Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from model import load_vectorstore, ask_question
|
3 |
+
import os
|
4 |
+
|
5 |
+
st.set_page_config(page_title="RAG with Mistral AI", layout="centered")
|
6 |
+
|
7 |
+
st.title("RAG Q&A App with Mistral AI")
|
8 |
+
st.write("Upload a document and ask questions about it.")
|
9 |
+
|
10 |
+
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
|
11 |
+
|
12 |
+
if uploaded_file:
|
13 |
+
with open("document.pdf", "wb") as f:
|
14 |
+
f.write(uploaded_file.read())
|
15 |
+
st.success("File uploaded!")
|
16 |
+
|
17 |
+
if st.button("Index Document"):
|
18 |
+
with st.spinner("Processing..."):
|
19 |
+
load_vectorstore("document.pdf")
|
20 |
+
st.success("Vectorstore ready.")
|
21 |
+
|
22 |
+
query = st.text_input("Enter your question")
|
23 |
+
if st.button("Ask") and query:
|
24 |
+
with st.spinner("Generating answer..."):
|
25 |
+
answer = ask_question(query)
|
26 |
+
st.write("**Answer:**", answer)
|
27 |
+
|
28 |
+
# api.py
|
29 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
30 |
+
from model import load_vectorstore, ask_question
|
31 |
+
import shutil
|
32 |
+
|
33 |
+
app = FastAPI()
|
34 |
+
|
35 |
+
@app.post("/upload")
|
36 |
+
async def upload(file: UploadFile = File(...)):
|
37 |
+
with open("document.pdf", "wb") as buffer:
|
38 |
+
shutil.copyfileobj(file.file, buffer)
|
39 |
+
load_vectorstore("document.pdf")
|
40 |
+
return {"message": "File indexed successfully."}
|
41 |
+
|
42 |
+
@app.post("/ask")
|
43 |
+
async def ask(question: str = Form(...)):
|
44 |
+
answer = ask_question(question)
|
45 |
+
return {"question": question, "answer": answer}
|
46 |
+
|