File size: 1,361 Bytes
404c584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
from model import load_vectorstore, ask_question
import os
st.set_page_config(page_title="RAG with Mistral AI", layout="centered")
st.title("RAG Q&A App with Mistral AI")
st.write("Upload a document and ask questions about it.")
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
if uploaded_file:
with open("document.pdf", "wb") as f:
f.write(uploaded_file.read())
st.success("File uploaded!")
if st.button("Index Document"):
with st.spinner("Processing..."):
load_vectorstore("document.pdf")
st.success("Vectorstore ready.")
query = st.text_input("Enter your question")
if st.button("Ask") and query:
with st.spinner("Generating answer..."):
answer = ask_question(query)
st.write("**Answer:**", answer)
# api.py
from fastapi import FastAPI, UploadFile, File, Form
from model import load_vectorstore, ask_question
import shutil
app = FastAPI()
@app.post("/upload")
async def upload(file: UploadFile = File(...)):
with open("document.pdf", "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
load_vectorstore("document.pdf")
return {"message": "File indexed successfully."}
@app.post("/ask")
async def ask(question: str = Form(...)):
answer = ask_question(question)
return {"question": question, "answer": answer}
|