import gradio as gr import torch import numpy as np import cv2 from PIL import Image from torchvision import transforms from transformers import SegformerForSemanticSegmentation, AutoImageProcessor # Device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model and processor once processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512").to(device) def process(room_img, tile_img): room_img = room_img.convert("RGB") tile_img = tile_img.convert("RGB") room_np = np.array(room_img) # Segmentation inputs = processor(images=room_img, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy() segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (room_np.shape[1], room_np.shape[0]), interpolation=cv2.INTER_NEAREST) # Mask for floor (ADE20K class index 3) floor_class_index = 3 mask_bin = (segmentation_resized == floor_class_index).astype(np.uint8) # Largest contour contours, _ = cv2.findContours(mask_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return room_img, Image.fromarray(mask_bin*255), tile_img, room_img contour = max(contours, key=cv2.contourArea) if len(contour) < 4: return room_img, Image.fromarray(mask_bin*255), tile_img, room_img x, y, w, h = cv2.boundingRect(contour) src_pts = np.array([[x, y + h], [x + w, y + h], [x + w, y], [x, y]], dtype=np.float32) offset = h * 0.5 dst_pts = np.array([[x - offset, y + h], [x + w + offset, y + h], [x + w, y], [x, y]], dtype=np.float32) H = cv2.getPerspectiveTransform(src_pts, dst_pts) # Resize tile target_tile_width = room_np.shape[1] // 10 tile_aspect_ratio = tile_img.height / tile_img.width target_tile_height = int(target_tile_width * tile_aspect_ratio) tile_resized = tile_img.resize((target_tile_width, target_tile_height), Image.LANCZOS) tile_np = np.array(tile_resized) # Tile texture tile_h, tile_w = tile_np.shape[:2] room_h, room_w = room_np.shape[:2] reps_y = room_h // tile_h + 2 reps_x = room_w // tile_w + 2 tiled_texture = np.tile(tile_np, (reps_y, reps_x, 1))[:room_h, :room_w] warped_texture = cv2.warpPerspective(tiled_texture, H, (room_w, room_h)) # Blend room_float = room_np.astype(np.float32) / 255.0 texture_float = warped_texture.astype(np.float32) / 255.0 room_gray = cv2.cvtColor(room_float, cv2.COLOR_RGB2GRAY) lighting = np.stack([room_gray]*3, axis=-1) lighting = np.clip(lighting * 1.2, 0, 1) lit_texture = np.clip(texture_float * lighting, 0, 1) mask_3ch = np.stack([mask_bin]*3, axis=-1) blended = np.where(mask_3ch == 1, lit_texture, room_float) blended_img = (blended * 255).astype(np.uint8) return Image.fromarray(room_np), Image.fromarray(mask_bin * 255), Image.fromarray(warped_texture), Image.fromarray(blended_img) demo = gr.Interface( fn=process, inputs=[gr.Image(label="Room Image", type="pil"), gr.Image(label="Tile Image", type="pil")], outputs=[ gr.Image(label="Original Room"), gr.Image(label="Floor Mask"), gr.Image(label="Warped Texture"), gr.Image(label="Final Overlay") ], examples=[ ["https://www.thespruce.com/thmb/GtlHim5EsWERYoVi62TnWpu6JTA=/5472x3648/filters:fill(auto,1)/GettyImages-9261821821-5c69c1b7c9e77c0001675a49.jpg", "https://renovlange.de/images/marbles/arabescato.jpg"], ["https://st.hzcdn.com/simgs/57717d160282e776_9-0651/home-design.jpg", "https://renovlange.de/images/marbles/grigio-cenere.jpg"] ], title="Room Floor Tiler", description="Upload a room image and a tile texture. The floor is automatically detected and overlaid with your selected tile using SegFormer and perspective warping." ) if __name__ == "__main__": demo.launch()