|
import streamlit as st |
|
from model import load_vectorstore, ask_question |
|
import os |
|
|
|
st.set_page_config(page_title="RAG with Mistral AI", layout="centered") |
|
|
|
st.title("RAG Q&A App with Mistral AI") |
|
st.write("Upload a document and ask questions about it.") |
|
|
|
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"]) |
|
|
|
if uploaded_file: |
|
with open("document.pdf", "wb") as f: |
|
f.write(uploaded_file.read()) |
|
st.success("File uploaded!") |
|
|
|
if st.button("Index Document"): |
|
with st.spinner("Processing..."): |
|
load_vectorstore("document.pdf") |
|
st.success("Vectorstore ready.") |
|
|
|
query = st.text_input("Enter your question") |
|
if st.button("Ask") and query: |
|
with st.spinner("Generating answer..."): |
|
answer = ask_question(query) |
|
st.write("**Answer:**", answer) |
|
|
|
|
|
from fastapi import FastAPI, UploadFile, File, Form |
|
from model import load_vectorstore, ask_question |
|
import shutil |
|
|
|
app = FastAPI() |
|
|
|
@app.post("/upload") |
|
async def upload(file: UploadFile = File(...)): |
|
with open("document.pdf", "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
load_vectorstore("document.pdf") |
|
return {"message": "File indexed successfully."} |
|
|
|
@app.post("/ask") |
|
async def ask(question: str = Form(...)): |
|
answer = ask_question(question) |
|
return {"question": question, "answer": answer} |
|
|
|
|