sanjaybora04 commited on
Commit
09ebd0a
·
verified ·
1 Parent(s): 9baebd6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -89
app.py CHANGED
@@ -1,89 +1,93 @@
1
- import gradio as gr
2
- import torch
3
- import numpy as np
4
- import cv2
5
- from PIL import Image
6
- from torchvision import transforms
7
- from transformers import SegformerForSemanticSegmentation, AutoImageProcessor
8
-
9
- # Device
10
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
-
12
- # Load model and processor once
13
- processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")
14
- model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512").to(device)
15
-
16
- def process(room_img, tile_img):
17
- room_img = room_img.convert("RGB")
18
- tile_img = tile_img.convert("RGB")
19
- room_np = np.array(room_img)
20
-
21
- # Segmentation
22
- inputs = processor(images=room_img, return_tensors="pt").to(device)
23
- with torch.no_grad():
24
- outputs = model(**inputs)
25
- segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
26
- segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (room_np.shape[1], room_np.shape[0]), interpolation=cv2.INTER_NEAREST)
27
-
28
- # Mask for floor (ADE20K class index 3)
29
- floor_class_index = 3
30
- mask_bin = (segmentation_resized == floor_class_index).astype(np.uint8)
31
-
32
- # Largest contour
33
- contours, _ = cv2.findContours(mask_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
34
- if not contours:
35
- return room_img, Image.fromarray(mask_bin*255), tile_img, room_img
36
- contour = max(contours, key=cv2.contourArea)
37
- if len(contour) < 4:
38
- return room_img, Image.fromarray(mask_bin*255), tile_img, room_img
39
-
40
- x, y, w, h = cv2.boundingRect(contour)
41
- src_pts = np.array([[x, y + h], [x + w, y + h], [x + w, y], [x, y]], dtype=np.float32)
42
- offset = h * 0.5
43
- dst_pts = np.array([[x - offset, y + h], [x + w + offset, y + h], [x + w, y], [x, y]], dtype=np.float32)
44
- H = cv2.getPerspectiveTransform(src_pts, dst_pts)
45
-
46
- # Resize tile
47
- target_tile_width = room_np.shape[1] // 10
48
- tile_aspect_ratio = tile_img.height / tile_img.width
49
- target_tile_height = int(target_tile_width * tile_aspect_ratio)
50
- tile_resized = tile_img.resize((target_tile_width, target_tile_height), Image.LANCZOS)
51
- tile_np = np.array(tile_resized)
52
-
53
- # Tile texture
54
- tile_h, tile_w = tile_np.shape[:2]
55
- room_h, room_w = room_np.shape[:2]
56
- reps_y = room_h // tile_h + 2
57
- reps_x = room_w // tile_w + 2
58
- tiled_texture = np.tile(tile_np, (reps_y, reps_x, 1))[:room_h, :room_w]
59
- warped_texture = cv2.warpPerspective(tiled_texture, H, (room_w, room_h))
60
-
61
- # Blend
62
- room_float = room_np.astype(np.float32) / 255.0
63
- texture_float = warped_texture.astype(np.float32) / 255.0
64
- room_gray = cv2.cvtColor(room_float, cv2.COLOR_RGB2GRAY)
65
- lighting = np.stack([room_gray]*3, axis=-1)
66
- lighting = np.clip(lighting * 1.2, 0, 1)
67
- lit_texture = np.clip(texture_float * lighting, 0, 1)
68
- mask_3ch = np.stack([mask_bin]*3, axis=-1)
69
- blended = np.where(mask_3ch == 1, lit_texture, room_float)
70
- blended_img = (blended * 255).astype(np.uint8)
71
-
72
- return Image.fromarray(room_np), Image.fromarray(mask_bin * 255), Image.fromarray(warped_texture), Image.fromarray(blended_img)
73
-
74
-
75
- demo = gr.Interface(
76
- fn=process,
77
- inputs=[gr.Image(label="Room Image", type="pil"), gr.Image(label="Tile Image", type="pil")],
78
- outputs=[
79
- gr.Image(label="Original Room"),
80
- gr.Image(label="Floor Mask"),
81
- gr.Image(label="Warped Texture"),
82
- gr.Image(label="Final Overlay")
83
- ],
84
- title="Room Floor Tiler",
85
- description="Upload a room image and a tile texture. The floor is automatically detected and overlaid with your selected tile using SegFormer and perspective warping."
