Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,96 +2,433 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
- Related symptoms
|
16 |
-
- Medical history
|
17 |
-
- Current medications and allergies
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
demo = gr.ChatInterface(
|
85 |
-
fn=
|
86 |
-
title="Medical Assistant
|
87 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
88 |
examples=[
|
89 |
-
"I
|
90 |
-
"I'
|
91 |
-
"
|
|
|
92 |
],
|
93 |
-
theme="soft"
|
|
|
|
|
|
|
|
|
94 |
)
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
-
demo.launch()
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from langgraph.graph import StateGraph, END
|
6 |
+
from typing import TypedDict, List, Dict, Optional
|
7 |
+
from datetime import datetime
|
8 |
+
import json
|
9 |
|
10 |
+
# Enhanced State Management
|
11 |
+
class MedicalState(TypedDict):
|
12 |
+
patient_id: str
|
13 |
+
conversation_history: List[Dict]
|
14 |
+
symptoms: Dict[str, any]
|
15 |
+
vital_questions_asked: List[str]
|
16 |
+
medical_history: Dict
|
17 |
+
current_medications: List[str]
|
18 |
+
allergies: List[str]
|
19 |
+
severity_scores: Dict[str, int]
|
20 |
+
red_flags: List[str]
|
21 |
+
assessment_complete: bool
|
22 |
+
suggested_actions: List[str]
|
23 |
+
consultation_stage: str # intake, assessment, summary, recommendations
|
24 |
|
25 |
+
# Medical Knowledge Base
|
26 |
+
MEDICAL_CATEGORIES = {
|
27 |
+
"respiratory": ["cough", "shortness of breath", "chest pain", "wheezing"],
|
28 |
+
"gastrointestinal": ["nausea", "vomiting", "diarrhea", "stomach pain", "heartburn"],
|
29 |
+
"neurological": ["headache", "dizziness", "numbness", "tingling"],
|
30 |
+
"musculoskeletal": ["joint pain", "muscle pain", "back pain", "stiffness"],
|
31 |
+
"cardiovascular": ["chest pain", "palpitations", "swelling", "fatigue"],
|
32 |
+
"dermatological": ["rash", "itching", "skin changes", "wounds"],
|
33 |
+
"mental_health": ["anxiety", "depression", "sleep issues", "stress"]
|
34 |
+
}
|
35 |
|
36 |
+
RED_FLAGS = [
|
37 |
+
"chest pain", "difficulty breathing", "severe headache", "high fever",
|
38 |
+
"blood in stool", "blood in urine", "severe abdominal pain",
|
39 |
+
"sudden vision changes", "loss of consciousness", "severe allergic reaction"
|
40 |
+
]
|
|
|
|
|
|
|
41 |
|
42 |
+
VITAL_QUESTIONS = {
|
43 |
+
"symptom_onset": "When did your symptoms first start?",
|
44 |
+
"severity": "On a scale of 1-10, how severe would you rate your symptoms?",
|
45 |
+
"triggers": "What makes your symptoms better or worse?",
|
46 |
+
"associated_symptoms": "Are you experiencing any other symptoms?",
|
47 |
+
"medical_history": "Do you have any chronic medical conditions?",
|
48 |
+
"medications": "Are you currently taking any medications?",
|
49 |
+
"allergies": "Do you have any known allergies?"
|
50 |
+
}
|
51 |
|
52 |
+
class EnhancedMedicalAssistant:
|
53 |
+
def __init__(self):
|
54 |
+
self.load_models()
|
55 |
+
self.setup_langgraph()
|
56 |
+
|
57 |
+
def load_models(self):
|
58 |
+
"""Load the AI models"""
|
59 |
+
print("Loading models...")
|
60 |
+
# Llama-2 for conversation
|
61 |
+
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
62 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
63 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
device_map="auto"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Meditron for medical suggestions
|
69 |
+
self.meditron_tokenizer = AutoTokenizer.from_pretrained("epfl-llm/meditron-7b")
|
70 |
+
self.meditron_model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
"epfl-llm/meditron-7b",
|
72 |
+
torch_dtype=torch.float16,
|
73 |
+
device_map="auto"
|
74 |
+
)
|
75 |
+
print("Models loaded successfully!")
