File size: 5,298 Bytes
5067011
 
 
 
 
9f6ac99
5067011
71bcd31
 
 
 
 
5067011
afe76d4
 
 
 
 
 
 
 
 
 
 
6e237a4
afe76d4
 
 
 
 
 
 
 
 
 
 
 
 
1728da9
afe76d4
5067011
 
 
afe76d4
 
 
 
5067011
 
 
 
 
 
 
 
 
 
 
 
afe76d4
1728da9
afe76d4
 
 
 
 
 
 
5067011
 
 
 
 
 
 
 
 
 
 
afe76d4
1728da9
5067011
 
 
 
 
 
 
afe76d4
5067011
 
 
 
 
 
 
 
 
 
1728da9
5067011
 
 
afe76d4
5067011
 
 
1728da9
5067011
 
1728da9
5067011
 
 
 
 
 
afe76d4
5067011
 
afe76d4
5067011
 
 
 
afe76d4
5067011
 
afe76d4
5067011
 
 
 
 
 
 
1728da9
5067011
c4447f4
afe76d4
6d5190c
5067011
 
afe76d4
8b29c0d
afe76d4
 
 
8b29c0d
afe76d4
6d5190c
b80af5b
 
5067011
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from langchain.chains import ConversationChain, LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain.memory import ConversationBufferMemory
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import gradio as gr

# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"

# System prompts
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""

MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""

print("Loading Llama-2 model...")
# Create LangChain wrapper for Llama-2
llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
llama_model = AutoModelForCausalLM.from_pretrained(
    LLAMA_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Create a pipeline for LangChain
llama_pipeline = pipeline(
    "text-generation",
    model=llama_model,
    tokenizer=llama_tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.9,
    do_sample=True
)
llama_llm = HuggingFacePipeline(pipeline=llama_pipeline)
print("Llama-2 model loaded successfully!")

print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
    MEDITRON_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
# Create a pipeline for Meditron
meditron_pipeline = pipeline(
    "text-generation",
    model=meditron_model,
    tokenizer=meditron_tokenizer,
    max_new_tokens=256,
    temperature=0.7,
    top_p=0.9,
    do_sample=True
)
meditron_llm = HuggingFacePipeline(pipeline=meditron_pipeline)
print("Meditron model loaded successfully!")

# Create LangChain conversation with memory
memory = ConversationBufferMemory(return_messages=True)
conversation = ConversationChain(
    llm=llama_llm,
    memory=memory,
    verbose=True
)

# Create a template for the Meditron model
meditron_template = PromptTemplate(
    input_variables=["patient_info"],
    template=MEDITRON_PROMPT
)
meditron_chain = LLMChain(
    llm=meditron_llm,
    prompt=meditron_template,
    verbose=True
)

# Track conversation turns
conversation_turns = 0
patient_data = []

def generate_response(message, history):
    global conversation_turns, patient_data
    conversation_turns += 1
    
    # Store patient message
    patient_data.append(message)
    
    # Format the prompt with system instructions
    if conversation_turns >= 4:
        # Add summarization instruction after 4 turns
        prompt = f"{SYSTEM_PROMPT}\n\nNow summarize what you've learned and suggest when professional care may be needed.\n\n{message}"
    else:
        prompt = f"{SYSTEM_PROMPT}\n\n{message}"
    
    # Generate response using LangChain conversation
    llama_response = conversation.predict(input=prompt)
    
    # After 4 turns, add medicine suggestions from Meditron
    if conversation_turns >= 4:
        # Collect full patient conversation
        full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
        
        # Get medicine suggestions using LangChain
        medicine_suggestions = meditron_chain.run(patient_info=full_patient_info)
        
        # Format final response
        final_response = (
            f"{llama_response}\n\n"
            f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
            f"{medicine_suggestions}"
        )
        return final_response
    
    return llama_response

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=generate_response,
    title="Medical Assistant with Medicine Suggestions",
    description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
    examples=[
        "I have a cough and my throat hurts",
        "I've been having headaches for a week",
        "My stomach has been hurting since yesterday"
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()