Spaces:
Running
Running
import gradio as gr | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import SegformerForSemanticSegmentation, AutoImageProcessor | |
# Device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load model and processor once | |
processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512") | |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512").to(device) | |
def process(room_img, tile_img): | |
room_img = room_img.convert("RGB") | |
tile_img = tile_img.convert("RGB") | |
room_np = np.array(room_img) | |
# Segmentation | |
inputs = processor(images=room_img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy() | |
segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (room_np.shape[1], room_np.shape[0]), interpolation=cv2.INTER_NEAREST) | |
# Mask for floor (ADE20K class index 3) | |
floor_class_index = 3 | |
mask_bin = (segmentation_resized == floor_class_index).astype(np.uint8) | |
# Largest contour | |
contours, _ = cv2.findContours(mask_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if not contours: | |
return room_img, Image.fromarray(mask_bin*255), tile_img, room_img | |
contour = max(contours, key=cv2.contourArea) | |
if len(contour) < 4: | |
return room_img, Image.fromarray(mask_bin*255), tile_img, room_img | |
x, y, w, h = cv2.boundingRect(contour) | |
src_pts = np.array([[x, y + h], [x + w, y + h], [x + w, y], [x, y]], dtype=np.float32) | |
offset = h * 0.5 | |
dst_pts = np.array([[x - offset, y + h], [x + w + offset, y + h], [x + w, y], [x, y]], dtype=np.float32) | |
H = cv2.getPerspectiveTransform(src_pts, dst_pts) | |
# Resize tile | |
target_tile_width = room_np.shape[1] // 10 | |
tile_aspect_ratio = tile_img.height / tile_img.width | |
target_tile_height = int(target_tile_width * tile_aspect_ratio) | |
tile_resized = tile_img.resize((target_tile_width, target_tile_height), Image.LANCZOS) | |
tile_np = np.array(tile_resized) | |
# Tile texture | |
tile_h, tile_w = tile_np.shape[:2] | |
room_h, room_w = room_np.shape[:2] | |
reps_y = room_h // tile_h + 2 | |
reps_x = room_w // tile_w + 2 | |
tiled_texture = np.tile(tile_np, (reps_y, reps_x, 1))[:room_h, :room_w] | |
warped_texture = cv2.warpPerspective(tiled_texture, H, (room_w, room_h)) | |
# Blend | |
room_float = room_np.astype(np.float32) / 255.0 | |
texture_float = warped_texture.astype(np.float32) / 255.0 | |
room_gray = cv2.cvtColor(room_float, cv2.COLOR_RGB2GRAY) | |
lighting = np.stack([room_gray]*3, axis=-1) | |
lighting = np.clip(lighting * 1.2, 0, 1) | |
lit_texture = np.clip(texture_float * lighting, 0, 1) | |
mask_3ch = np.stack([mask_bin]*3, axis=-1) | |
blended = np.where(mask_3ch == 1, lit_texture, room_float) | |
blended_img = (blended * 255).astype(np.uint8) | |
return Image.fromarray(room_np), Image.fromarray(mask_bin * 255), Image.fromarray(warped_texture), Image.fromarray(blended_img) | |
demo = gr.Interface( | |
fn=process, | |
inputs=[gr.Image(label="Room Image", type="pil"), gr.Image(label="Tile Image", type="pil")], | |
outputs=[ | |
gr.Image(label="Original Room"), | |
gr.Image(label="Floor Mask"), | |
gr.Image(label="Warped Texture"), | |
gr.Image(label="Final Overlay") | |
], | |
examples=[ | |
["https://www.thespruce.com/thmb/GtlHim5EsWERYoVi62TnWpu6JTA=/5472x3648/filters:fill(auto,1)/GettyImages-9261821821-5c69c1b7c9e77c0001675a49.jpg", "https://renovlange.de/images/marbles/arabescato.jpg"], | |
["https://st.hzcdn.com/simgs/57717d160282e776_9-0651/home-design.jpg", "https://renovlange.de/images/marbles/grigio-cenere.jpg"] | |
], | |
title="Room Floor Tiler", | |
description="Upload a room image and a tile texture. The floor is automatically detected and overlaid with your selected tile using SegFormer and perspective warping." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |