Spaces:
Sleeping
Sleeping
File size: 9,868 Bytes
e574b74 c1ea7de e574b74 3c9b585 37b313c 3c9b585 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 211eda2 3c9b585 e574b74 af88ed0 37b313c e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 af88ed0 e574b74 1b05bbd e574b74 a8a8d6b af88ed0 a8a8d6b af88ed0 211eda2 b7fe104 211eda2 b7fe104 211eda2 af88ed0 1b05bbd af88ed0 1b05bbd af88ed0 e88e59d af88ed0 e88e59d a2effd4 3d94b93 65e0008 25498b5 3d94b93 25498b5 3d94b93 25498b5 037b7f7 e88e59d 25498b5 b816d25 e88e59d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import schedule
import time
import datetime
import praw
import joblib
import torch
import scipy.sparse as sp
import torch.nn as nn
import pandas as pd
import re
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline
from transformers import AutoTokenizer
import matplotlib.font_manager as fm
# Load models and data (your existing code)
autovectorizer = joblib.load('AutoVectorizer.pkl')
autoclassifier = joblib.load('AutoClassifier.pkl')
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
class ScorePredictor(nn.Module):
# ... (Your ScorePredictor class)
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
super(ScorePredictor, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids, attention_mask):
embedded = self.embedding(input_ids)
lstm_out, _ = self.lstm(embedded)
final_hidden_state = lstm_out[:, -1, :]
output = self.fc(final_hidden_state)
return self.sigmoid(output)
score_model = ScorePredictor(tokenizer.vocab_size)
score_model.load_state_dict(torch.load("score_predictor.pth"))
score_model.eval()
sentiment_model = joblib.load('sentiment_forecast_model.pkl')
reddit = praw.Reddit(
client_id="PH99oWZjM43GimMtYigFvA",
client_secret="3tJsXQKEtFFYInxzLEDqRZ0s_w5z0g",
user_agent='MyAPI/0.0.1',
check_for_async=False)
subreddits = [
"centrist",
"libertarian",
"southpark",
"truechristian",
"conservatives"
]
# Global variables for data
global prediction_plot_base64
prediction_plot_base64 = None
def process_data():
"""Fetches data, performs analysis, and generates the plot."""
global prediction_plot_base64
end_date = datetime.datetime.utcnow()
start_date = end_date - datetime.timedelta(days=14)
def fetch_all_recent_posts(subreddit_name, start_time, limit=500):
# ... (Your fetch_all_recent_posts function)
subreddit = reddit.subreddit(subreddit_name)
posts = []
try:
for post in subreddit.top(limit=limit): # Fetch recent posts
post_time = datetime.datetime.utcfromtimestamp(post.created_utc)
if post_time >= start_time: # Filter only within last 14 days
posts.append({
"subreddit": subreddit_name,
"timestamp": post.created_utc,
"date": post_time.strftime('%Y-%m-%d %H:%M:%S'),
"post_text": post.title
})
except Exception as e:
print(f"Error fetching posts from r/{subreddit_name}: {e}")
return posts
def preprocess_text(text):
# ... (Your preprocess_text function)
text = text.lower()
text = re.sub(r'http\S+', '', text)
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def predict_score(text):
# ... (Your predict_score function)
if not text:
return 0.0
max_length = 512
encoded_input = tokenizer(
text.split(),
return_tensors='pt',
padding=True,
truncation=True,
max_length=max_length
)
input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
with torch.no_grad():
score = score_model(input_ids, attention_mask)[0].item()
return score
start_time = datetime.datetime.utcnow() - datetime.timedelta(days=14)
all_posts = []
for sub in subreddits:
print(f"Fetching posts from r/{sub}")
posts = fetch_all_recent_posts(sub, start_time)
all_posts.extend(posts)
print(f"Fetched {len(posts)} posts from r/{sub}")
filtered_posts = []
for post in all_posts:
vector = autovectorizer.transform([post['post_text']])
prediction = autoclassifier.predict(vector)
if prediction[0] == 1:
filtered_posts.append(post)
all_posts = filtered_posts
df = pd.DataFrame(all_posts)
df['date'] = pd.to_datetime(df['date'])
df['date_only'] = df['date'].dt.date
df = df.sort_values(by=['date_only'])
df['sentiment_score'] = df['post_text'].apply(predict_score)
last_14_dates = df['date_only'].unique()
num_dates = min(len(last_14_dates), 14)
last_14_dates = sorted(last_14_dates, reverse=True)[:num_dates]
filtered_df = df[df['date_only'].isin(last_14_dates)]
daily_sentiment = filtered_df.groupby('date_only')['sentiment_score'].median()
if len(daily_sentiment) < 14:
