Spaces:
Running
Running
Commit
·
842a99f
1
Parent(s):
dcfd5bb
extract one-shot generation
Browse files- Dockerfile +1 -0
- app.py +165 -163
- one_shot_generation.py +196 -0
Dockerfile
CHANGED
@@ -142,6 +142,7 @@ COPY --chown=appuser:appuser app.py /home/appuser/app/app.py
|
|
142 |
COPY --chown=appuser:appuser utils.py /home/appuser/app/utils.py
|
143 |
COPY --chown=appuser:appuser jam_worker.py /home/appuser/app/jam_worker.py
|
144 |
|
|
|
145 |
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
146 |
|
147 |
USER appuser
|
|
|
142 |
COPY --chown=appuser:appuser utils.py /home/appuser/app/utils.py
|
143 |
COPY --chown=appuser:appuser jam_worker.py /home/appuser/app/jam_worker.py
|
144 |
|
145 |
+
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
146 |
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
147 |
|
148 |
USER appuser
|
app.py
CHANGED
@@ -46,6 +46,8 @@ from utils import (
|
|
46 |
)
|
47 |
|
48 |
from jam_worker import JamWorker, JamParams, JamChunk
|
|
|
|
|
49 |
import uuid, threading
|
50 |
|
51 |
import logging
|
@@ -560,169 +562,169 @@ try:
|
|
560 |
except Exception:
|
561 |
_HAS_LOUDNORM = False
|
562 |
|
563 |
-
# ----------------------------
|
564 |
-
# Main generation (single combined style vector)
|
565 |
-
# ----------------------------
|
566 |
-
def generate_loop_continuation_with_mrt(
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
):
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
# untested.
|
655 |
-
# not sure how it will retain the input bpm. we may want to use a metronome instead of silence. i think google might do that.
|
656 |
-
# does a generation with silent context rather than a combined loop
|
657 |
-
def generate_style_only_with_mrt(
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
):
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
|
727 |
def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
|
728 |
extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
|
|
|
46 |
)
|
47 |
|
48 |
from jam_worker import JamWorker, JamParams, JamChunk
|
49 |
+
from one_shot_generation import generate_loop_continuation_with_mrt, generate_style_only_with_mrt
|
50 |
+
|
51 |
import uuid, threading
|
52 |
|
53 |
import logging
|
|
|
562 |
except Exception:
|
563 |
_HAS_LOUDNORM = False
|
564 |
|
565 |
+
# # ----------------------------
|
566 |
+
# # Main generation (single combined style vector)
|
567 |
+
# # ----------------------------
|
568 |
+
# def generate_loop_continuation_with_mrt(
|
569 |
+
# mrt,
|
570 |
+
# input_wav_path: str,
|
571 |
+
# bpm: float,
|
572 |
+
# extra_styles=None,
|
573 |
+
# style_weights=None,
|
574 |
+
# bars: int = 8,
|
575 |
+
# beats_per_bar: int = 4,
|
576 |
+
# loop_weight: float = 1.0,
|
577 |
+
# loudness_mode: str = "auto",
|
578 |
+
# loudness_headroom_db: float = 1.0,
|
579 |
+
# intro_bars_to_drop: int = 0, # <— NEW
|
580 |
+
# ):
|
581 |
+
# # Load & prep (unchanged)
|
582 |
+
# loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
|
583 |
+
|
584 |
+
# # Use tail for context (your recent change)
|
585 |
+
# codec_fps = float(mrt.codec.frame_rate)
|
586 |
+
# ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
587 |
