medbot_2 / app.py
techindia2025's picture
Update app.py
5067011 verified
raw
history blame
5.3 kB
from langchain.chains import ConversationChain, LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain.memory import ConversationBufferMemory
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import gradio as gr
# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"
# System prompts
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""
MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""
print("Loading Llama-2 model...")
# Create LangChain wrapper for Llama-2
llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
llama_model = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
# Create a pipeline for LangChain
llama_pipeline = pipeline(
"text-generation",
model=llama_model,
tokenizer=llama_tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
llama_llm = HuggingFacePipeline(pipeline=llama_pipeline)
print("Llama-2 model loaded successfully!")
print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
MEDITRON_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
# Create a pipeline for Meditron
meditron_pipeline = pipeline(
"text-generation",
model=meditron_model,
tokenizer=meditron_tokenizer,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True
)
meditron_llm = HuggingFacePipeline(pipeline=meditron_pipeline)
print("Meditron model loaded successfully!")
# Create LangChain conversation with memory
memory = ConversationBufferMemory(return_messages=True)
conversation = ConversationChain(
llm=llama_llm,
memory=memory,
verbose=True
)
# Create a template for the Meditron model
meditron_template = PromptTemplate(
input_variables=["patient_info"],
template=MEDITRON_PROMPT
)
meditron_chain = LLMChain(
llm=meditron_llm,
prompt=meditron_template,
verbose=True
)
# Track conversation turns
conversation_turns = 0
patient_data = []
def generate_response(message, history):
global conversation_turns, patient_data
conversation_turns += 1
# Store patient message
patient_data.append(message)
# Format the prompt with system instructions
if conversation_turns >= 4:
# Add summarization instruction after 4 turns
prompt = f"{SYSTEM_PROMPT}\n\nNow summarize what you've learned and suggest when professional care may be needed.\n\n{message}"
else:
prompt = f"{SYSTEM_PROMPT}\n\n{message}"
# Generate response using LangChain conversation
llama_response = conversation.predict(input=prompt)
# After 4 turns, add medicine suggestions from Meditron
if conversation_turns >= 4:
# Collect full patient conversation
full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
# Get medicine suggestions using LangChain
medicine_suggestions = meditron_chain.run(patient_info=full_patient_info)
# Format final response
final_response = (
f"{llama_response}\n\n"
f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
f"{medicine_suggestions}"
)
return final_response
return llama_response
# Create the Gradio interface
demo = gr.ChatInterface(
fn=generate_response,
title="Medical Assistant with Medicine Suggestions",
description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
examples=[
"I have a cough and my throat hurts",
"I've been having headaches for a week",
"My stomach has been hurting since yesterday"
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()