Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
|
4 |
-
from typing import Annotated, List, Dict, Any
|
5 |
-
from typing_extensions import TypedDict
|
6 |
-
from langgraph.graph import StateGraph, START
|
7 |
-
from langgraph.graph.message import add_messages
|
8 |
|
9 |
# Model configuration
|
10 |
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
|
11 |
MEDITRON_MODEL = "epfl-llm/meditron-7b"
|
12 |
|
|
|
13 |
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
|
14 |
Ask 1-2 follow-up questions at a time to gather more details about:
|
15 |
- Detailed description of symptoms
|
@@ -37,213 +38,109 @@ Patient information: {patient_info}
|
|
37 |
"""
|
38 |
|
39 |
print("Loading Llama-2 model...")
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
model = AutoModelForCausalLM.from_pretrained(
|
45 |
LLAMA_MODEL,
|
46 |
torch_dtype=torch.float16,
|
47 |
device_map="auto"
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
print("Llama-2 model loaded successfully!")
|
50 |
|
51 |
print("Loading Meditron model...")
|
52 |
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
|
53 |
-
if meditron_tokenizer.pad_token is None:
|
54 |
-
meditron_tokenizer.pad_token = meditron_tokenizer.eos_token
|
55 |
-
|
56 |
meditron_model = AutoModelForCausalLM.from_pretrained(
|
57 |
MEDITRON_MODEL,
|
58 |
torch_dtype=torch.float16,
|
59 |
device_map="auto"
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
print("Meditron model loaded successfully!")
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
def build_llama2_prompt(messages):
|
71 |
-
"""Format the conversation history for Llama-2 chat models."""
|
72 |
-
prompt = f"<s>[INST] <<SYS>>\n{SYSTEM_PROMPT}\n<</SYS>>\n\n"
|
73 |
-
|
74 |
-
# Add conversation history
|
75 |
-
for i, msg in enumerate(messages[:-1]):
|
76 |
-
if i % 2 == 0: # User message
|
77 |
-
prompt += f"{msg.content} [/INST] "
|
78 |
-
else: # Assistant message
|
79 |
-
prompt += f"{msg.content} </s><s>[INST] "
|
80 |
-
|
81 |
-
# Add the current user input
|
82 |
-
prompt += f"{messages[-1].content} [/INST] "
|
83 |
-
|
84 |
-
return prompt
|
85 |
-
|
86 |
-
# Function to get Llama-2 response
|
87 |
-
def get_llama2_response(prompt, turn_count):
|
88 |
-
"""Generate response from Llama-2 model."""
|
89 |
-
# Add summarization instruction after 4 turns
|
90 |
-
if turn_count >= 4:
|
91 |
-
prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
|
92 |
-
|
93 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
94 |
-
|
95 |
-
with torch.no_grad():
|
96 |
-
outputs = model.generate(
|
97 |
-
inputs.input_ids,
|
98 |
-
attention_mask=inputs.attention_mask,
|
99 |
-
max_new_tokens=512,
|
100 |
-
temperature=0.7,
|
101 |
-
top_p=0.9,
|
102 |
-
do_sample=True,
|
103 |
-
pad_token_id=tokenizer.pad_token_id
|
104 |
-
)
|
105 |
-
|
106 |
-
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
107 |
-
response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
108 |
-
|
109 |
-
return response
|
110 |
-
|
111 |
-
# Function to get Meditron suggestions
|
112 |
-
def get_meditron_suggestions(patient_info):
|
113 |
-
"""Generate medicine and remedy suggestions from Meditron model."""
|
114 |
-
prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
|
115 |
-
inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
|
116 |
-
|
117 |
-
with torch.no_grad():
|
118 |
-
outputs = meditron_model.generate(
|
119 |
-
inputs.input_ids,
|
120 |
-
attention_mask=inputs.attention_mask,
|
121 |
-
max_new_tokens=256,
|
122 |
-
temperature=0.7,
|
123 |
-
top_p=0.9,
|
124 |
-
do_sample=True,
|
125 |
-
pad_token_id=meditron_tokenizer.pad_token_id
|
126 |
-
)
|
127 |
-
|
128 |
-
suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
129 |
-
return suggestion
|
130 |
-
|
131 |
-
# Define LangGraph nodes
|
132 |
-
def process_user_input(state: ChatbotState) -> ChatbotState:
|
133 |
-
"""Process user input and update state."""
