Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,169 +1,97 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
|
4 |
-
from
|
5 |
-
from langchain_core.runnables.history import RunnableWithMessageHistory
|
6 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
-
from langchain_community.chat_message_histories import ChatMessageHistory
|
8 |
|
9 |
-
# Model configuration
|
10 |
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
11 |
|
12 |
-
|
13 |
-
SYSTEM_PROMPT = """
|
14 |
-
You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition,
|
15 |
-
symptoms, medical history, medications, lifestyle, and other relevant data. Start by greeting the user politely and ask
|
16 |
-
them to describe their health concern. For each user reply, ask only 1 or 2 follow-up questions at a time to gather more details.
|
17 |
-
Be structured and thorough in your questioning. Organize the information into categories: symptoms, duration, severity,
|
18 |
-
possible causes, past medical history, medications, allergies, habits (e.g., smoking, alcohol), and family history.
|
19 |
-
Always confirm and summarize what the user tells you. Respond empathetically and clearly. If unsure, ask for clarification.
|
20 |
-
**IMPORTANT**make a final diagnosis or suggest treatments.
|
21 |
-
Wait for the user's answer before asking more questions.
|
22 |
-
"""
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Create a pipeline for text generation
|
35 |
-
pipe = pipeline(
|
36 |
-
"text-generation",
|
37 |
-
model=model,
|
38 |
-
tokenizer=tokenizer,
|
39 |
-
max_new_tokens=512,
|
40 |
-
temperature=0.7,
|
41 |
-
top_p=0.9,
|
42 |
-
pad_token_id=tokenizer.eos_token_id
|
43 |
-
)
|
44 |
-
|
45 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
46 |
-
print("Model loaded successfully!")
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error loading model: {e}")
|
49 |
-
# Fallback to a smaller model or provide an error message
|
50 |
-
raise
|
51 |
|
52 |
-
|
53 |
-
prompt = ChatPromptTemplate.from_messages([
|
54 |
-
("system", SYSTEM_PROMPT),
|
55 |
-
MessagesPlaceholder(variable_name="history"),
|
56 |
-
("human", "{input}"),
|
57 |
-
("system", "Remember to respond as Virtual Doctor without including system instructions in your reply.")
|
58 |
-
])
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
if session_id not in store:
|
66 |
-
store[session_id] = ChatMessageHistory()
|
67 |
-
return store[session_id]
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# Remove any system prompt references
|
73 |
-
if "system" in response_text.lower() and ("your goal is" in response_text.lower() or "professional virtual doctor" in response_text.lower()):
|
74 |
-
# Find the actual doctor response after any system text
|
75 |
-
for marker in ["Virtual Doctor:", "Virtual doctor:", "Human:"]:
|
76 |
-
if marker in response_text:
|
77 |
-
parts = response_text.split(marker)
|
78 |
-
if len(parts) > 1:
|
79 |
-
# Get the last part after any system prompts
|
80 |
-
response_text = parts[-1].strip()
|
81 |
-
break
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
for line in response_text.split('\n'):
|
87 |
-
lower_line = line.lower()
|
88 |
-
if any(phrase in lower_line for phrase in [
|
89 |
-
"system:", "your goal is", "start by greeting", "wait for the user",
|
90 |
-
"do not make a final diagnosis", "be structured", "ask only 1 or 2"
|
91 |
-
]):
|
92 |
-
skip_line = True
|
93 |
-
elif any(marker in line for marker in ["Virtual Doctor:", "Virtual doctor:", "Hello", "Thank you"]):
|
94 |
-
skip_line = False
|
95 |
-
|
96 |
-
if not skip_line:
|
97 |
-
filtered_text.append(line)
|
98 |
|
99 |
-
|
|
|
100 |
|
101 |
-
|
102 |
-
if not clean_text.startswith("Virtual Doctor:") and not clean_text.startswith("Virtual doctor:"):
|
103 |
-
clean_text = f"Virtual Doctor: {clean_text}"
|
104 |
-
|
105 |
-
return clean_text
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
get_session_history,
|
112 |
-
input_messages_key="input",
|
113 |
-
history_messages_key="history"
|
114 |
-
)
|
115 |
-
|
116 |
-
# Our handler for chat interactions
|
117 |
-
@spaces.GPU # Request GPU for this space
|
118 |
-
def gradio_chat(user_message, history):
|
119 |
-
"""Process the user message and return the chatbot response"""
|
120 |
-
# Use a unique session ID in production
|
121 |
session_id = "default-session"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
return clean_response
|
137 |
-
except Exception as e:
|
138 |
-
print(f"Error processing message: {e}")
|
139 |
-
return "Virtual Doctor: I apologize, but I'm experiencing technical difficulties. Please try again."