86
- )
87
-
88
- if __name__ == "__main__":
89
- demo.launch()
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import cv2
5
+ from PIL import Image
6
+ from torchvision import transforms
7
+ from transformers import SegformerForSemanticSegmentation, AutoImageProcessor
8
+
9
+ # Device
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+ # Load model and processor once
13
+ processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")
14
+ model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512").to(device)
15
+
16
+ def process(room_img, tile_img):
17
+ room_img = room_img.convert("RGB")
18
+ tile_img = tile_img.convert("RGB")
19
+ room_np = np.array(room_img)
20
+
21
+ # Segmentation
22
+ inputs = processor(images=room_img, return_tensors="pt").to(device)
23
+ with torch.no_grad():
24
+ outputs = model(**inputs)
25
+ segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
26
+ segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (room_np.shape[1], room_np.shape[0]), interpolation=cv2.INTER_NEAREST)
27
+
28
+ # Mask for floor (ADE20K class index 3)
29
+ floor_class_index = 3
30
+ mask_bin = (segmentation_resized == floor_class_index).astype(np.uint8)
31
+
32
+ # Largest contour
33
+ contours, _ = cv2.findContours(mask_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
34
+ if not contours:
35
+ return room_img, Image.fromarray(mask_bin*255), tile_img, room_img
36
+ contour = max(contours, key=cv2.contourArea)
37
+ if len(contour) < 4:
38
+ return room_img, Image.fromarray(mask_bin*255), tile_img, room_img
39
+
40
+ x, y, w, h = cv2.boundingRect(contour)
41
+ src_pts = np.array([[x, y + h], [x + w, y + h], [x + w, y], [x, y]], dtype=np.float32)
42
+ offset = h * 0.5
43
+ dst_pts = np.array([[x - offset, y + h], [x + w + offset, y + h], [x + w, y], [x, y]], dtype=np.float32)
44
+ H = cv2.getPerspectiveTransform(src_pts, dst_pts)
45
+
46
+ # Resize tile
47
+ target_tile_width = room_np.shape[1] // 10
48
+ tile_aspect_ratio = tile_img.height / tile_img.width
49
+ target_tile_height = int(target_tile_width * tile_aspect_ratio)
50
+ tile_resized = tile_img.resize((target_tile_width, target_tile_height), Image.LANCZOS)
51
+ tile_np = np.array(tile_resized)
52
+
53
+ # Tile texture
54
+ tile_h, tile_w = tile_np.shape[:2]
55
+ room_h, room_w = room_np.shape[:2]
56
+ reps_y = room_h // tile_h + 2
57
+ reps_x = room_w // tile_w + 2
58
+ tiled_texture = np.tile(tile_np, (reps_y, reps_x, 1))[:room_h, :room_w]
59
+ warped_texture = cv2.warpPerspective(tiled_texture, H, (room_w, room_h))
60
+
61
+ # Blend
62
+ room_float = room_np.astype(np.float32) / 255.0
63
+ texture_float = warped_texture.astype(np.float32) / 255.0
64
+ room_gray = cv2.cvtColor(room_float, cv2.COLOR_RGB2GRAY)
65
+ lighting = np.stack([room_gray]*3, axis=-1)
66
+ lighting = np.clip(lighting * 1.2, 0, 1)
67
+ lit_texture = np.clip(texture_float * lighting, 0, 1)
68
+ mask_3ch = np.stack([mask_bin]*3, axis=-1)
69
+ blended = np.where(mask_3ch == 1, lit_texture, room_float)
70
+ blended_img = (blended * 255).astype(np.uint8)
71
+
72
+ return Image.fromarray(room_np), Image.fromarray(mask_bin * 255), Image.fromarray(warped_texture), Image.fromarray(blended_img)
73
+
74
+
75
+ demo = gr.Interface(
76
+ fn=process,
77
+ inputs=[gr.Image(label="Room Image", type="pil"), gr.Image(label="Tile Image", type="pil")],
78
+ outputs=[
79
+ gr.Image(label="Original Room"),
80
+ gr.Image(label="Floor Mask"),
81
+ gr.Image(label="Warped Texture"),
82
+ gr.Image(label="Final Overlay")
83
+ ],
84
+ examples=[
85
+ ["https://www.thespruce.com/thmb/GtlHim5EsWERYoVi62TnWpu6JTA=/5472x3648/filters:fill(auto,1)/GettyImages-9261821821-5c69c1b7c9e77c0001675a49.jpg", "https://renovlange.de/images/marbles/arabescato.jpg"],
86
+ ["https://st.hzcdn.com/simgs/57717d160282e776_9-0651/home-design.jpg", "https://renovlange.de/images/marbles/grigio-cenere.jpg"]
87
+ ],
88
+ title="Room Floor Tiler",
89
+ description="Upload a room image and a tile texture. The floor is automatically detected and overlaid with your selected tile using SegFormer and perspective warping."
90
+ )
91
+
92
+ if __name__ == "__main__":
93
+ demo.launch()