+
# loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
|
588 |
+
|
589 |
+
# tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
|
590 |
+
# tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
591 |
+
|
592 |
+
# # Bar-aligned token window (unchanged)
|
593 |
+
# context_tokens = make_bar_aligned_context(
|
594 |
+
# tokens, bpm=bpm, fps=float(mrt.codec.frame_rate),
|
595 |
+
# ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
|
596 |
+
# )
|
597 |
+
# state = mrt.init_state()
|
598 |
+
# state.context_tokens = context_tokens
|
599 |
+
|
600 |
+
# # STYLE embed (optional: switch to loop_for_context if you want stronger “recent” bias)
|
601 |
+
# loop_embed = mrt.embed_style(loop_for_context)
|
602 |
+
# embeds, weights = [loop_embed], [float(loop_weight)]
|
603 |
+
# if extra_styles:
|
604 |
+
# for i, s in enumerate(extra_styles):
|
605 |
+
# if s.strip():
|
606 |
+
# embeds.append(mrt.embed_style(s.strip()))
|
607 |
+
# w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
|
608 |
+
# weights.append(float(w))
|
609 |
+
# wsum = float(sum(weights)) or 1.0
|
610 |
+
# weights = [w / wsum for w in weights]
|
611 |
+
# combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
|
612 |
+
|
613 |
+
# # --- Length math ---
|
614 |
+
# seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
615 |
+
# total_secs = bars * seconds_per_bar
|
616 |
+
# drop_bars = max(0, int(intro_bars_to_drop))
|
617 |
+
# drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
|
618 |
+
# gen_total_secs = total_secs + drop_secs # generate extra
|
619 |
+
|
620 |
+
# # Chunk scheduling to cover gen_total_secs
|
621 |
+
# chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
|
622 |
+
# steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
|
623 |
+
|
624 |
+
# # Generate
|
625 |
+
# chunks = []
|
626 |
+
# for _ in range(steps):
|
627 |
+
# wav, state = mrt.generate_chunk(state=state, style=combined_style)
|
628 |
+
# chunks.append(wav)
|
629 |
+
|
630 |
+
# # Stitch continuous audio
|
631 |
+
# stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
632 |
+
|
633 |
+
# # Trim to generated length (bars + dropped bars)
|
634 |
+
# stitched = hard_trim_seconds(stitched, gen_total_secs)
|
635 |
+
|
636 |
+
# # 👉 Drop the intro bars
|
637 |
+
# if drop_secs > 0:
|
638 |
+
# n_drop = int(round(drop_secs * stitched.sample_rate))
|
639 |
+
# stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
640 |
+
|
641 |
+
# # Final exact-length trim to requested bars
|
642 |
+
# out = hard_trim_seconds(stitched, total_secs)
|
643 |
+
|
644 |
+
# # Final polish AFTER drop
|
645 |
+
# out = out.peak_normalize(0.95)
|
646 |
+
# apply_micro_fades(out, 5)
|
647 |
+
|
648 |
+
# # Loudness match to input (after drop) so bar 1 sits right
|
649 |
+
# out, loud_stats = match_loudness_to_reference(
|
650 |
+
# ref=loop, target=out,
|
651 |
+
# method=loudness_mode, headroom_db=loudness_headroom_db
|
652 |
+
# )
|
653 |
+
|
654 |
+
# return out, loud_stats
|
655 |
+
|
656 |
+
# # untested.
|
657 |
+
# # not sure how it will retain the input bpm. we may want to use a metronome instead of silence. i think google might do that.
