File size: 9,085 Bytes
b80af5b
71bcd31
9f6ac99
 
c4447f4
000ab02
71bcd31
 
 
 
 
6e237a4
 
 
 
a985489
71bcd31
 
 
 
 
 
 
6e237a4
 
 
 
 
 
 
71bcd31
 
 
5522bf8
 
 
 
 
 
 
 
 
 
 
 
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4447f4
 
71bcd31
d6da22c
71bcd31
a0597d0
 
 
 
 
d6da22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
71bcd31
 
 
000ab02
 
 
 
5522bf8
 
a985489
000ab02
5522bf8
 
a985489
000ab02
5522bf8
 
 
 
 
 
 
000ab02
 
aa89cd7
 
a0597d0
c4447f4
 
 
 
 
a0597d0
000ab02
 
 
 
 
 
 
 
 
c4447f4
a985489
 
 
 
 
 
 
 
d6da22c
 
 
 
 
 
c4447f4
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
c4447f4
d6da22c
 
a985489
 
 
aa89cd7
 
 
 
 
 
 
c4447f4
aa89cd7
b80af5b
71bcd31
6d5190c
71bcd31
aa89cd7
 
8b29c0d
71bcd31
 
 
8b29c0d
71bcd31
6d5190c
b80af5b
 
71bcd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain.memory import ConversationBufferMemory
import re

# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"

SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's name, age, health condition, symptoms, medical history, medications, lifestyle, and other relevant data.

Always begin by asking for the user's name and age if not already provided.

**IMPORTANT** Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies

After collecting sufficient information (at least 4-5 exchanges, but continue up to 10 if the user keeps responding), summarize findings, provide a likely diagnosis (if possible), and suggest when they should seek professional care.

If enough information is collected, provide a concise, general diagnosis and a practical over-the-counter medicine and home remedy suggestion.

Do NOT make specific prescriptions for prescription-only drugs.

Respond empathetically and clearly. Always be professional and thorough."""

MEDITRON_PROMPT = """<|im_start|>system
You are a board-certified physician with extensive clinical experience. Your role is to provide evidence-based medical assessment and recommendations following standard medical practice.

For each patient case:
1. Analyze presented symptoms systematically using medical terminology
2. Create a structured differential diagnosis with most likely conditions first
3. Recommend appropriate next steps (testing, monitoring, or treatment)
4. Provide specific medication recommendations with precise dosing regimens
5. Include clear red flags that would necessitate urgent medical attention
6. Base all recommendations on current clinical guidelines and evidence-based medicine
7. Maintain professional, clear, and compassionate communication

Follow standard clinical documentation format when appropriate and prioritize patient safety at all times. Remember to include appropriate medical disclaimers.
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""

print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
model = AutoModelForCausalLM.from_pretrained(
    LLAMA_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
print("Llama-2 model loaded successfully!")

print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
    MEDITRON_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
print("Meditron model loaded successfully!")

# Initialize LangChain memory
memory = ConversationBufferMemory(return_messages=True)

def build_llama2_prompt(system_prompt, messages, user_input, followup_stage=None):
    prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
    for msg in messages:
        if msg.type == "human":
            prompt += f"{msg.content} [/INST] "
        elif msg.type == "ai":
            prompt += f"{msg.content} </s><s>[INST] "
    # Add a specific follow-up question if in followup stage
    if followup_stage is not None:
        followup_questions = [
            "Can you describe your main symptoms in detail?",
            "How long have you been experiencing these symptoms?",
            "On a scale of 1-10, how severe are your symptoms?",
            "Have you noticed anything that makes your symptoms better or worse?",
            "Do you have any other related symptoms, such as fever, fatigue, or shortness of breath?"
        ]
        if followup_stage < len(followup_questions):
            prompt += f"{followup_questions[followup_stage]} [/INST] "
        else:
            prompt += f"{user_input} [/INST] "
    else:
        prompt += f"{user_input} [/INST] "
    return prompt

def get_meditron_suggestions(patient_info):
    """Use Meditron model to generate medicine and remedy suggestions."""
    prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
    inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
    
    with torch.no_grad():
        outputs = meditron_model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=256,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
    
    suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
    return suggestion

def extract_name_age(messages):
    name, age = None, None
    for msg in messages:
        if msg.type == "human":
            # Try to extract age
            age_match = re.search(r"(?:I am|I'm|age is|aged|My age is|im|i'm)\s*(\d{1,3})", msg.content, re.IGNORECASE)
            if age_match and not age:
                age = age_match.group(1)
            # Try to extract name (avoid matching 'I'm' as name if age is present)
            name_match = re.search(r"my name is\s*([A-Za-z]+)", msg.content, re.IGNORECASE)
            if name_match and not name:
                name = name_match.group(1)
            # Fallback: if user says 'I'm <name> and <age>'
            fallback_match = re.search(r"i['’`]?m\s*([A-Za-z]+)\s*(?:and|,)?\s*(\d{1,3})", msg.content, re.IGNORECASE)
            if fallback_match:
                if not name:
                    name = fallback_match.group(1)
                if not age:
                    age = fallback_match.group(2)
    return name, age

@spaces.GPU
def generate_response(message, history):
    """Generate a response using both models, with full context."""
    # Save the latest user message and last assistant response to memory
    if history and len(history[-1]) == 2:
        memory.save_context({"input": history[-1][0]}, {"output": history[-1][1]})
    memory.save_context({"input": message}, {"output": ""})

    messages = memory.chat_memory.messages
    name, age = extract_name_age(messages)
    missing_info = []
    if not name:
        missing_info.append("your name")
    if not age:
        missing_info.append("your age")
    if missing_info:
        ask = "Before we continue, could you please tell me " + " and ".join(missing_info) + "?"
        return ask

    # Count how many user turns have actually provided new info (not just name/age)
    info_turns = 0
    for msg in messages:
        if msg.type == "human":
            # Ignore turns that only provide name/age
            if not re.fullmatch(r".*(name|age|years? old|I'm|I am|my name is).*", msg.content, re.IGNORECASE):
                info_turns += 1

    # Ask up to 5 intelligent follow-up questions, then summarize/diagnose
    if info_turns < 5:
        prompt = build_llama2_prompt(SYSTEM_PROMPT, messages, message, followup_stage=info_turns)
    else:
        prompt = build_llama2_prompt(SYSTEM_PROMPT, messages, message)
        prompt = prompt.replace("[/INST] ", "[/INST] Now, based on all the information, provide a likely diagnosis (if possible), and suggest when professional care may be needed. ")

    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
    llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()

    # After 5 info turns, add medicine suggestions from Meditron, but only once
    if info_turns == 5:
        full_patient_info = "\n".join([
            m.content for m in messages if m.type == "human" and not re.fullmatch(r".*(name|age|years? old|I'm|I am|my name is).*", m.content, re.IGNORECASE)
        ] + [message]) + "\n\nSummary: " + llama_response
        medicine_suggestions = get_meditron_suggestions(full_patient_info)
        final_response = (
            f"{llama_response}\n\n"
            f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
            f"{medicine_suggestions}"
        )
        return final_response

    return llama_response

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=generate_response,
    title="Medical Assistant with Medicine Suggestions",
    description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
    examples=[
        "I have a cough and my throat hurts",
        "I've been having headaches for a week",
        "My stomach has been hurting since yesterday"
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()