|
76 |
+
|
77 |
+
def setup_langgraph(self):
|
78 |
+
"""Setup LangGraph workflow"""
|
79 |
+
workflow = StateGraph(MedicalState)
|
80 |
+
|
81 |
+
# Add nodes
|
82 |
+
workflow.add_node("intake", self.patient_intake)
|
83 |
+
workflow.add_node("symptom_assessment", self.assess_symptoms)
|
84 |
+
workflow.add_node("risk_evaluation", self.evaluate_risks)
|
85 |
+
workflow.add_node("generate_recommendations", self.generate_recommendations)
|
86 |
+
workflow.add_node("emergency_triage", self.emergency_triage)
|
87 |
+
|
88 |
+
# Define edges
|
89 |
+
workflow.set_entry_point("intake")
|
90 |
+
workflow.add_conditional_edges(
|
91 |
+
"intake",
|
92 |
+
self.route_after_intake,
|
93 |
+
{
|
94 |
+
"continue_assessment": "symptom_assessment",
|
95 |
+
"emergency": "emergency_triage",
|
96 |
+
"complete": "generate_recommendations"
|
97 |
+
}
|
98 |
+
)
|
99 |
+
workflow.add_edge("symptom_assessment", "risk_evaluation")
|
100 |
+
workflow.add_conditional_edges(
|
101 |
+
"risk_evaluation",
|
102 |
+
self.route_after_risk_eval,
|
103 |
+
{
|
104 |
+
"emergency": "emergency_triage",
|
105 |
+
"continue": "generate_recommendations",
|
106 |
+
"need_more_info": "symptom_assessment"
|
107 |
+
}
|
108 |
+
)
|
109 |
+
workflow.add_edge("generate_recommendations", END)
|
110 |
+
workflow.add_edge("emergency_triage", END)
|
111 |
+
|
112 |
+
self.workflow = workflow.compile()
|
113 |
|
114 |
+
def patient_intake(self, state: MedicalState) -> MedicalState:
|
115 |
+
"""Initial patient intake and basic information gathering"""
|
116 |
+
last_message = state["conversation_history"][-1]["content"] if state["conversation_history"] else ""
|
117 |
+
|
118 |
+
# Extract symptoms and categorize them
|
119 |
+
detected_symptoms = self.extract_symptoms(last_message)
|
120 |
+
state["symptoms"].update(detected_symptoms)
|
121 |
+
|
122 |
+
# Check for red flags
|
123 |
+
red_flags = self.check_red_flags(last_message)
|
124 |
+
if red_flags:
|
125 |
+
state["red_flags"].extend(red_flags)
|
126 |
+
|
127 |
+
# Determine what vital questions still need to be asked
|
128 |
+
missing_questions = self.get_missing_vital_questions(state)
|
129 |
+
|
130 |
+
if missing_questions and len(state["conversation_history"]) < 6:
|
131 |
+
state["consultation_stage"] = "intake"
|
132 |
+
return state
|
133 |
+
else:
|
134 |
+
state["consultation_stage"] = "assessment"
|
135 |
+
return state
|
136 |
|
137 |
+
def assess_symptoms(self, state: MedicalState) -> MedicalState:
|
138 |
+
"""Detailed symptom assessment"""
|
139 |
+
# Analyze symptom patterns and severity
|
140 |
+
for symptom, details in state["symptoms"].items():
|
141 |
+
if "severity" not in details:
|
142 |
+
# Need to ask about severity
|
143 |
+
state["consultation_stage"] = "assessment"
|
144 |
+
return state
|
145 |
+
|
146 |
+
state["assessment_complete"] = True
|
147 |
+
return state
|
148 |
|
149 |
+
def evaluate_risks(self, state: MedicalState) -> MedicalState:
|
150 |
+
"""Evaluate patient risks and urgency"""
|
151 |
+
risk_score = 0
|
152 |
+
|
153 |
+
# Check red flags
|
154 |
+
if state["red_flags"]:
|
155 |
+
risk_score += len(state["red_flags"]) * 3
|
156 |
+
|
157 |
+
# Check severity scores
|
158 |
+
for severity in state["severity_scores"].values():
|
159 |
+
if severity >= 8:
|
160 |
+
risk_score += 2
|
161 |
+
elif severity >= 6:
|
162 |
+
risk_score += 1
|
163 |
+
|
164 |
+
# Check symptom duration and progression
|
165 |
+
# (Implementation would analyze timeline)
|