|
134 |
-
# Extract the latest user message
|
135 |
-
user_message = state["messages"][-1].content
|
136 |
-
|
137 |
-
# Update patient info
|
138 |
-
return {
|
139 |
-
"patient_info": state["patient_info"] + [user_message],
|
140 |
-
"turn_count": state["turn_count"] + 1
|
141 |
-
}
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
return "add_suggestions"
|
154 |
-
return "continue"
|
155 |
|
156 |
-
def
|
157 |
-
|
158 |
-
|
159 |
-
last_response = state["messages"][-1].content
|
160 |
-
|
161 |
-
# Collect full patient conversation
|
162 |
-
full_patient_info = "\n".join(state["patient_info"]) + "\n\nSummary: " + last_response
|
163 |
|
164 |
-
#
|
165 |
-
|
166 |
|
167 |
-
# Format
|
168 |
-
|
169 |
-
|
170 |
-
f"
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
# Return updated message
|
175 |
-
return {"messages": [{"role": "assistant", "content": final_response}]}
|
176 |
-
|
177 |
-
# Build the LangGraph
|
178 |
-
def build_graph():
|
179 |
-
"""Build and return the LangGraph for our chatbot."""
|
180 |
-
graph = StateGraph(ChatbotState)
|
181 |
-
|
182 |
-
# Add nodes
|
183 |
-
graph.add_node("process_input", process_user_input)
|
184 |
-
graph.add_node("generate_response", generate_llama_response)
|
185 |
-
graph.add_node("add_suggestions", add_medicine_suggestions)
|
186 |
|
187 |
-
#
|
188 |
-
|
189 |
-
graph.add_edge("process_input", "generate_response")
|
190 |
-
graph.add_conditional_edges(
|
191 |
-
"generate_response",
|
192 |
-
check_turn_count,
|
193 |
-
{
|
194 |
-
"add_suggestions": "add_suggestions",
|
195 |
-
"continue": END
|
196 |
-
}
|
197 |
-
)
|
198 |
-
graph.add_edge("add_suggestions", END)
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
#
|
203 |
-
|
204 |
-
|
205 |
-
# Function for Gradio interface
|
206 |
-
def chat_response(message, history):
|
207 |
-
"""Generate chatbot response using LangGraph."""
|
208 |
-
# Initialize state if this is the first message
|
209 |
-
if not history:
|
210 |
-
state = {
|
211 |
-
"messages": [{"role": "user", "content": message}],
|
212 |
-
"turn_count": 0,
|
213 |
-
"patient_info": []
|
214 |
-
}
|
215 |
-
else:
|
216 |
-
# Convert history to messages format
|
217 |
-
messages = []
|
218 |
-
for user_msg, bot_msg in history:
|
219 |
-
messages.append({"role": "user", "content": user_msg})
|
220 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
221 |
|
222 |
-
#
|
223 |
-
|
224 |
|
225 |
-
#
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
"messages": messages,
|
233 |
-
"turn_count": turn_count,
|
234 |
-
"patient_info": patient_info
|
235 |
-
}
|
236 |
-
|
237 |
-
# Process through LangGraph
|
238 |
-
result = chatbot_graph.invoke(state)
|
239 |
|
240 |
-
|
241 |
-
return result["messages"][-1].content
|
242 |
|
243 |
# Create the Gradio interface
|
244 |
demo = gr.ChatInterface(
|
245 |
-
fn=
|
246 |
-
title="Medical Assistant with
|
247 |
description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
|
248 |
examples=[
|
249 |
"I have a cough and my throat hurts",
|
@@ -254,4 +151,4 @@ demo = gr.ChatInterface(
|
|
254 |
)
|
255 |
|
256 |
if __name__ == "__main__":
|
257 |
-
demo.launch()
|
|
|
1 |
+
from langchain.chains import ConversationChain, LLMChain
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain.llms import HuggingFacePipeline
|
4 |
+
from langchain.memory import ConversationBufferMemory
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
import torch
|
7 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Model configuration
|
10 |
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
|
11 |
MEDITRON_MODEL = "epfl-llm/meditron-7b"
|
12 |
|
13 |
+
# System prompts
|
14 |
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
|
15 |
Ask 1-2 follow-up questions at a time to gather more details about:
|
16 |
- Detailed description of symptoms
|
|
|
38 |
"""
|
39 |
|
40 |
print("Loading Llama-2 model...")
