets:
|
323 |
+
try:
|
324 |
+
api = HfApi()
|
325 |
+
files = set(api.list_repo_files(repo_id=tgt["assets"], repo_type="model"))
|
326 |
+
if ("mean_style_embed.npy" not in files) and ("cluster_centroids.npy" not in files):
|
327 |
+
assets_ok, assets_msg = False, f"No finetune asset files in {tgt['assets']}"
|
328 |
+
else:
|
329 |
+
assets_msg = "found"
|
330 |
+
except Exception as e:
|
331 |
+
assets_ok, assets_msg = False, f"probe failed: {e}"
|
332 |
+
|
333 |
+
return True, {
|
334 |
+
"target_size": tgt["size"],
|
335 |
+
"target_repo": tgt["repo"],
|
336 |
+
"target_revision": tgt["rev"],
|
337 |
+
"target_step": chosen_step,
|
338 |
+
"assets_repo": tgt["assets"] if req.sync_assets else None,
|
339 |
+
"assets_probe": {"ok": assets_ok, "message": assets_msg},
|
340 |
+
}
|
341 |
+
|
342 |
+
def prepare_env_changes(self, req: ModelSelect, validation_result: dict) -> dict:
|
343 |
+
"""
|
344 |
+
Prepare the environment variable changes needed for a model selection.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
req: The model selection request
|
348 |
+
validation_result: Result from validate_selection()
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
Dictionary of environment variable changes to apply
|
352 |
+
"""
|
353 |
+
no_ckpt = isinstance(req.step, str) and req.step.lower() == "none"
|
354 |
+
|
355 |
+
if no_ckpt:
|
356 |
+
# Clear checkpoint env vars for stock model
|
357 |
+
return {
|
358 |
+
"MRT_SIZE": validation_result["target_size"],
|
359 |
+
"MRT_CKPT_REPO": None, # None means delete the env var
|
360 |
+
"MRT_CKPT_REV": None,
|
361 |
+
"MRT_CKPT_STEP": None,
|
362 |
+
"MRT_ASSETS_REPO": None,
|
363 |
+
}
|
364 |
+
else:
|
365 |
+
# Set checkpoint env vars
|
366 |
+
env_changes = {
|
367 |
+
"MRT_SIZE": validation_result["target_size"],
|
368 |
+
"MRT_CKPT_REPO": validation_result["target_repo"],
|
369 |
+
"MRT_CKPT_REV": validation_result["target_revision"],
|
370 |
+
"MRT_CKPT_STEP": str(validation_result["target_step"]),
|
371 |
+
}
|
372 |
+
if req.sync_assets:
|
373 |
+
env_changes["MRT_ASSETS_REPO"] = validation_result["assets_repo"]
|
374 |
+
return env_changes
|