166 |
+
|
167 |
+
if risk_score >= 5:
|
168 |
+
state["consultation_stage"] = "emergency"
|
169 |
+
else:
|
170 |
+
state["consultation_stage"] = "recommendations"
|
171 |
+
|
172 |
+
return state
|
173 |
+
|
174 |
+
def generate_recommendations(self, state: MedicalState) -> MedicalState:
|
175 |
+
"""Generate treatment recommendations and care suggestions"""
|
176 |
+
patient_summary = self.create_patient_summary(state)
|
177 |
+
|
178 |
+
# Use Meditron for medical recommendations
|
179 |
+
recommendations = self.get_meditron_recommendations(patient_summary)
|
180 |
+
state["suggested_actions"] = recommendations
|
181 |
+
|
182 |
+
return state
|
183 |
+
|
184 |
+
def emergency_triage(self, state: MedicalState) -> MedicalState:
|
185 |
+
"""Handle emergency situations"""
|
186 |
+
emergency_response = {
|
187 |
+
"urgent_care_needed": True,
|
188 |
+
"recommended_action": "Seek immediate medical attention",
|
189 |
+
"reasons": state["red_flags"],
|
190 |
+
"instructions": "Go to the nearest emergency room or call emergency services"
|
191 |
+
}
|
192 |
+
state["suggested_actions"] = [emergency_response]
|
193 |
+
return state
|
194 |
+
|
195 |
+
def route_after_intake(self, state: MedicalState):
|
196 |
+
"""Route decision after intake"""
|
197 |
+
if state["red_flags"]:
|
198 |
+
return "emergency"
|
199 |
+
elif len(state["vital_questions_asked"]) < 5:
|
200 |
+
return "continue_assessment"
|
201 |
+
else:
|
202 |
+
return "complete"
|
203 |
+
|
204 |
+
def route_after_risk_eval(self, state: MedicalState):
|
205 |
+
"""Route decision after risk evaluation"""
|
206 |
+
if state["consultation_stage"] == "emergency":
|
207 |
+
return "emergency"
|
208 |
+
elif state["assessment_complete"]:
|
209 |
+
return "continue"
|
210 |
+
else:
|
211 |
+
return "need_more_info"
|
212 |
+
|
213 |
+
def extract_symptoms(self, text: str) -> Dict:
|
214 |
+
"""Extract and categorize symptoms from patient text"""
|
215 |
+
symptoms = {}
|
216 |
+
text_lower = text.lower()
|
217 |
+
|
218 |
+
for category, symptom_list in MEDICAL_CATEGORIES.items():
|
219 |
+
for symptom in symptom_list:
|
220 |
+
if symptom in text_lower:
|
221 |
+
symptoms[symptom] = {
|
222 |
+
"category": category,
|
223 |
+
"mentioned_at": datetime.now().isoformat(),
|
224 |
+
"context": text
|
225 |
+
}
|
226 |
+
|
227 |
+
return symptoms
|
228 |
+
|
229 |
+
def check_red_flags(self, text: str) -> List[str]:
|
230 |
+
"""Check for emergency red flags"""
|
231 |
+
found_flags = []
|
232 |
+
text_lower = text.lower()
|
233 |
+
|
234 |
+
for flag in RED_FLAGS:
|
235 |
+
if flag in text_lower:
|
236 |
+
found_flags.append(flag)
|
237 |
+
|
238 |
+
return found_flags
|
239 |
+
|
240 |
+
def get_missing_vital_questions(self, state: MedicalState) -> List[str]:
|
241 |
+
"""Determine which vital questions haven't been asked"""
|
242 |
+
asked = state["vital_questions_asked"]
|
243 |
+
return [q for q in VITAL_QUESTIONS.keys() if q not in asked]
|
244 |
+
|
245 |
+
def create_patient_summary(self, state: MedicalState) -> str:
|
246 |
+
"""Create a comprehensive patient summary"""
|
247 |
+
summary = f"""
|
248 |
+
Patient Summary:
|
249 |
+
Symptoms: {json.dumps(state['symptoms'], indent=2)}
|
250 |
+
Medical History: {state['medical_history']}
|
251 |
+
Current Medications: {state['current_medications']}
|
252 |
+
Allergies: {state['allergies']}
|
253 |
+
Severity Scores: {state['severity_scores']}
|
254 |
+
Conversation History: {[msg['content'] for msg in state['conversation_history'][-3:]]}