|
658 |
+
# # does a generation with silent context rather than a combined loop
|
659 |
+
# def generate_style_only_with_mrt(
|
660 |
+
# mrt,
|
661 |
+
# bpm: float,
|
662 |
+
# bars: int = 8,
|
663 |
+
# beats_per_bar: int = 4,
|
664 |
+
# styles: str = "warmup",
|
665 |
+
# style_weights: str = "",
|
666 |
+
# intro_bars_to_drop: int = 0,
|
667 |
+
# ):
|
668 |
+
# """
|
669 |
+
# Style-only, bar-aligned generation using a silent context (no input audio).
|
670 |
+
# Returns: (au.Waveform out, dict loud_stats_or_None)
|
671 |
+
# """
|
672 |
+
# # ---- Build a 10s silent context, tokenized for the model ----
|
673 |
+
# codec_fps = float(mrt.codec.frame_rate)
|
674 |
+
# ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
675 |
+
# sr = int(mrt.sample_rate)
|
676 |
+
|
677 |
+
# silent = au.Waveform(np.zeros((int(round(ctx_seconds * sr)), 2), np.float32), sr)
|
678 |
+
# tokens_full = mrt.codec.encode(silent).astype(np.int32)
|
679 |
+
# tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
680 |
+
|
681 |
+
# state = mrt.init_state()
|
682 |
+
# state.context_tokens = tokens
|
683 |
+
|
684 |
+
# # ---- Style vector (text prompts only, normalized weights) ----
|
685 |
+
# prompts = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
|
686 |
+
# if not prompts:
|
687 |
+
# prompts = ["warmup"]
|
688 |
+
# sw = [float(x) for x in style_weights.split(",")] if style_weights else []
|
689 |
+
# embeds, weights = [], []
|
690 |
+
# for i, p in enumerate(prompts):
|
691 |
+
# embeds.append(mrt.embed_style(p))
|
692 |
+
# weights.append(sw[i] if i < len(sw) else 1.0)
|
693 |
+
# wsum = float(sum(weights)) or 1.0
|
694 |
+
# weights = [w / wsum for w in weights]
|
695 |
+
# style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)
|
696 |
+
|
697 |
+
# # ---- Target length math ----
|
698 |
+
# seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
699 |
+
# total_secs = bars * seconds_per_bar
|
700 |
+
# drop_bars = max(0, int(intro_bars_to_drop))
|
701 |
+
# drop_secs = min(drop_bars, bars) * seconds_per_bar
|
702 |
+
# gen_total_secs = total_secs + drop_secs
|
703 |
+
|
704 |
+
# # ~2.0s chunk length from model config
|
705 |
+
# chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
|
706 |
+
|
707 |
+
# # Generate enough chunks to cover total, plus a pad chunk for crossfade headroom
|
708 |
+
# steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1
|
709 |
+
|
710 |
+
# chunks = []
|
711 |
+
# for _ in range(steps):
|
712 |
+
# wav, state = mrt.generate_chunk(state=state, style=style_vec)
|
713 |
+
# chunks.append(wav)
|
714 |
+
|
715 |
+
# # Stitch & trim to exact musical length
|
716 |
+
# stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
717 |
+
# stitched = hard_trim_seconds(stitched, gen_total_secs)
|
718 |
+
|
719 |
+
# if drop_secs > 0:
|
720 |
+
# n_drop = int(round(drop_secs * stitched.sample_rate))
|
721 |
+
# stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
722 |
+
|
723 |
+
# out = hard_trim_seconds(stitched, total_secs)
|
724 |
+
# out = out.peak_normalize(0.95)
|
725 |
+
# apply_micro_fades(out, 5)
|
726 |
+
|
727 |
+
# return out, None # loudness stats not applicable (no reference)
|
728 |
|
729 |
def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
|
730 |
extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
|
one_shot_generation.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
One-shot music generation functions for MagentaRT.
|
3 |
+
|
4 |
+
This module contains the core generation functions extracted from the main app
|
5 |
+
that can be used independently for single-shot music generation tasks.