|
41 |
+
# Create LangChain wrapper for Llama-2
|
42 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
|
43 |
+
llama_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
44 |
LLAMA_MODEL,
|
45 |
torch_dtype=torch.float16,
|
46 |
device_map="auto"
|
47 |
)
|
48 |
+
|
49 |
+
# Create a pipeline for LangChain
|
50 |
+
llama_pipeline = pipeline(
|
51 |
+
"text-generation",
|
52 |
+
model=llama_model,
|
53 |
+
tokenizer=llama_tokenizer,
|
54 |
+
max_new_tokens=512,
|
55 |
+
temperature=0.7,
|
56 |
+
top_p=0.9,
|
57 |
+
do_sample=True
|
58 |
+
)
|
59 |
+
llama_llm = HuggingFacePipeline(pipeline=llama_pipeline)
|
60 |
print("Llama-2 model loaded successfully!")
|
61 |
|
62 |
print("Loading Meditron model...")
|
63 |
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
|
|
|
|
|
|
|
64 |
meditron_model = AutoModelForCausalLM.from_pretrained(
|
65 |
MEDITRON_MODEL,
|
66 |
torch_dtype=torch.float16,
|
67 |
device_map="auto"
|
68 |
)
|
69 |
+
# Create a pipeline for Meditron
|
70 |
+
meditron_pipeline = pipeline(
|
71 |
+
"text-generation",
|
72 |
+
model=meditron_model,
|
73 |
+
tokenizer=meditron_tokenizer,
|
74 |
+
max_new_tokens=256,
|
75 |
+
temperature=0.7,
|
76 |
+
top_p=0.9,
|
77 |
+
do_sample=True
|
78 |
+
)
|
79 |
+
meditron_llm = HuggingFacePipeline(pipeline=meditron_pipeline)
|
80 |
print("Meditron model loaded successfully!")
|
81 |
|
82 |
+
# Create LangChain conversation with memory
|
83 |
+
memory = ConversationBufferMemory(return_messages=True)
|
84 |
+
conversation = ConversationChain(
|
85 |
+
llm=llama_llm,
|
86 |
+
memory=memory,
|
87 |
+
verbose=True
|
88 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Create a template for the Meditron model
|
91 |
+
meditron_template = PromptTemplate(
|
92 |
+
input_variables=["patient_info"],
|
93 |
+
template=MEDITRON_PROMPT
|
94 |
+
)
|
95 |
+
meditron_chain = LLMChain(
|
96 |
+
llm=meditron_llm,
|
97 |
+
prompt=meditron_template,
|
98 |
+
verbose=True
|
99 |
+
)
|
100 |
|
101 |
+
# Track conversation turns
|
102 |
+
conversation_turns = 0
|
103 |
+
patient_data = []
|
|
|
|
|
104 |
|
105 |
+
def generate_response(message, history):
|
106 |
+
global conversation_turns, patient_data
|
107 |
+
conversation_turns += 1
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Store patient message
|
110 |
+
patient_data.append(message)
|
111 |
|
112 |
+
# Format the prompt with system instructions
|
113 |
+
if conversation_turns >= 4:
|
114 |
+
# Add summarization instruction after 4 turns
|
115 |
+
prompt = f"{SYSTEM_PROMPT}\n\nNow summarize what you've learned and suggest when professional care may be needed.\n\n{message}"
|
116 |
+
else:
|
117 |
+
prompt = f"{SYSTEM_PROMPT}\n\n{message}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# Generate response using LangChain conversation
|
120 |
+
llama_response = conversation.predict(input=prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# After 4 turns, add medicine suggestions from Meditron
|
123 |
+
if conversation_turns >= 4:
|
124 |
+
# Collect full patient conversation
|
125 |
+
full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# Get medicine suggestions using LangChain
|
128 |
+
medicine_suggestions = meditron_chain.run(patient_info=full_patient_info)
|
129 |
|
130 |
+
# Format final response
|
131 |
+
final_response = (
|
132 |
+
f"{llama_response}\n\n"
|
133 |
+
f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
|
134 |
+
f"{medicine_suggestions}"
|
135 |
+
)
|
136 |
+
return final_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
return llama_response
|
|
|
139 |
|
140 |
# Create the Gradio interface
|
141 |
demo = gr.ChatInterface(
|
142 |
+
fn=generate_response,
|
143 |
+
title="Medical Assistant with Medicine Suggestions",
|
144 |
description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
|
145 |
examples=[
|
146 |
"I have a cough and my throat hurts",
|
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
+
demo.launch()
|