|
255 |
+
"""
|
256 |
+
return summary
|
257 |
+
|
258 |
+
def get_meditron_recommendations(self, patient_summary: str) -> List[str]:
|
259 |
+
"""Get medical recommendations using Meditron model"""
|
260 |
+
prompt = f"""
|
261 |
+
Based on the following patient information, provide:
|
262 |
+
1. Specific over-the-counter medications with dosing
|
263 |
+
2. Home remedies and self-care measures
|
264 |
+
3. When to seek professional medical care
|
265 |
+
4. Follow-up recommendations
|
266 |
+
|
267 |
+
Patient Information:
|
268 |
+
{patient_summary}
|
269 |
+
|
270 |
+
Response:"""
|
271 |
+
|
272 |
+
inputs = self.meditron_tokenizer(prompt, return_tensors="pt").to(self.meditron_model.device)
|
273 |
+
|
274 |
+
with torch.no_grad():
|
275 |
+
outputs = self.meditron_model.generate(
|
276 |
+
inputs.input_ids,
|
277 |
+
attention_mask=inputs.attention_mask,
|
278 |
+
max_new_tokens=400,
|
279 |
+
temperature=0.7,
|
280 |
+
top_p=0.9,
|
281 |
+
do_sample=True
|
282 |
+
)
|
283 |
+
|
284 |
+
recommendation = self.meditron_tokenizer.decode(
|
285 |
+
outputs[0][inputs.input_ids.shape[1]:],
|
286 |
+
skip_special_tokens=True
|
287 |
+
)
|
288 |
+
|
289 |
+
return [recommendation]
|
290 |
+
|
291 |
+
def generate_response(self, message: str, history: List) -> str:
|
292 |
+
"""Main response generation function"""
|
293 |
+
# Initialize or update state
|
294 |
+
state = MedicalState(
|
295 |
+
patient_id="session_001",
|
296 |
+
conversation_history=history + [{"role": "user", "content": message}],
|
297 |
+
symptoms={},
|
298 |
+
vital_questions_asked=[],
|
299 |
+
medical_history={},
|
300 |
+
current_medications=[],
|
301 |
+
allergies=[],
|
302 |
+
severity_scores={},
|
303 |
+
red_flags=[],
|
304 |
+
assessment_complete=False,
|
305 |
+
suggested_actions=[],
|
306 |
+
consultation_stage="intake"
|
307 |
)
|
308 |
+
|
309 |
+
# Run through LangGraph workflow
|
310 |
+
result = self.workflow.invoke(state)
|
311 |
+
|
312 |
+
# Generate contextual response
|
313 |
+
response = self.generate_contextual_response(result, message)
|
314 |
+
|
315 |
+
return response
|
316 |
+
|
317 |
+
def generate_contextual_response(self, state: MedicalState, user_message: str) -> str:
|
318 |
+
"""Generate a contextual response based on the current state"""
|
319 |
+
if state["consultation_stage"] == "emergency":
|
320 |
+
return self.format_emergency_response(state)
|
321 |
+
elif state["consultation_stage"] == "intake":
|
322 |
+
return self.format_intake_response(state, user_message)
|
323 |
+
elif state["consultation_stage"] == "assessment":
|
324 |
+
return self.format_assessment_response(state)
|
325 |
+
elif state["consultation_stage"] == "recommendations":
|
326 |
+
return self.format_recommendations_response(state)
|
327 |
+
else:
|
328 |
+
return self.format_default_response(user_message)
|
329 |
|
330 |
+
def format_emergency_response(self, state: MedicalState) -> str:
|
331 |
+
"""Format emergency response"""
|
332 |
+
return f"""
|
333 |
+
🚨 URGENT MEDICAL ATTENTION NEEDED 🚨
|
334 |
+
|
335 |
+
Based on your symptoms, I recommend seeking immediate medical care because:
|
336 |
+
{', '.join(state['red_flags'])}
|
337 |
+
|
338 |
+
Please:
|
339 |
+
- Go to the nearest emergency room, OR
|
340 |
+
- Call emergency services (911), OR
|
341 |
+
- Contact your doctor immediately
|
342 |
+
|
343 |
+
This is not a diagnosis, but these symptoms warrant immediate professional evaluation.