|
6 |
+
"""
|
7 |
+
import math
|
8 |
+
import numpy as np
|
9 |
+
from magenta_rt import audio as au
|
10 |
+
from utils import (
|
11 |
+
match_loudness_to_reference,
|
12 |
+
stitch_generated,
|
13 |
+
hard_trim_seconds,
|
14 |
+
apply_micro_fades,
|
15 |
+
make_bar_aligned_context,
|
16 |
+
take_bar_aligned_tail
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def generate_loop_continuation_with_mrt(
|
21 |
+
mrt,
|
22 |
+
input_wav_path: str,
|
23 |
+
bpm: float,
|
24 |
+
extra_styles=None,
|
25 |
+
style_weights=None,
|
26 |
+
bars: int = 8,
|
27 |
+
beats_per_bar: int = 4,
|
28 |
+
loop_weight: float = 1.0,
|
29 |
+
loudness_mode: str = "auto",
|
30 |
+
loudness_headroom_db: float = 1.0,
|
31 |
+
intro_bars_to_drop: int = 0,
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
Generate a continuation of an input loop using MagentaRT.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
mrt: MagentaRT instance
|
38 |
+
input_wav_path: Path to input audio file
|
39 |
+
bpm: Beats per minute
|
40 |
+
extra_styles: List of additional text style prompts (optional)
|
41 |
+
style_weights: List of weights for style prompts (optional)
|
42 |
+
bars: Number of bars to generate
|
43 |
+
beats_per_bar: Beats per bar (typically 4)
|
44 |
+
loop_weight: Weight for the input loop's style embedding
|
45 |
+
loudness_mode: Loudness matching method ("auto", "lufs", "rms", "none")
|
46 |
+
loudness_headroom_db: Headroom in dB for peak limiting
|
47 |
+
intro_bars_to_drop: Number of intro bars to generate then drop
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
Tuple of (au.Waveform output, dict loudness_stats)
|
51 |
+
"""
|
52 |
+
# Load & prep (unchanged)
|
53 |
+
loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
|
54 |
+
|
55 |
+
# Use tail for context (your recent change)
|
56 |
+
codec_fps = float(mrt.codec.frame_rate)
|
57 |
+
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
58 |
+
loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
|
59 |
+
|
60 |
+
tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
|
61 |
+
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
62 |
+
|
63 |
+
# Bar-aligned token window (unchanged)
|
64 |
+
context_tokens = make_bar_aligned_context(
|
65 |
+
tokens, bpm=bpm, fps=float(mrt.codec.frame_rate),
|
66 |
+
ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
|
67 |
+
)
|
68 |
+
state = mrt.init_state()
|
69 |
+
state.context_tokens = context_tokens
|
70 |
+
|
71 |
+
# STYLE embed (optional: switch to loop_for_context if you want stronger "recent" bias)
|
72 |
+
loop_embed = mrt.embed_style(loop_for_context)
|
73 |
+
embeds, weights = [loop_embed], [float(loop_weight)]
|
74 |
+
if extra_styles:
|
75 |
+
for i, s in enumerate(extra_styles):
|
76 |
+
if s.strip():
|
77 |
+
embeds.append(mrt.embed_style(s.strip()))
|
78 |
+
w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
|
79 |
+
weights.append(float(w))
|
80 |
+
wsum = float(sum(weights)) or 1.0
|
81 |
+
weights = [w / wsum for w in weights]
|
82 |
+
combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
|
83 |
+
|
84 |
+
# --- Length math ---
|
85 |
+
seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
86 |
+
total_secs = bars * seconds_per_bar
|
87 |
+
drop_bars = max(0, int(intro_bars_to_drop))
|
88 |
+
drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
|
89 |
+
gen_total_secs = total_secs + drop_secs # generate extra
|
90 |
+
|
91 |
+
# Chunk scheduling to cover gen_total_secs
|
92 |
+
chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
|
93 |
+
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
|
94 |
+
|
95 |
+
# Generate
|
96 |
+
chunks = []
|
97 |
+
for _ in range(steps):
|
98 |
+
wav, state = mrt.generate_chunk(state=state, style=combined_style)
|
99 |
+
chunks.append(wav)
|
100 |
+
|
101 |
+
# Stitch continuous audio
|
102 |
+
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
103 |
+
|
104 |
+
# Trim to generated length (bars + dropped bars)
|
105 |
+
stitched = hard_trim_seconds(stitched, gen_total_secs)
|
106 |
+
|
107 |
+
# 👉 Drop the intro bars
|
108 |
+
if drop_secs > 0:
|
109 |
+
n_drop = int(round(drop_secs * stitched.sample_rate))
|
110 |
+
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
111 |
+
|
112 |
+
# Final exact-length trim to requested bars
|
113 |
+
out = hard_trim_seconds(stitched, total_secs)
|
114 |
+
|
115 |
+
# Final polish AFTER drop
|
116 |
+
out = out.peak_normalize(0.95)
|
117 |
+
apply_micro_fades(out, 5)
|
118 |
+
|
119 |
+
# Loudness match to input (after drop) so bar 1 sits right
|
120 |
+
out, loud_stats = match_loudness_to_reference(
|
121 |
+
ref=loop, target=out,
|
122 |
+
method=loudness_mode, headroom_db=loudness_headroom_db
|
123 |
+
)
|
124 |
+
|
125 |
+
return out, loud_stats
|
126 |
+
|
127 |
+
|
128 |
+
def generate_style_only_with_mrt(
|
129 |
+
mrt,
|
130 |
+
bpm: float,
|
131 |
+
bars: int = 8,
|
132 |
+
beats_per_bar: int = 4,
|
133 |
+
styles: str = "warmup",
|
134 |
+
style_weights: str = "",
|
135 |
+
intro_bars_to_drop: int = 0,
|
136 |
+
):
|
137 |
+
"""
|
138 |
+
Style-only, bar-aligned generation using a silent context (no input audio).