|
140 |
-
|
141 |
-
# Customize the CSS for better appearance
|
142 |
-
css = """
|
143 |
-
.gradio-container {
|
144 |
-
font-family: 'Arial', sans-serif;
|
145 |
-
}
|
146 |
-
.chat-bot .bot-message {
|
147 |
-
background-color: #f0f7ff !important;
|
148 |
-
}
|
149 |
-
.chat-bot .user-message {
|
150 |
-
background-color: #e6f7e6 !important;
|
151 |
-
}
|
152 |
-
"""
|
153 |
|
154 |
# Create the Gradio interface
|
155 |
demo = gr.ChatInterface(
|
156 |
-
fn=
|
157 |
-
title="
|
158 |
-
description="
|
159 |
examples=[
|
160 |
"I have a cough and my throat hurts",
|
161 |
"I've been having headaches for a week",
|
162 |
"My stomach has been hurting since yesterday"
|
163 |
],
|
164 |
-
|
165 |
)
|
166 |
|
167 |
-
# Launch the app
|
168 |
if __name__ == "__main__":
|
169 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
5 |
|
|
|
6 |
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
7 |
|
8 |
+
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
Ask 1-2 follow-up questions at a time to gather more details about:
|
11 |
+
- Detailed description of symptoms
|
12 |
+
- Duration (when did it start?)
|
13 |
+
- Severity (scale of 1-10)
|
14 |
+
- Aggravating or alleviating factors
|
15 |
+
- Related symptoms
|
16 |
+
- Medical history
|
17 |
+
- Current medications and allergies
|
18 |
+
|
19 |
+
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
Respond empathetically and clearly. Always be professional and thorough."""
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
print("Loading model...")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
MODEL_NAME,
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
device_map="auto"
|
29 |
+
)
|
30 |
+
print("Model loaded successfully!")
|
31 |
|
32 |
+
# Conversation state tracking
|
33 |
+
conversation_turns = {}
|
|
|
|
|
|
|
34 |
|
35 |
+
def build_llama2_prompt(system_prompt, history, user_input):
|
36 |
+
"""Format the conversation history and user input for Llama-2 chat models."""
|
37 |
+
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Add conversation history
|
40 |
+
for user_msg, assistant_msg in history:
|
41 |
+
prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Add the current user input
|
44 |
+
prompt += f"{user_input} [/INST] "
|
45 |
|
46 |
+
return prompt
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
@spaces.GPU
|
49 |
+
def generate_response(message, history):
|
50 |
+
"""Generate a response using the Llama-2 model with proper formatting."""
|
51 |
+
# Track conversation turns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
session_id = "default-session"
|
53 |
+
if session_id not in conversation_turns:
|
54 |
+
conversation_turns[session_id] = 0
|
55 |
+
conversation_turns[session_id] += 1
|
56 |
+
|
57 |
+
# Build the prompt with proper Llama-2 formatting
|
58 |
+
prompt = build_llama2_prompt(SYSTEM_PROMPT, history, message)
|
59 |
+
|
60 |
+
# Add summarization instruction after 4 turns
|
61 |
+
if conversation_turns[session_id] >= 4:
|
62 |
+
prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
|
63 |
+
|
64 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
65 |
|
66 |
+
# Generate the response
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model.generate(
|
69 |
+
inputs.input_ids,
|
70 |
+
max_new_tokens=512,
|
71 |
+
temperature=0.7,
|
72 |
+
top_p=0.9,
|
73 |
+
do_sample=True,
|
74 |
+
pad_token_id=tokenizer.eos_token_id
|
75 |
)
|
76 |
+
|
77 |
+
# Decode and extract only the assistant's response
|
78 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
79 |
+
assistant_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
|
80 |
+
|
81 |
+
return assistant_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Create the Gradio interface
|
84 |
demo = gr.ChatInterface(
|
85 |
+
fn=generate_response,
|
86 |
+
title="Medical Assistant Chatbot",
|
87 |
+
description="Ask about your symptoms and I'll help gather relevant information.",
|
88 |
examples=[
|
89 |
"I have a cough and my throat hurts",
|
90 |
"I've been having headaches for a week",
|
91 |
"My stomach has been hurting since yesterday"
|
92 |
],
|
93 |
+
theme="soft"
|
94 |
)
|
95 |
|
|
|
96 |
if __name__ == "__main__":
|
97 |
+
demo.launch()
|