|
344 |
+
"""
|
345 |
|
346 |
+
def format_intake_response(self, state: MedicalState, user_message: str) -> str:
|
347 |
+
"""Format intake response with follow-up questions"""
|
348 |
+
# Use Llama-2 to generate empathetic response
|
349 |
+
prompt = f"""
|
350 |
+
You are a caring virtual doctor. The patient said: "{user_message}"
|
351 |
+
|
352 |
+
Respond empathetically and ask 1-2 specific follow-up questions about:
|
353 |
+
- Symptom details (duration, severity, triggers)
|
354 |
+
- Associated symptoms
|
355 |
+
- Medical history if relevant
|
356 |
+
|
357 |
+
Be professional, caring, and thorough.
|
358 |
+
"""
|
359 |
+
|
360 |
+
return self.generate_llama_response(prompt)
|
361 |
+
|
362 |
+
def format_assessment_response(self, state: MedicalState) -> str:
|
363 |
+
"""Format detailed assessment response"""
|
364 |
+
return "Let me gather a bit more information to better understand your condition..."
|
365 |
+
|
366 |
+
def format_recommendations_response(self, state: MedicalState) -> str:
|
367 |
+
"""Format final recommendations"""
|
368 |
+
recommendations = "\n".join(state["suggested_actions"])
|
369 |
+
return f"""
|
370 |
+
Based on our consultation, here's my assessment and recommendations:
|
371 |
+
|
372 |
+
{recommendations}
|
373 |
+
|
374 |
+
**Important Disclaimer:** I am an AI assistant, not a licensed medical professional.
|
375 |
+
These suggestions are for informational purposes only. Please consult with a
|
376 |
+
healthcare provider for proper diagnosis and treatment.
|
377 |
+
"""
|
378 |
+
|
379 |
+
def format_default_response(self, user_message: str) -> str:
|
380 |
+
"""Format default response"""
|
381 |
+
return self.generate_llama_response(f"Respond professionally to: {user_message}")
|
382 |
+
|
383 |
+
def generate_llama_response(self, prompt: str) -> str:
|
384 |
+
"""Generate response using Llama-2"""
|
385 |
+
formatted_prompt = f"<s>[INST] {prompt} [/INST] "
|
386 |
+
inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.model.device)
|
387 |
+
|
388 |
+
with torch.no_grad():
|
389 |
+
outputs = self.model.generate(
|
390 |
+
inputs.input_ids,
|
391 |
+
attention_mask=inputs.attention_mask,
|
392 |
+
max_new_tokens=300,
|
393 |
+
temperature=0.7,
|
394 |
+
top_p=0.9,
|
395 |
+
do_sample=True,
|
396 |
+
pad_token_id=self.tokenizer.eos_token_id
|
397 |
+
)
|
398 |
+
|
399 |
+
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
400 |
+
return response.split('</s>')[0].strip()
|
401 |
|
402 |
+
# Initialize the enhanced medical assistant
|
403 |
+
medical_assistant = EnhancedMedicalAssistant()
|
404 |
+
|
405 |
+
@spaces.GPU
|
406 |
+
def chat_interface(message, history):
|
407 |
+
"""Gradio chat interface"""
|
408 |
+
return medical_assistant.generate_response(message, history)
|
409 |
+
|
410 |
+
# Create Gradio interface
|
411 |
demo = gr.ChatInterface(
|
412 |
+
fn=chat_interface,
|
413 |
+
title="🏥 Advanced Medical AI Assistant",
|
414 |
+
description="""
|
415 |
+
I'm an AI medical assistant that can help assess your symptoms and provide guidance.
|
416 |
+
I'll ask relevant questions to better understand your condition and provide appropriate recommendations.
|
417 |
+
|
418 |
+
⚠️ **Important**: I'm not a replacement for professional medical care. Always consult healthcare providers for serious concerns.
|
419 |
+
""",
|
420 |
examples=[
|
421 |
+
"I've been having severe chest pain for the last hour",
|
422 |
+
"I have a persistent cough that's been going on for 2 weeks",
|
423 |
+
"I'm experiencing nausea and stomach pain after eating",
|
424 |
+
"I have a headache and feel dizzy"
|
425 |
],
|
426 |
+
theme="soft",
|
427 |
+
css="""
|
428 |
+
.message.user { background-color: #e3f2fd; }
|
429 |
+
.message.bot { background-color: #f1f8e9; }
|
430 |
+
"""
|
431 |
)
|
432 |
|
433 |
if __name__ == "__main__":
|
434 |
+
demo.launch(share=True)
|