Spaces:
Sleeping
Sleeping
File size: 9,085 Bytes
b80af5b 71bcd31 9f6ac99 c4447f4 000ab02 71bcd31 6e237a4 a985489 71bcd31 6e237a4 71bcd31 5522bf8 71bcd31 c4447f4 71bcd31 d6da22c 71bcd31 a0597d0 d6da22c 71bcd31 bdce857 71bcd31 000ab02 5522bf8 a985489 000ab02 5522bf8 a985489 000ab02 5522bf8 000ab02 aa89cd7 a0597d0 c4447f4 a0597d0 000ab02 c4447f4 a985489 d6da22c c4447f4 71bcd31 c4447f4 d6da22c a985489 aa89cd7 c4447f4 aa89cd7 b80af5b 71bcd31 6d5190c 71bcd31 aa89cd7 8b29c0d 71bcd31 8b29c0d 71bcd31 6d5190c b80af5b 71bcd31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain.memory import ConversationBufferMemory
import re
# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's name, age, health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Always begin by asking for the user's name and age if not already provided.
**IMPORTANT** Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (at least 4-5 exchanges, but continue up to 10 if the user keeps responding), summarize findings, provide a likely diagnosis (if possible), and suggest when they should seek professional care.
If enough information is collected, provide a concise, general diagnosis and a practical over-the-counter medicine and home remedy suggestion.
Do NOT make specific prescriptions for prescription-only drugs.
Respond empathetically and clearly. Always be professional and thorough."""
MEDITRON_PROMPT = """<|im_start|>system
You are a board-certified physician with extensive clinical experience. Your role is to provide evidence-based medical assessment and recommendations following standard medical practice.
For each patient case:
1. Analyze presented symptoms systematically using medical terminology
2. Create a structured differential diagnosis with most likely conditions first
3. Recommend appropriate next steps (testing, monitoring, or treatment)
4. Provide specific medication recommendations with precise dosing regimens
5. Include clear red flags that would necessitate urgent medical attention
6. Base all recommendations on current clinical guidelines and evidence-based medicine
7. Maintain professional, clear, and compassionate communication
Follow standard clinical documentation format when appropriate and prioritize patient safety at all times. Remember to include appropriate medical disclaimers.
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""
print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
model = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Llama-2 model loaded successfully!")
print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
MEDITRON_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Meditron model loaded successfully!")
# Initialize LangChain memory
memory = ConversationBufferMemory(return_messages=True)
def build_llama2_prompt(system_prompt, messages, user_input, followup_stage=None):
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
for msg in messages:
if msg.type == "human":
prompt += f"{msg.content} [/INST] "
elif msg.type == "ai":
prompt += f"{msg.content} </s><s>[INST] "
# Add a specific follow-up question if in followup stage
if followup_stage is not None:
followup_questions = [
"Can you describe your main symptoms in detail?",
"How long have you been experiencing these symptoms?",
"On a scale of 1-10, how severe are your symptoms?",
"Have you noticed anything that makes your symptoms better or worse?",
"Do you have any other related symptoms, such as fever, fatigue, or shortness of breath?"
]
if followup_stage < len(followup_questions):
prompt += f"{followup_questions[followup_stage]} [/INST] "
else:
prompt += f"{user_input} [/INST] "
else:
prompt += f"{user_input} [/INST] "
return prompt
def get_meditron_suggestions(patient_info):
"""Use Meditron model to generate medicine and remedy suggestions."""
prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
with torch.no_grad():
outputs = meditron_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True
)
suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return suggestion
def extract_name_age(messages):
name, age = None, None
for msg in messages:
if msg.type == "human":
# Try to extract age
age_match = re.search(r"(?:I am|I'm|age is|aged|My age is|im|i'm)\s*(\d{1,3})", msg.content, re.IGNORECASE)
if age_match and not age:
age = age_match.group(1)
# Try to extract name (avoid matching 'I'm' as name if age is present)
name_match = re.search(r"my name is\s*([A-Za-z]+)", msg.content, re.IGNORECASE)
if name_match and not name:
name = name_match.group(1)
# Fallback: if user says 'I'm <name> and <age>'
fallback_match = re.search(r"i['’`]?m\s*([A-Za-z]+)\s*(?:and|,)?\s*(\d{1,3})", msg.content, re.IGNORECASE)
if fallback_match:
if not name:
name = fallback_match.group(1)
if not age:
age = fallback_match.group(2)
return name, age
@spaces.GPU
def generate_response(message, history):
"""Generate a response using both models, with full context."""
# Save the latest user message and last assistant response to memory
if history and len(history[-1]) == 2:
memory.save_context({"input": history[-1][0]}, {"output": history[-1][1]})
memory.save_context({"input": message}, {"output": ""})
messages = memory.chat_memory.messages
name, age = extract_name_age(messages)
missing_info = []
if not name:
missing_info.append("your name")
if not age:
missing_info.append("your age")
if missing_info:
ask = "Before we continue, could you please tell me " + " and ".join(missing_info) + "?"
return ask
# Count how many user turns have actually provided new info (not just name/age)
info_turns = 0
for msg in messages:
if msg.type == "human":
# Ignore turns that only provide name/age
if not re.fullmatch(r".*(name|age|years? old|I'm|I am|my name is).*", msg.content, re.IGNORECASE):
info_turns += 1
# Ask up to 5 intelligent follow-up questions, then summarize/diagnose
if info_turns < 5:
prompt = build_llama2_prompt(SYSTEM_PROMPT, messages, message, followup_stage=info_turns)
else:
prompt = build_llama2_prompt(SYSTEM_PROMPT, messages, message)
prompt = prompt.replace("[/INST] ", "[/INST] Now, based on all the information, provide a likely diagnosis (if possible), and suggest when professional care may be needed. ")
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
# After 5 info turns, add medicine suggestions from Meditron, but only once
if info_turns == 5:
full_patient_info = "\n".join([
m.content for m in messages if m.type == "human" and not re.fullmatch(r".*(name|age|years? old|I'm|I am|my name is).*", m.content, re.IGNORECASE)
] + [message]) + "\n\nSummary: " + llama_response
medicine_suggestions = get_meditron_suggestions(full_patient_info)
final_response = (
f"{llama_response}\n\n"
f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
f"{medicine_suggestions}"
)
return final_response
return llama_response
# Create the Gradio interface
demo = gr.ChatInterface(
fn=generate_response,
title="Medical Assistant with Medicine Suggestions",
description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
examples=[
"I have a cough and my throat hurts",
"I've been having headaches for a week",
"My stomach has been hurting since yesterday"
],
theme="soft"
)
if __name__ == "__main__":
demo.launch() |