Spaces:
Sleeping
Sleeping
File size: 9,562 Bytes
b80af5b 71bcd31 9f6ac99 c4447f4 000ab02 71bcd31 43e5827 6e237a4 a985489 71bcd31 6e237a4 43e5827 6e237a4 71bcd31 5522bf8 71bcd31 43e5827 71bcd31 bdce857 71bcd31 43e5827 a7f6391 43e5827 a7f6391 43e5827 a7f6391 43e5827 a7f6391 aa89cd7 43e5827 a7f6391 43e5827 a7f6391 d6da22c 43e5827 a7f6391 43e5827 a7f6391 43e5827 a7f6391 43e5827 a7f6391 aa89cd7 c4447f4 71bcd31 6d5190c 71bcd31 43e5827 8b29c0d 43e5827 8b29c0d 71bcd31 6d5190c b80af5b 71bcd31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain.memory import ConversationBufferMemory
import re
# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"
SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
**IMPORTANT** Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information, summarize findings, provide a likely diagnosis (if possible), and suggest when they should seek professional care.
If enough information is collected, provide a concise, general diagnosis and a practical over-the-counter medicine and home remedy suggestion.
Do NOT make specific prescriptions for prescription-only drugs.
Respond empathetically and clearly. Always be professional and thorough."""
MEDITRON_PROMPT = """<|im_start|>system
You are a board-certified physician with extensive clinical experience. Your role is to provide evidence-based medical assessment and recommendations following standard medical practice.
For each patient case:
1. Analyze presented symptoms systematically using medical terminology
2. Create a structured differential diagnosis with most likely conditions first
3. Recommend appropriate next steps (testing, monitoring, or treatment)
4. Provide specific medication recommendations with precise dosing regimens
5. Include clear red flags that would necessitate urgent medical attention
6. Base all recommendations on current clinical guidelines and evidence-based medicine
7. Maintain professional, clear, and compassionate communication
Follow standard clinical documentation format when appropriate and prioritize patient safety at all times. Remember to include appropriate medical disclaimers.
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""
print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
model = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Llama-2 model loaded successfully!")
print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
MEDITRON_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
print("Meditron model loaded successfully!")
# Simple conversation state tracking
conversation_state = {
'name': None,
'age': None,
'medical_turns': 0,
'has_name': False,
'has_age': False
}
def get_meditron_suggestions(patient_info):
"""Use Meditron model to generate medicine and remedy suggestions."""
prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
with torch.no_grad():
outputs = meditron_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True
)
suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return suggestion
def build_simple_prompt(system_prompt, conversation_history, current_input):
"""Build a simple prompt for Llama-2"""
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
# Add conversation history
for i, (user_msg, bot_msg) in enumerate(conversation_history):
prompt += f"{user_msg} [/INST] {bot_msg} </s><s>[INST] "
# Add current input
prompt += f"{current_input} [/INST] "
return prompt
@spaces.GPU
def generate_response(message, history):
"""Generate a response using simple state tracking."""
global conversation_state
# Reset state if this is a new conversation
if not history:
conversation_state = {
'name': None,
'age': None,
'medical_turns': 0,
'has_name': False,
'has_age': False
}
# Step 1: Ask for name if not provided
if not conversation_state['has_name']:
conversation_state['has_name'] = True
return "Hello! Before we discuss your health concerns, could you please tell me your name?"
# Step 2: Store name and ask for age
if conversation_state['name'] is None:
conversation_state['name'] = message.strip()
return f"Nice to meet you, {conversation_state['name']}! Could you please tell me your age?"
# Step 3: Store age and start medical questions
if not conversation_state['has_age']:
conversation_state['age'] = message.strip()
conversation_state['has_age'] = True
return f"Thank you, {conversation_state['name']}! Now, what brings you here today? Please tell me about any symptoms or health concerns you're experiencing."
# Step 4: Medical consultation phase
conversation_state['medical_turns'] += 1
# Prepare conversation history for the model
medical_history = []
if len(history) >= 3: # Skip name/age exchanges
medical_history = history[3:]
# Define follow-up questions based on turn number
followup_questions = [
"Can you describe your symptoms in more detail? What exactly are you experiencing?",
"How long have you been experiencing these symptoms? When did they first start?",
"On a scale of 1-10, how would you rate the severity of your symptoms?",
"Have you noticed anything that makes your symptoms better or worse?",
"Do you have any other symptoms, medical history, or are you taking any medications?"
]
# Build the prompt for medical consultation
if conversation_state['medical_turns'] <= 5:
# Still gathering information
prompt = build_simple_prompt(SYSTEM_PROMPT, medical_history, message)
# Generate response
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
llama_response = full_response.split('[/INST]')[-1].strip()
# Add a specific follow-up question
if conversation_state['medical_turns'] < len(followup_questions):
next_question = followup_questions[conversation_state['medical_turns']]
return f"{llama_response}\n\n{next_question}"
else:
return llama_response
else:
# Time for diagnosis and treatment (after 5+ turns)
# Compile patient information
patient_info = f"Patient: {conversation_state['name']}, Age: {conversation_state['age']}\n\n"
patient_info += "Symptoms and Information:\n"
# Add all medical conversation history
for user_msg, bot_msg in medical_history:
patient_info += f"Patient: {user_msg}\n"
patient_info += f"Patient: {message}\n"
# Generate diagnosis with Llama-2
diagnosis_prompt = f"<s>[INST] <<SYS>>\n{SYSTEM_PROMPT}\n<</SYS>>\n\nBased on all the information provided, please provide a comprehensive medical assessment including likely diagnosis and recommendations for {conversation_state['name']}.\n\nPatient Information:\n{patient_info} [/INST] "
inputs = tokenizer(diagnosis_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=384,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
diagnosis = full_response.split('[/INST]')[-1].strip()
# Get treatment suggestions from Meditron
treatment_suggestions = get_meditron_suggestions(patient_info)
# Combine responses
final_response = f"{diagnosis}\n\n--- TREATMENT RECOMMENDATIONS ---\n\n{treatment_suggestions}\n\n**Important:** These are general recommendations. Please consult with a healthcare professional for personalized medical advice."
return final_response
# Create the Gradio interface
demo = gr.ChatInterface(
fn=generate_response,
title="🩺 AI Medical Assistant",
description="I'll ask for your basic information first, then gather details about your symptoms to provide medical insights.",
examples=[
"I have a persistent cough",
"I've been having headaches",
"My stomach hurts"
],
theme="soft"
)
if __name__ == "__main__":
demo.launch() |