mean_sentiment = daily_sentiment.mean()
padding = [mean_sentiment] * (14 - len(daily_sentiment))
daily_sentiment = np.concatenate([daily_sentiment.values, padding])
daily_sentiment = pd.Series(daily_sentiment)
sentiment_scores_np = daily_sentiment.values.reshape(1, -1)
prediction = sentiment_model.predict(sentiment_scores_np)
pred = (prediction[0])
font_path = "AfacadFlux-VariableFont_slnt,wght[1].ttf"
custom_font = fm.FontProperties(fname=font_path)
today = datetime.date.today()
days = [today + datetime.timedelta(days=i) for i in range(7)]
days_str = [day.strftime('%a %m/%d') for day in days]
xnew = np.linspace(0, 6, 300)
spline = make_interp_spline(np.arange(7), pred, k=3)
pred_smooth = spline(xnew)
fig, ax = plt.subplots(figsize=(12, 7))
ax.fill_between(xnew, pred_smooth, color='#244B48', alpha=0.4)
ax.plot(xnew, pred_smooth, color='#244B48', lw=3, label='Forecast')
ax.scatter(np.arange(7), pred, color='#244B48', s=100, zorder=5)
ax.set_title(f"7-Day Political Sentiment Forecast - {datetime.datetime.now()}", fontsize=22, fontweight='bold', pad=20, fontproperties=custom_font)
ax.set_xlabel("Day", fontsize=16, fontproperties=custom_font)
ax.set_ylabel("Negative Sentiment (0-1)", fontsize=16, fontproperties=custom_font)
ax.set_xticks(np.arange(7))
ax.set_xticklabels(days_str, fontsize=14, fontproperties=custom_font)
# Continue from previous app.py code
ax.set_yticklabels([f"{tick:.2f}" for tick in ax.get_yticks()], fontsize=14, fontproperties=custom_font)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.legend(fontsize=14, loc='upper right', prop=custom_font)
plt.tight_layout()
import io
import base64
buffer = io.BytesIO()
plt.savefig(buffer, format='png')
buffer.seek(0)
prediction_plot_base64 = base64.b64encode(buffer.getvalue()).decode()
plt.close(fig)
def display_plot():
"""Displays the plot in the Gradio interface."""
global prediction_plot_base64
if prediction_plot_base64:
return f'<img src="data:image/png;base64,{prediction_plot_base64}" alt="Prediction Plot">'
else:
return "Processing data..."
# process_data()
# # Schedule daily refresh
# def run_daily():
# process_data()
# print("Data refreshed at:", datetime.datetime.now())
# schedule.every().day.at("00:00").do(run_daily)
# def run_schedule():
# while True:
# schedule.run_pending()
# time.sleep(60)
# import threading
# thread = threading.Thread(target=run_schedule)
# thread.daemon = True
# thread.start()
# # Gradio Interface
# if prediction_plot_base64:
# html_content = f'<img src="data:image/png;base64,{prediction_plot_base64}" alt="Prediction Plot">'
# else:
# html_content = "Processing data..."
# iface = gr.Interface(fn=None, inputs=None, outputs=gr.HTML(value=html_content))
# iface.launch()
# Initial data processing
process_data()
# Schedule daily refresh
def run_daily():
process_data()
print("Data refreshed at:", datetime.datetime.now())
#schedule.every().day.at("00:00").do(run_daily)
schedule.every(10).seconds.do(run_daily)
def run_schedule():
while True:
schedule.run_pending()
#time.sleep(60)
import threading
thread = threading.Thread(target=run_schedule)
thread.daemon = True
thread.start()
# # Gradio Interface
# if prediction_plot_base64:
# html_content = (
# f'<img src="data:image/png;base64,{prediction_plot_base64}" '
# 'alt="Prediction Plot" '
# 'style="width: 100vw; height: 100vh; object-fit: contain;">'
# )
# else:
# html_content = "Processing data..."
# custom_css = """
# body, .gradio-container {
# margin: 0;
# padding: 0;
# }
# """
# with gr.Blocks(css=custom_css) as demo:
# gr.HTML(value=html_content)
# print("Data refreshed at:", datetime.datetime.now())
# demo.launch()
custom_css = """
body, .gradio-container {
margin: 0;
padding: 0;
}
"""
with gr.Blocks(css=custom_css) as demo:
# Initialize the HTML output with a default message
html_output = gr.HTML("Processing data...")
# Define the refresh function
def refresh_html():
if prediction_plot_base64:
return (
f'<img src="data:image/png;base64,{prediction_plot_base64}" '
'alt="Prediction Plot" '
'style="width: 100vw; height: 100vh; object-fit: contain;">'
)
else:
return "Processing data..."
# Use the Timer component according to the documentation
timer = gr.Timer(3600, refresh_html, [], html_output)
# Initial call to set the HTML content when the page loads
demo.load(refresh_html, [], html_output)
# Launch the demo
demo.launch()
|