|
139 |
+
Returns: (au.Waveform out, dict loud_stats_or_None)
|
140 |
+
"""
|
141 |
+
# ---- Build a 10s silent context, tokenized for the model ----
|
142 |
+
codec_fps = float(mrt.codec.frame_rate)
|
143 |
+
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
144 |
+
sr = int(mrt.sample_rate)
|
145 |
+
|
146 |
+
silent = au.Waveform(np.zeros((int(round(ctx_seconds * sr)), 2), np.float32), sr)
|
147 |
+
tokens_full = mrt.codec.encode(silent).astype(np.int32)
|
148 |
+
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
149 |
+
|
150 |
+
state = mrt.init_state()
|
151 |
+
state.context_tokens = tokens
|
152 |
+
|
153 |
+
# ---- Style vector (text prompts only, normalized weights) ----
|
154 |
+
prompts = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
|
155 |
+
if not prompts:
|
156 |
+
prompts = ["warmup"]
|
157 |
+
sw = [float(x) for x in style_weights.split(",")] if style_weights else []
|
158 |
+
embeds, weights = [], []
|
159 |
+
for i, p in enumerate(prompts):
|
160 |
+
embeds.append(mrt.embed_style(p))
|
161 |
+
weights.append(sw[i] if i < len(sw) else 1.0)
|
162 |
+
wsum = float(sum(weights)) or 1.0
|
163 |
+
weights = [w / wsum for w in weights]
|
164 |
+
style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)
|
165 |
+
|
166 |
+
# ---- Target length math ----
|
167 |
+
seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
168 |
+
total_secs = bars * seconds_per_bar
|
169 |
+
drop_bars = max(0, int(intro_bars_to_drop))
|
170 |
+
drop_secs = min(drop_bars, bars) * seconds_per_bar
|
171 |
+
gen_total_secs = total_secs + drop_secs
|
172 |
+
|
173 |
+
# ~2.0s chunk length from model config
|
174 |
+
chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
|
175 |
+
|
176 |
+
# Generate enough chunks to cover total, plus a pad chunk for crossfade headroom
|
177 |
+
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1
|
178 |
+
|
179 |
+
chunks = []
|
180 |
+
for _ in range(steps):
|
181 |
+
wav, state = mrt.generate_chunk(state=state, style=style_vec)
|
182 |
+
chunks.append(wav)
|
183 |
+
|
184 |
+
# Stitch & trim to exact musical length
|
185 |
+
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
186 |
+
stitched = hard_trim_seconds(stitched, gen_total_secs)
|
187 |
+
|
188 |
+
if drop_secs > 0:
|
189 |
+
n_drop = int(round(drop_secs * stitched.sample_rate))
|
190 |
+
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
191 |
+
|
192 |
+
out = hard_trim_seconds(stitched, total_secs)
|
193 |
+
out = out.peak_normalize(0.95)
|
194 |
+
apply_micro_fades(out, 5)
|
195 |
+
|
196 |
+
return out, None # loudness stats not applicable (no reference)
|